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1 Strand sequences

Name Sequence

U1-TT-Cy3 5’- Cy3-TT-GGCGATTAGG-ACGCTAAGCCA-CCTTTAGATCC-TGTATCTGGT -3’
U2 5’- GGATCTAAAGG-ACCAGATACA-CCACTCTTCC-TGACATCTTGT -3’
U3 5’- GGAAGAGTGG-ACAAGATGTCA-CCGTGAGAACC-TGCAATGCGT -3’
U4 5’- GGTTCTCACGG-ACGCATTGCA-CCGCACGACC-TGTTCGACAGT -3’
U5 5’- GGTCGTGCGG-ACTGTCGAACA-CCAACGATGCC-TGATAGAAGT -3’
U6 5’- GGCATCGTTGG-ACTTCTATCA-ATGCACCTCC-AGCTTTGAATG -3’
T7 (modified) 5’- GGAGGTGCAT-CATTCAAAGCT-TGGCTTAGCGT-CCTAATCGCC -3’

Table S1: DNA sequences for 7-helix DNA nanotube. Apart from the oligomer T7, we have employed the
published DNA sequences in ref. [1]. The modified T7 strand was designed to reduce the twist energy in the
7-helix nanotube (c.f. Ref. [2]) as shown in Fig. S1. A Cy3 fluorophore was attached to the U1 strand for
fluorescent imaging

GGCGATTAGG ACGCTAAGCCA
CCGCTAATCC TGCGATTCGGT

GGAGGTGCAT CATTCAAAGCT
GTAAGTTTCGA CCTCCACGTA

GGCATCGTTGG ACTTCTATCA
TGAAGATAGT CCGTAGCAACC

GGTCGTGCGG ACTGTCGAACA
TGACAGCTTGT CCAGCACGCC

GGTTCTCACGG ACGCATTGCA
TGCGTAACGT CCAAGAGTGCC

GGAAGAGTGG ACAAGATGTCA
TGTTCTACAGT CCTTCTCACC

GGATCTAAAGG ACCAGATACA
TGGTCTATGT CCTAGATTTCC
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Figure S1: Strand diagram for 7-helix DNA nanotubes. Each strand has four sticky ends; each sticky end has
a unique complement in its adjacent strand. The interactions between complementary sticky ends drives the
nucleation and polymerization reactions to form the designed tubular structure.
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2 Supplementary Histograms
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Figure S2: Fragment length distribution for experiments in assay bu↵er at di↵erent exposure times with an

18 mL/min air flow rate. The smallest bin in the histogram with bin size = 1/32 µm is relatively unaltered
during the fragmentation experiments. The constant level of the 1/32 µm bin was used to infer the maximum
elongational flow rate during bubble bursting.
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Figure S3: Length distribution for the fragmentation experiments with ocean water. (A–B) Length histograms of
unperturbed DNA nanotubes in ocean water at t = 0 (A) and 1 hour (B). (C–E ) Nanotube length distribution
for the fragmentation experiments with ocean water at di↵erent air volume at 18 mL/min flow rate.
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Figure S4: The fluid flow associated with bubble inflation and formation is not responsible for fragmentation.

Fragment length distribution for the experiment with the slower flow rate (1.8 mL/min) for 33.3 min is similar
to the corresponding bubble bursting experiment at 18 mL/min for 3.33 min (Fig. S2). In both cases, the total
air volume was 60 mL. The t = 0 min length histogram in Fig. S2 provides a justifiable negative control for this
experiment. Although the data in Figs. S2 and S4 were acquired on di↵erent days, the starting nanotube samples
were prepared and annealed at the same time.
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Figure S5: Nanotube fragmentation is primarily due to the fluid flows associated with bubble bursting. Fragment
length histogram for the experiment in assay bu↵er under a layer of heptane at 18 mL/min flow rate for 3.3 mins.
The length histogram is comparable to the initial nanotube length distribution (Fig. S2). The t = 0 min length
histogram in Fig. S2 is used as control data because these experiments used the same DNA nanotube sample.
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Figure S6: Surface tension controls the maximum elongational rate in bubble bursting. (Upper–middle) Similar
length histograms before (upper) and after (middle) 30 mins incubation in 1% SDS showing the stability of DNA
nanotubes in the SDS containing bu↵er. (Lower) Fragment length distribution for the control experiment in 1%
SDS containing bu↵er. The change of length distribution is substantially less than the corresponding experiment
in assay bu↵er (Fig. S2).



Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics 6

0

200

400

0

200

400

0

200

400

N
an

ot
ub

e 
co

nc
en

tr
at

io
n 

pe
r u

ni
t l

en
gt

h 
 [p

M
/µ

m
]

A

0 < l ≤ 1 µm

600

600

600

B

0 < l ≤ 1/2 µm

C

0 < l ≤ 1/4 µm

0 5 10 15 20

0

200

400

0 5 10 15 20

Time, t [mins]

