1 Supplementary Materials and Methods

3	Female 9-11 week-old mice were used for this study. $Clock^{A19/A19}$ mice have an A to T
4	point mutation in the 5' splice site of intron 19 and, as a consequence, an in-frame
5	deletion of the entire exon 19 ($Clock^{A19/A19}$), which results in the loss of normal
6	transcriptional activity (Vitaterna et al. 1994). $mPer2^{m/m}$ mice have an in-frame deletion
7	mutation in the PAS domain (a dimerization domain found in Per, Arnt and Sim) of
8	mPer2, which results in the loss of normal transcriptional activity (Zheng et al. 1999).
9	Mast cell–deficient WBB6F1-W/Wv mice and control wild-type WBB6F1- $^{+/+}$ mice
10	were purchased from Japan SLC. All animal experiments were approved by the
11	Institutional Review Board of the University of Yamanashi and performed under the
12	Declaration of Helsinki protocols.
13	IMQ-induced psoriasis-like skin inflammation
14	Mice were treated daily for 5 consecutive days on both ears and shaved dorsal skin with
15	31.2 mg of commercially available imiquimod (IMQ) cream (5% Beselna cream,
16	Mochida Pharmaceutical, Tokyo, Japan) or Vaseline at ZT2. Imiquimod cream mixed

17 Vaseline in one to one and used. All animal experiments were approved by the

- 18 Institutional Review Board of the University of Yamanashi.
- 19 Intradermal IL-23 Injection
- 20 To induce IL-23-mediated psoriasis-like skin inflammation, 20 µl PBS, either alone or
- 21 containing 500 ng recombinant mouse IL-23 (Biolegend, San Diego, CA) was
- 22 intradermally injected into the ears of anesthetized mice using a 30-gauge needle under
- the microscope (Wraymer Inc., Ohsaka, Japan) at ZT2. $Clock^{\Delta 19/\Delta 19}$ mice (C57BL/6
- 24 genetic background) and their control mice were injected every other day for 5 days.
- 25 $mPer2^{m/m}$ mice (ICR genetic background) and their control mice were injected every
- 26 other day for 10 days. Ear thickness was measured every day. On the injected days, ear
- 27 thickness was measured immediately before injections.
- 28 Scoring severity of skin inflammation
- 29 Ear thickness was measured using an engineer's micrometer at indicated time points.
- 30 The Δ ear thickness is calculated as the changes in ear thickness ([ear thickness at the
- 31 indicated time points] [ear thickness before treatment on day 0]). A scoring system
- 32 based on the clinical Psoriasis Area and Severity Index, except for the affected skin area,

33	was used (van der Fits et al, 2009). Erythema, scaling, and thickening of ears were
34	scored at ZT2 independently from 0 to 4: 0, none; 1, slight; 2, moderate; 3, marked; and
35	4, very marked. The scoring was performed in a blinded fashion: investigators were not
36	informed which mice were treated or untreated with IMQ or IL-23. The cumulative
37	score served as a measure of the severity of inflammation (scale 0-12).
38	Isolation of leukocytes from the ear
39	The ear was cut into small pieces and incubated in RPMI 1640 medium containing
40	Liberase TL (0.5 mg/ml, Roche, Basel, Switzerland) for 1 hour at 37°C. A suspension of
41	single cells was separated from undigested tissue by passing through a 40- μ m nylon cell
42	strainer.
43	FACS staining
44	Monoclonal fluorescent antibodies against mouse CD3 ϵ , $\gamma\delta^+$ TCR, B220, IL-22,
45	IL-23p40 were purchased from eBioscience (San Diego, CA). Monoclonal fluorescent
46	antibodies against mouse CD4 and IL-23R were purchased from Beckman Coulters
47	(Brea, CA) and R&D (Minneapolis, MN). CD8a, I-A/I-E, IL-17A were purchased from
48	BD Pharmingen (San Diego, CA), respectively. The spleen, lymph nodes or thymus

49	from mice were incubated for 15 minutes with Fc receptor blocking mAb (BD
50	Biosciences, San Diego, CA) to block nonspecific bindings, and then were stained with
51	FITC-conjugated anti-mouse CD4 Ab or B220 Ab, PE-conjugated anti-mouse $\gamma\delta TCR$
52	Ab or I-A/I-E Ab, PerCP-conjugated anti-mouse IL-23R Ab and APC-conjugated
53	anti-mouse CD3ɛAb or CD8a Ab in PBS for 30 minutes on ice. The stained cells
54	(live-gated on the basis of forward and side scatter profiles) were analyzed. Isolated
55	cells from ear were incubated for 15 minutes with Fc receptor blocking mAb (BD
56	Bioscience), and then were stained with FITC-conjugated Annexin V (BD Pharmingen),
57	PE-conjugated anti-mouse $\gamma \delta^+ TCR$ Ab and APC-conjugated anti-mouse CD3 ϵ in PBS
58	for 30 minutes on ice. Viable cells were identified by Annexin V uptake. For
59	intracellular cytokine staining, cells were incubated in the presence of 2 μ g/ml
60	brefedrinA for 4 hours. Viable cells were identified by APC-conjugated Fixable viability
61	Dye cell staining (eBioscience). Successively, cells were incubated with Fc receptor
62	blocking mAb (BD Bioscience), and stained surface antigens. Cells were then fixed and
63	permeabilized using eBioscience IC Fixation and Permeabilization Kit. And then were
64	stained with FITC-conjugated anti-mouse IL-23p40 Ab, Alexa Fluor488-conjugated

65	anti-mouse	IL-17A	or PerCP-c	conjugated	anti-mouse	IL-22	Ab for	· 30 minu	ites. All

- 66 samples were analyzed with BD AccuriTMC6 flow cytometry (Becton Dickinson,
- 67 Franklin Lakes, NJ).
- 68 Splenic γ/δ^+ T cell preparation and culture
- 69 γ/δ^+ T cells were purified from spleens by mouse γ/δ^+ TCR⁺ T cell Isolation Kit
- 70 (Milteny Biotec, Bergisch Gladbach, Germany) at ZT2. Cells were stimulated for 72
- 71 hours with IL-23 (10 ng/ml, R&D) or medium alone in the presence of anti-CD3 (2
- 72 µg/ml, eBioscience). After 72 hours, IL-17A or IL-22 concentrations in the supernatants
- 73 were determined by ELISA (eBioscience).

74 ELISA