600
D

0 < l ≤ 1/8 µm

0

200

400

600
E

0 < l ≤ 1/16 µm

0

200

400

600
F

0 < l ≤ 1/32 µm

Figure S7: Experimental (solid line) and simulated (dashed, full cascade model) plots of histogram bin values for
fragment lengths less than the indicated bin size over the course of the fragmentation experiment. The relative
concentrations of nanotubes with l > 1/16 µm grow similarly with time (A–D). Those with l < 1/16 µm also
grow, but less markedly (E ). The number of nanotubes with l < 1/32 µm is essentially negligible over the course
of the experiment (F ). Shaded area indicates S.E.M. from bootstrapping.
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Figure S8: Simulated (blue) and experimental (red) fragment length distributions for the fragmentation experiment
with assay bu↵er. The simulated length histogram is generated deterministically by the full cascade model (Eq. 8
of the main text and SI sections 3 and 4), where a nanotube of length l is broken into 2

n fragments based on its
Vf (l). This model fits our data better than the single bifurcation model in Fig. S9.
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Figure S9: Simulated (blue) and experimental (red) fragment length distributions for the fragmentation experiment
with assay bu↵er. The simulated fragment histograms are based on the single bifurcation model where nanotubes
of length 2li are broken into exactly two fragments of length li (as described in Eq. 7 of the main text and
section 5 of the SI). The value of the goodness of fit parameter, defined in Eq. (S64), is a factor of 4.1 worse
than that for the full cascade model used in Fig. S8. The lower goodness of fit value is also reflected in the c(l, t)
distributions which exhibit a bulge, for short and intermediate times, that is absent in the experimental data.
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Figure S10: Simulated (blue) and experimental (red) nanotube length histogram for bubble bursting experiment
in ocean water at t= 0, 3.3, 6.7, and 20 mins, using the full cascade model.
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Figure S11: Quantifying characteristic fragmentation volume Vf (l) based on the evolution of nanotube concen-

trations. The concentration for nanotubes in the indicated length interval (l� 1 µm) to (l+ 1 µm) (black lines)
at di↵erent time points (t = Va/ ˙Va with ˙Va = �Vb=18 mL/min, where � is the bubble production rate and Vb is
the measured bubble volume). Orange lines are single exponential fits of c(l, t) to ↵e��t with characteristic decay
constant � = �Vf (l)/Vs, where Vs is the sample volume (100 µL). Error bars (gray-shaded regions) represent
S.E.M. from bootstrapping.
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3 Details for derivation of the full cascade model

Using Eqs. (4), (5), and (6) of the main text, and performing the l0 integration, Eq. (2) yields

dc(l, t)

dt
= ��Vf (l)

Vs
c(l, t) +

�

Vs

1X

m=1

2

2mpm(2

ml)Vf (2
ml)c(2ml, t). (S1)

As a consistency check, again using Eqs. (4), (5), and (6), and performing the l0 integration, Eq. (3) yields the
condition

1X

m=1

pm(l) = 1 (S2)

which we know must hold, since pm(l) is the conditional probability that a tube of length l will fragment into 2

m

tubes when it breaks.
A further simplification of the model is achieved as follows. From the definitions of the quantities on the right

hand side,
�m(l) =

�

Vs
pm(l)Vf (l) (S3)

is the rate that a tube of length l in the sample volume is broken into 2

m fragments and

�T (l) =
�Vf (l)

Vs
(S4)

is the rate that a tube of length l in the sample volume is broken. Hence, one must have

�T (l) =
1X

k=1

�k(l). (S5)

Since we are considering a cascade process where a tube of length l is first broken into two pieces of length l/2,
which each in turn break into pieces of length l/4, we conclude that

�T (l/2) =
1X

k=2

�k(l). (S6)

More generally, we conclude that

�T (l/2
m
) =

1X

k=m+1

�k(l). (S7)

From this one obtains
�m(l) = �T (l/2

m�1
)� �T (l/2

m
) (S8)

for all m � 1. Using Eqs. (S3) and (S4) this yields

pm(l) =
Vf (l/2m�1

)� Vf (l/2m)

Vf (l)
. (S9)

Note that the Eqs. (9) and (10) of the main text ensure that the probabilities given by Eq. (S9) are well-behaved,
convergent, and satisfy Eq. (S2). Substituting Eq. (S9) into Eq. (S1) yields Eq. (8) of the main text.

4 Solutions to the di↵erential equation for the full cascade model

For convenience, using Eqs. (S4), (S8), and (S9), Eq. (S1) can be written as

dc(l, t)

dt
= ��T (l)c(l, t) +

1X

m=1

2

2m�m(2

ml)c(2ml, t). (S10)
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Since this equation is linear in the c(l, t) and since it describes a cascading process in which tubes are broken into
2

m fragments of equal length, the solution must have the form

c(l, t) =
1X

n=0

fn(l, t)c(2
nl, 0) (S11)

where c(l, 0) is the value of c(l, t) at t = 0. Since this equation must hold for all choices of c(l, 0), setting t = 0

yields

fn(l, 0) =

⇢
1 if n = 0

0 if n > 0

. (S12)

Substituting Eq. (S11) into Eq. (S10), and rearranging the sum by diagonals, yields

1X

k=0

dfk(l, t)

dt
c(2kl, 0)

= ��T (l)
1X

k=0

fk(l, t)c(2
kl, 0)

+

1X

k=1

kX

m=1

2

2m�m(2

ml)fk�m(2

ml, t)c(2kl, 0).

(S13)

By setting c(2kl, 0) = 0 for k > 0, this equation yields

df0(l, t)

dt
= ��T (l)f0(l, t). (S14)

By setting c(2kl, 0) = 0 for all k except k = n where n � 1 yields

dfn(l, t)

dt
= ��T (l)fn(l, t) +

nX

m=1

2

2m�m(2

ml)fn�m(2

ml, t). (S15)

Equation (S14), with the initial condition given in Eq. (S12), is easily integrated to yield

f0(l, t) = e��T (l)t. (S16)

Equation (S15) with the initial condition given in Eq. (S12) can be formally integrated to yield, for n > 0,

fn(l, t) =

Z t

0
e��T (l)(t�t0)

nX

m=1

2

2m�m(2

ml)fn�m(2

ml, t0)dt0. (S17)

Since n � m is always less than n, this equation can be used to obtain fn(l, t) for successively higher n. For
example, for n = 1 this equation becomes

f1(l, t) =

Z t

0
e��T (l)(t�t0)

2

2�1(2l)f0(2l, t
0
)dt0. (S18)

Substituting Eq. (S16) into this equation and performing the integration yields

f1(l, t) = 2

2�1(l)
e��T (2l)t � e��T (l)t

�T (l)� �T (2l)
. (S19)

Due to the sum appearing in Eq. (S17), the number of terms in fn(l, t) grows exponentially with n. Generally
c(l, 0) will fall o↵ rapidly with l for su�ciently large l. Hence, the sum in Eq. (S11) can be cut o↵ for su�ciently
large n. Still, this n can be large. For the data analysis reported here, the smallest bin size used was�l = 1/25 µm
and the tube lengths spanned 0 to 2

5 µm. The largest n used in this analysis was 10. The number of terms in the
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analytic expression for f10(l, t) is 29; since the number of terms grows exponentially as a function of n, computer
assisted mathematics can be used to generate terms. We determined the terms diagrammatically by the method
described below.

The diagrammatic method is based on the observation that each term, in the analytic expression for fn(l, t),
corresponds to a particular cascade by which tubes of length l at time t are produced by the fragmentation of tubes
initially of length 2

nl through successive encounters with bubbles. As a first step toward generating the terms of
fn(l, t), it is useful to construct a list of all possible cascades by which a tube of length l can be generated from a
tube of length 2

nl. For the given n, there are are up to n�1 cascade steps, this maximum number corresponding
to the case where the tube of length l results from a cascade in which two fragments were produced with each
encounter of a bubble by the n � 1 successive ancestors of the tube. To generate the complete list of possible
cascades for the given n it is useful to generate the list of n + 1 digit binary numbers whose binary sequence
begins with 1 and ends with 1. An example of such a list is given here for the case n = 4.

4 3 2 1 0

t4 t3 t2 t1 t
2

4l 2

3l 2

2l 2l l
1 0 0 0 1 4 ! 0

1 0 0 1 1 4 ! 1 ! 0

1 0 1 0 1 4 ! 2 ! 0

1 0 1 1 1 4 ! 2 ! 1 ! 0

1 1 0 0 1 4 ! 3 ! 0

1 1 0 1 1 4 ! 3 ! 1 ! 0

1 1 1 0 1 4 ! 3 ! 2 ! 0

1 1 1 1 1 4 ! 3 ! 2 ! 1 ! 0

(S20)

Above this list of numbers, we associate a number, time, and length with each column of digits to facilitate the
construction of the terms of fn(l, t) Shown to the right of the list of binary numbers is the cascade associated
with each number. The zeros in the binary numbers are interpreted as steps that are skipped in the corresponding
cascade. For example, the first entry in the list, 10001, corresponds to a cascade where a tube of length l was
produced directly from a tube of length 2

4l that was fragmented into 2

4 tubes through one encounter with a
bursting bubble. The second entry in the list, 10011, corresponds to the case where a tube of length 2

4l was
first fragmented into 2

3 tubes of length 2l by an encounter with a bursting bubble. Some of these tubes in turn
were broken in two to produce tubes of length l through an encounter with another bursting bubble. As a final
example, the entry 11111 corresponds to the cascade in which tubes of length 2

4l were broken in two to produce
tubes of length 2

3l through an encounter with a bursting bubble. In turn, some of these tubes were broken in
two to produce tubes of length 2

2l through the encounter with another bursting bubble. In turn, some of these
tubes were broken in two to produce tubes of length 2l through an encounter with another bursting bubble. In
turn, some of these tubes were broken in two to produce tubes of length l through the encounter with another
bursting bubble. These tables can be used to write down the series of nested integrals that constitute a given
term of fn(l, t).

The term corresponding to an entry of a table of cascades, such as that of Eq. (S20), for fn(l, t) is constructed
as follows. The leftmost bit (a 1) has associated with it the time tn and the length 2

nl. We also associate with
it the function

e��T (2nl)tn . (S21)

Suppose the next bit to the right that is nonzero has associated with it the integer r, time tr, and the length 2

rl.
With the n to r transition we associate the integral operator

2

2(n�r)�n�r(2
nl)

Z tr

0
dtne

��T (2rl)(tr�tn) (S22)

that operates on the function Eq. (S21). Thus, with the 1 bit at r we associate the function that results when
this operator operates on the function Eq. (S21):

2

2(n�r)�n�r(2
nl)

Z tr

0
dtne

��T (2rl)(tr�tn)e��T (2nl)tn . (S23)



Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics 14

Suppose the next 1 bit to the right is at the position associated with the integer s, the time ts, the tube length
2

sl. With the r to s transition we associate the operator

2

2(r�s)�r�s(2
rl)

Z ts

0
dtre

��T (2sl)(ts�tr) (S24)

which has the same form as Eq. (S22). This operator operates on the function Eq. (S23) associated with the 1
bit at position r. Thus, we associate with the 1 bit at position s the function

2

2(r�s)
2

2(n�r)�r�s(2
rl)�n�r(2

nl)

⇥
Z ts

0
dtre

��T (2sl)(ts�tr)

⇥
Z tr

0
dtne

��T (2rl)(tr�tn)e��T (2nl)tn . (S25)

This process is iterated. With the right most 1 bit we have associated the integer 0, the time t = t0 and the
length l. Let the first 1 bit to the left of this bit have associated with it the integer u, the time tu, and the tube
length 2

ul. Applying the operator for the u to 0 transition, which also has the form Eq. (S24), to the function
associated with the 1 bit at position u one obtains

2

2u · · · 22(r�s)
2

2(n�r)�u(2
ul) · · · �r�s(2

rl)�n�r(2
nl)

⇥
Z t

0
dtue

��T (2sl)(t�tu) · · ·

⇥
Z ts

0
dtre

��T (2sl)(ts�tr)

⇥
Z tr

0
dtne

��T (2rl)(tr�tn)e��T (2nl)tn . (S26)

This is the full term of fn(l, t) associated with the cascade

2

nl ! 2

rl ! 2

sl ! · · ·2ul ! l. (S27)

Inverting the order of the powers of 2 appearing at the left of Eq. (S26) one sees that

2

2(n�r)
2

2(r�s) · · · 22(v�u)
2

2u
= 2

2n. (S28)

Hence Eq. (S26) simplifies to

2

2n�u(2
ul) · · · �r�s(2

rl)�n�r(2
nl)

⇥
Z t

0
dtue

��T (2sl)(t�tu) · · ·

⇥
Z ts

0
dtre

��T (2sl)(ts�tr)

Z tr

0
dtne

��T (2rl)(tr�tn)e��T (2nl)tn . (S29)

The integrations can be carried out. The general form is given by

Z t0

0
dt1e

��0(t0�t1)

Z t1

0
dt2e

��1(t1�t2) · · ·

⇥
Z tn�1

0
dtne

��n�1(tn�1�tn)e��ntn

= (�1)

n
nX

m=0

e��mt0
Qn

i=0;i 6=m(�m � �i)
(S30)
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For example, one has
Z t0

0
dt1e

��0(t0�t1)e��1t1

= � e��1t0

�1 � �0
� e��0t0

�0 � �1
, (S31)

Z t0

0
dt1e

��0(t0�t1)

Z t1

0
dt2e

��1(t1�t2)e��2t2

=

e��2t0

(�2 � �0)(�2 � �1)

+

e��1t0

(�1 � �0)(�1 � �2)

+

e��0t0

(�0 � �1)(�0 � �2)
, (S32)

and
Z t0

0
dt1e

��0(t0�t1)

Z t1

0
dt2e

��1(t1�t2)

⇥
Z t2

0
dt3e

��2(t2�t3)e��3t3

= � e��3t0

(�3 � �0)(�3 � �1)(�3 � �2)

� e��2t0

(�0 � �2)(�1 � �2)(�2 � �3)

� e��1t0

(�1 � �0)(�1 � �2)(�1 � �3)

� e��0t0

(�0 � �1)(�0 � �2)(�0 � �3)
. (S33)

As an illustrative example, we use the diagrammatic technique to construct f2(l, t). In this case n = 2 and
the list of all possible cascades is

2 1 0

t2 t1 t0
2

2l 2l l
1 0 1 2 ! 0 T21

1 1 1 2 ! 1 ! 0 T22

(S34)

where T21 and T22 are the names we have given to the terms of f2(l, t) for the two possible cascades. The
diagrammatic techniques yield

T21 = 2

4�2(2
2l)

Z t0

0
dt2e

��T (l)(t0�t2)e��T (22l)t2 (S35)

and

T22(t0)

= 2

4�1(2l)�1(2
2l)

⇥
Z t0

0
dt1e

��T (l)(t0�t1)

⇥
Z t1

0
dt2e

��T (2l)(t1�t2)e��T (22l)t2 . (S36)
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Carrying out the integrations yield

T21(t0) = �16�2(4l)

✓
e��T (4l)t0

�T (4l)� �T (l)
+

e��T (l)t0

�T (l)� �T (4l)

◆
. (S37)

and

T22(t0)

= 16�1(2l)�1(4l)

⇥
✓

e��T (4l)t0

[�T (4l)� �T (l)][�T (4l)� �T (2l)]

+

e��T (2l)t0

[�T (2l)� �T (l)][�T (2l)� �T (4l)]

+

e��T (l)t0

[�T (l)� �T (2l)][�T (l)� �T (4l)]

◆
. (S38)

Setting t0 = t, one has
f2(l, t) = T21(t) + T22(t). (S39)

5 Single bifurcation model

The single bifurcation model, which uses Eq. (7) instead of Eq. (6) in combination with Eqs. (2)-(5) of the main
text, is also exactly solvable using the methods outline above. The solution is somewhat simpler because only
fragmentation cascades in which the tubes are broken in two at each cascade step are allowed. Using main text
Eqs. (4), (5), (7) and SI Eq. (S4), main text Eq. (2) yields

dc(l, t)

dt
= ��T (l)c(l, t) + 4�T (2l)c(2l, t). (S40)

Substituting Eq. (S11) into this equation yields

df0(l, t)

dt
= ��T (l)f0(l, t) (S41)

and, for n > 0,
dfn(l, t)

dt
= ��T (l)fn(l, t) + 4�T (2l)fn�1(l, t), (S42)

where the boundary conditions Eq. (S12) still apply. Using the boundary conditions these two equations can be
integrated to yield

f0(l, t) = e��T (l)t (S43)

and

fn(l, t) = 4�T (2l)

Z t

0
e��T (l)(t�t0)fn�1(2l, t

0
)dt0. (S44)

It is now evident that the fn(l, t) can be generated from the fn�1(l, t) through repeated substitution, beginning
with the substitution of Eq. (S43) into Eq. (S44) for n = 1. fn(l, t) has the same form as the term corresponding
to the 111 · · · 1 cascades of the model discussed in SI section 4 above, except the factor �1(2l)�1(22l) · · · �1(2n)
appearing in this term is replaced by factor �T (2l)�T (22l) · · · �T (2n), see for example Eq. (S38).

6 Numerical procedures

6.1 Constructing the experimental concentration distributions

The fluorescent microscope technique, used to construct the concentration distribution c(l, t) of tube lengths
at various time points, produces a list of tube lengths at these time points. To produce an experimentally
determined c(l, t), the number of tubes ni whose lengths l fell within each of the bin intervals li < l <= li +�l,
were counted, where �l is the bin width which was taken to be �l = 1/32 µm. The resulting unnormalized
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concentration distribution consisted of the list of ni as a function of the successive bin locations li, where
li+1 = li + �l and l0 = 0. Since Eq. (11) of the main text is nonlinear in c(l, t), the numerical concentration
must be normalized. To determine the normalization constant the tube length per unit volume was calculated
from the known concentration of the oligomers forming the tubes under the assumption that all the oligomers
resided within the tubes. Total tube length is defined as

lT =

Z 1

0
lc(l, t)dl. (S45)

The normalization constant a that converts the ni into the normalized concentration distribution ci = ani was
determined by requiring X

i

(li +�l/2)ci�l = lT . (S46)

The tube length per unit volume lT was computed via

lT =

N0bsnfcs
df

. (S47)

where N0 is the Avogadro constant, bs = 0.34 nm is the spacing between successive base pairs in duplex DNA,
nf = 10.5 also happens to be the number of base pairs for one full turn of duplex DNA (measured in base-pair
stacking units, bs) of the DNA nanotube when a complete ring of tiles is added to a tube end, cs = 3.5 µM is
the concentration of a given tile in the stock solution, and df = 20 is the factor by which the concentration of
the stock solution is diluted in preparing the sample solution. For our system lT = 3.76⇥ 10

14 µm/L.

6.2 Averaging over a bin width

The numerically obtained ci should be regarded as c(l, t) averaged over the intererval li < l <= li +�l; that is,

ci(t) =
1

�l

Z li+�l

li

c(l, t)dl. (S48)

This matters particularly when the experimentally determined ci(0) is used as the initial concentration distribution
in Eq. (S11) to calculate the model ci(t). When using binned data, one must average Eq. (S11) over a bin width
such that

hc(l, t)ili =
1X

n=0

hfn(l, t)c(2nl, 0)ili (S49)

where the hF (i)i of a function F is defined as

hF (l)ili =
1

�l

Z li+�l

li

F (l)dl. (S50)

We note that even though �l may be small, c(2nl, 0) can be strongly varying over this interval when n is large.
Similarly, fn(l, t) can also be strongly varying over this interval when n is large because it contains quantities that
depend on 2

nl. For this reason the value of fn((li +�l/2), t)c(2n(li +�l/2), 0) may not be a good approxima-
tion of hfn(l, t)c(2nl, 0)ili , necessitating the averaging. In computing the term hfn(l, t)c(2nl, 0)ili by numerical
summation the integration a step size of �l/2n was employed.

6.3 End joining

For the case when end joining is included, a numerical integration procedure was used in which the hc(l, t)ili at
time t = tj+1 are computed for the hc(l, t)ili at time t = tj via the following update algorithm

hc(l, tj+1)ili =

X

n=0

hfn(l, tj+1 � tj)hc(2nl, ti)ilili

+ EJ(li, tj)(ti+1 � ti) (S51)
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where EJ(li, tj) is

EJ(l, t) = �
Z 1

0
dl0k(l, l0)c(l, t)c(l0, t)

+

Z l

0
dl0k(l0, l � l0)c(l0, t)c(l � l0, t) (S52)

numerically evaluated for l = li at t = tj using the hc(l, tj)ili for the c(l, t).

6.4 Search algorithm

The unknown to be extracted from the data is the fragmentation volume function Vf (l). A search algorithm was
implemented that, under the constraints that Vf (0) = 0 and that Vf (l) be a monotonically increasing function
of l, sought to find a continuous piecewise linear function Vf (l) that produced the best fit between the data and
the numerical model. The function is specified by the values Vi of Vf (l) at the tube length values li where the
slope of Vf (l) can change. The li were chosen according to:

l0 = 0,

l1 = 1/32,

l2 = 3/32,

l3 = 7/32,

l4 = 15/32

li = i� 4� 1/32 for i > 4. (S53)

where the tube lengths li are in microns. The nonuniform distribution of the li for i < 5 was chosen to allow the
investigation of Vf (l) at the length scale of the smallest tube fragments observed. The initial Vi were chosen to
be

Vi = 0.01875i (S54)

where the fragmentation volumes Vi = V (li) are the fragmentation volumes in microliters (µl). The values of
V (l) for l not equal to one of the li were determined by linear interpolation between the li and li+1 for which
li < l < li+1.

The search algorithm proceeded by stochastically modifying the function Vf (l) to produce the new function
V new
f (l). The goodness of the fit of the model using V new

f (l) as the fragmentation volume was determined and
compared with that of Vf (l). If the fit using V new

f (l) was as good or better than that for Vf (l), then V new
f

became the new Vf (l). Otherwise V new
f (l) was discarded and Vf (l) was retained as the fragmentation volume

function. Each iteration of this process was counted as a generation. Good convergence of Vf (l) to the optimum
was obtained in 10,000 generations.

The procedure by which V new
f is created is the following: An integer ia with a uniform distribution on the

interval 1  ia  35 was produced by a random number generator. A second random integer ib with a uniform
distribution on the interval 0  ib  7 was produced by a second random number generator. From these two
random integers, two new random integers were created

i1 = ia � ib

i2 = ia + ib (S55)

If i1 was less than 1 it was reset to 1. If i2 was greater than 35 it was reset to 35. Next, two random numbers r1
and r2 were generated from a random number generator which produced a uniform distribution between 0 and 1.
If i2 < 35 the V new

f (li) was created from Vf (li) according to

V new
f (li) = Vf (li) + [Vf (li1�1)� Vf (li1))]r1

+ [Vf (li2+1)� Vf (li2)]r2 (S56)

for li1  li  li2 and
V new
f (li) = Vf (li) (S57)
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otherwise. If i2 = 35 the V new
f (li) was created from Vf (li) according to

Vf (li)
new

(l) = Vf (li) + [Vf (li1�1)� Vf (li1))]r1 + r2 (S58)

for li1  li and
V new
f (li) = Vf (li) (S59)

otherwise. This procedure randomly shifts a block, of variable width and position, of the function Vf (l) up or
down restricted to the maximum range allowed consistent with maintaining monotonicity. This procedure was
adopted because the search algorithm was less susceptible to hang up at local optima than a procedure in which
the Vf (li) were individually updated.

In order to compare the model with the experiment, both the c(l, t) measured experimentally and computed
via the model were averaged over 1 µm intervals for successive intervals li <= l < li +1 µm, where li+1 = li +1

starting with l0 = 0. Let c̄(li, tj) denote the experimental length distribution averaged over the ith interval and
let c̄m(li, tj) denote the corresponding quantity calculated by the model. The quantity SD1, consisting of the
squared di↵erence between c̄(li, tj) and c̄m(li, tj) summed over all intervals i and and time points tj at which the
tube length distributions were measured, was used to compare the data with the model:

SD1 =

X

j

X

i

[c̄(li, tj)� c̄m(li, tj)]
2. (S60)

In addition, to assess the e↵ectiveness of bursting bubbles in breaking short tubes the following averages were
computed both for the experimental data and for the model

¯b(�i, tj) =
1

�i

Z �i

0
c(l, tj)dl, (S61)

where

�i =
�l

2

i
. (S62)

and �l = 1 µm. That is, averages over the intervals with one end at the origin l = 0, were computed for 1/2,
1/4, 1/8, and 1/16 micron intervals. Let ¯b(�i, tj) denote these quantities computed for the experimental data
and let ¯bm(�i, tj) denote the corresponding quantities computed by the model. Then, the quantity SD2, given
by

SD2 =

X

j

4X

i=1

[

¯b(�i, tj)� ¯bm(�i, tj)]
2, (S63)

was used to compare the data with the model for short tubes. The search algorithm sought to minimize the
combined quantity

SD = SD1 +W · SD2. (S64)

where the weight W was taken to be 5⇥ 10

�4.
The statistical uncertainty in the determination of Vf , indicated in Fig. 5 was determined by generating new

tube length lists from the experimentally obtained tube length lists via resampling using the withdraw from sample
with replacement procedure (i.e. bootstrapping). These new tube length lists were binned to produce new c̄(li, tj)
distributions that were then processed using the procedures described above to extract the fragmentation volume
functions for the resampled data. The mean, variance, and root-mean-square deviation (�) of the bootstrapped
ensemble of resulting fragmentation volumes were then computed. The “standard error of the mean” (S.E.M.)
for the Vf parameter estimation is denoted by �, as plotted in Fig. 5.

7 Derivation of the end-to-end joining rate constant

Here we derive Eq. (13) of the main text, the rate constant for the end-joining of two of our DNA nanotubes. For
di↵usion-controlled reactions, the rate constant for a second order reaction in which reactant 1 and reactant 2
are joined has the form

k12 = 4⇡(D1 +D2)L12 (S65)
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where D1 and D2 are the di↵usion constants for reactant 1 and 2, respectively, and L12 is a characteristic distance
that the reactants must approach each other in order to react [3].

In the present case the reactants are long rods whose reactive sites are at the ends of the rods. In this case
both translational and rotational di↵usion can be expected to play a role. However, in dilute solutions where the
mean distance between the reactants is much larger than the length of the rods, translational di↵usion will set
the time scale on which the reactants find each other. Hence, D1 and D2 will be taken to be the translational
di↵usion constants for the rods. The di↵usion constant D can be obtained from the rod mobility µ via the Einstein
relation

D = µkBT (S66)

where kB is Boltzmann’s constant and T is the absolute temperature. Our rods are long compared to their radius
(R = 4 nm). Hence, we have R/l ⌧ 1 , where l is the rod length. To leading order in R/l, the mobility of a rod
translated parallel to its long axis is (Ref. [4])

µ|| =
ln(l/R)

2⇡⌘l
, (S67)

where ⌘ is the dynamic viscosity of the liquid. The mobility of the rod in a direction perpendicular to the long
axis is half that of µ||:

µT =

1

2

µ||. (S68)

There are three independent directions of motion: one parallel, and two perpendicular to the long axis of the rod.
Assuming that the orientation distribution of the rod is uniform due to rotational di↵usion, the average mobility
will be

µ =

2

3

µ||. (S69)

Hence, the translational di↵usion constant for the rod is given by

D =

kBT ln(l/R)

3⇡⌘l
. (S70)

Eq. (S65) can be written as

k12 =

4kBTL12

3⌘R

✓
ln(l1/R)

(l1/R)

+

ln(l2/R)

(l2/R)

◆
. (S71)

To determine the reaction’s characteristic distance L12, we first note that the DNA nanotubes have a polarity,
such that the “+” end of one nanotube can only react with the “-” end of the other nanotube. We further assume
that, because the single-stranded sticky ends are flexible, the two nanotubes do not need to be aligned with each
other to initiate the joining reaction. Thus, for this purpose we treat the nanotubes as spherical reactants with
radii R1 and R2, respectively, corresponding to the size of their reactive sites (but still with the di↵usion constants
D1 and D2 derived above). In this case, L12 = R1 + R2. The reactive sites of a rod consist of single-stranded
DNA at each end that is able to hybridize with complementary single-stranded DNA on the other rods. These
single-stranded DNA domains are 11 bases long (4.7 nm long). Adding this to the 4 nm radius of the rod suggests
that the reactive ends can be treated approximately as spheres of radius R1 = R2 = 9 nm. Consequently,
L12 = 18 nm. The resulting rate constant is likely an overestimate because of the spherical approximation we
have made for the geometry of the reactive site and the assumption that a successful reaction occurs every time
the reactive sites meet. We therefore introduce an e↵ectiveness parameter 0 <  < 1. Finally, because both ends
of each nanotube can react, we multiply by a factor of two, to arrive at the equation

k12 = 
12kBT

⌘

✓
ln(l1/R)

(l1/R)

+

ln(l2/R)

(l2/R)

◆
. (S72)

A similar equation for end-to-end joining of rod-like polymers was obtained by Hill [5]. Using our notation,
and ignoring constants, his equation can be written as

k12 ⇠ 1

l1 + l2

✓
ln(l1)

l1
+

ln(l2)

l2

◆
. (S73)



Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics 21

The di↵erence between our results can be explained by Hill’s assumption that the two rod-like polymers must
be approximately aligned with each other in order to react, in contrast to our assumption that reactive ends can
initiate successful binding regardless of their initial relative orientation. Again, our result is an overestimate.

Comparison to oligonucleotide hybridization suggests plausible ranges for the fraction of e↵ective collisions, .
Approximating oligonucleotides of length N nucleotides as spheres of radius R1 = R2 = Rs =

p
N ⇥ 0.43 nm,

we follow the analysis of Calef and Deutch [3] and use D1 = D2 = Ds = kBT/6⇡⌘Rs and

k12 =  4⇡(D1 +D2)(R1 +R2) = 
8kBT

3⌘
, (S74)

where we have added  to account for ine↵ective collisions. Interestingly, this estimate is independent of Rs and
thus N ; however, we might expect that  has a dependence upon N . Here we will extract  from measurements
of the rate constant for hybridization of two 10-mers, which was found to be ⇠ 1.0 ⇥ 10

7 /M/s at 30 �C in a
1 M Na+ bu↵er [6]. Thus, we have

k12 = ⇥ 6.6⇥ 10

9 /M/s ⇠ 1.0⇥ 10

7 /M/s (S75)

and thus  ⇠ 1.5⇥ 10

�3 for 10-mer hybridization, i.e. roughly only 1 in 660 collisions leads to duplex formation.
In the case of end-to-end joining of 7-helix DNA nanotubes, each end has 7 length-10 or length-11 sticky ends
with distinct sequences (Fig. S1). Presuming that each collision has a 1-in-7 chance of allowing interaction be-
tween complementary sticky ends, and presuming that 1 in 660 of such collisions leads to successful end-to-end
joining of the nanotubes, we obtain ref = 2.2 ⇥ 10

�4. However, because of the slower translational di↵usion
in nanotubes relative to oligonucleotides, the attempt frequency and success probability could be larger than the
estimate provided here, necessitating experimental assessment. In the main text, we note that poorer fits to our
experimental data result when larger values of  are used, providing some evidence in support of our suggested
reference value of . Here, we also note that even if  were as large as 122 ⇥ ref , the inferred fragmentation
volumes remain within a factor of 10 of those reported in Fig. 5.

8 Angular deviation of a rod from the elongation axis due to Brownian motion

Although a rod shaped object subjected to elongation flow is expected to orient along the direction of elongation,
Brownian fluctuation however, acts to misalign the rod through rotational di↵usion. This di↵usion rate is greater
for smaller objects and may reduce how e↵ectively elongation flow can shear nanorods. Here we compute the
mean-square-angular deviation of the rod axis from the axis of elongation for a rod subjected to pure elongation
flow and show that this deviation is equal to the Péclet number for a suitable choice of characteristic velocity and
characteristic length.

For the analysis, we consider the case when the tube is much longer than its radius, so that terms need be
kept only to leading order in l/R, where l is the tube length and R is the tube radius. We also use the small
angle approximation sin(✓) ⇡ ✓, where ✓ is the angle of misalignment of the tube from the axis of elongation.
This axis is taken to lie along the z axis. In the main text, we show that our experimental conditions warrant
these approximations.

Consider pure elongation flow, with axis of elongation oriented along the z axis, and with stagnation point at
the origin. The radial, � and z components of the velocity field are given by

0

@
ur

u�

uz

1

A
=

0

@
�✏̇r/2

0

✏̇z

1

A . (S76)

The stress on a surface element of the rod along the axis of elongation [7] is given by

�rz =

⌘✏̇z

R ln(l/2R)

. (S77)

If the rod is misaligned from the z axis by a small angle ✓, it will experience a restoring torque given by

Tr = 4⇡R

Z l/2

�l/2
�rzz✓dz =

⇡⌘✏̇l3✓

3 ln(l/2R)

, (S78)
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where the rod’s center has been chosen to be at the stagnation point.
A torque will also be generated as the rod is rotated in the fluid due to opposing forces generated by the fluid

viscosity. This torque is given by

T⌘ = ⌘R
d✓

dt
, (S79)

where the torque constant is given by

⌘R =

⇡⌘l3

3 ln(l/R)

. (S80)

See for example J. Riseman and J. G. Kirkwood [4], or S. Broersma [8]. Associated with this frictional torque is
a fluctuating torque Tn that has zero mean and whose two time correlation function is given by

hTn(t)Tn(t
0
)i = 2⌘RkBT �(t� t0). (S81)

This torque induces Brownian motion with a rotatory di↵usion constant given by

Dr =

kBT

⌘R
. (S82)

See for example D. A. Tsyboulski, et al. [9].
Torque balance requires

T⌘ + Tr = Tn. (S83)

Substituting Eqs. (S78) and (S79) into this equation and using approximation ln(l/2R) ⇠ ln(l/R), since we are
considering the case when l � R, reduces this equation to the Langevin equation

d✓

dt
+ ✏̇✓ =

Tn

⌘R
. (S84)

To determine the mean-square deviation of ✓ from zero due to Brownian fluctuations, it is convenient to convert
this di↵erential equation into the integral equation

✓ =

1

⌘R

Z t

�1
e�✏̇(t�t0)Tn(t

0
)dt. (S85)

It is then straightforward to show that

h✓2i = kBT

⌘R✏̇
=

3kBT ln(l/R)

⇡⌘✏̇l3
. (S86)

.
Following M. Manhart [10], we introduce the Péclet number

Pe =

@uz/@z

Dr
=

✏̇

Dr
. (S87)

Using Eqs. (S76) and (S82), and comparing to Eq. (S86) one finds

h✓2i = 1

Pe

. (S88)

9 Analysis of the fragmentation of tube-like multilamellar vesicles

Here we estimate the elongation rate that is required to fragment, to 1 µm lengths, the tubular multilamellar
vesicles whose fragmentation Zhu and Szostak [11] have studied as a possible means by which protobionts may
have carried out cell division.

In a typical experiment, the vesicle starts out as a sphere having a radius of 2 µm. The initial volume of
the vesicle is 33.5 µm3 and it initial area is 25.1 µm2. Upon incorporating micelles into the vesicle, the vesicle
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increases its area 3.7 fold. Due to the impermeability of the wall, the volume remains fixed. To accommodate
the increased area while keeping the volume fixed the vesicle adopts a branched filament configuration where the
filaments have a radius r of 0.18 µm and the total length of the filaments is 81 µm. When these filaments are
sheared by fluid flow they reform spherical vesicles without spilling their contents into the surrounding medium.
It is this latter property that makes the fragmentation of these filaments attractive as a primitive form of cell
division.

Although Zhu and Szostak showed that this mechanism operates for vesicles made from a variety of lipids,
the one that received the most study was olic acid. This molecule is 2.06 nm long. The bilayer lamella has
a thickness that is twice this, namely t = 4.12 nm. The cross-sectional area presented by the lamella is thus
Al = 2⇡rt or 4.6 ⇥ 10

�3 µm2. To estimate the tensile force required to shear a vesicle with a lamella of this
cross-section we will assume that the tensile strength of of an olic acid lamella is the same as that of para�n
wax, since the two consist of linear chains of mostly saturated hydrocarbon. The tensile strength �T of para�n
wax is roughly 1 MPa [12]. The tensile force required to shear the vesicle is thus T = �tAl = 4.6 nN. Using
this number, l = 1 µm, and R = r in Eq. (1) of the main text one finds ✏̇ = 2.5 ⇥ 10

6 sec�1. This is the
elongation rate required to fragment the tube like vesicle into fragments 1 µm long. For a multilamellar vesi-
cle, consisting of n lamellar layers, the elongation rate required for fragmentation becomes ✏̇ = 2.5⇥10

6 sec�1⇥n.

10 Supplementary Movie
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Movie S1. Fluorescence movie (1 frame/sec) of Cy3-labeled DNA nanotubes in a microfluidic channel (dashed
lines, height 100 µm) under slow flow rate (right to left, 47 µm/sec in the center). The nanotubes experienced
compressional and elongational flows as they enter and exit the side chamber, respectively. The maximum elon-
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gational flow in the channel was estimated to be 1.4 /sec, which is, using a conformational relaxation time of
400 ms for the nanotubes, within a factor of two of the critical threshold for polymer stretching [13]. The measured
maximum elongational flow during the bursting of a bubble (Fig. S1) is ⇠108-fold larger than in the channel.
Consequently, the elongational flow during the expansion of the bubble hole is expected to orient and stretch DNA
nanotubes. Given the longest observed nanotube in the movie is 52 µm, the maximum elongational-flow-induced
tension in the channel was calculated to be 1.2 pN (Eq. 1). The maximum generated tension in the movie is more
than two-orders of magnitude smaller than the critical tension to break a 7-helix DNA nanotubes (455 pN). The
weak hydrodynamic-induced tension is su�cient to explain the absence of nanotube scission in the movie.
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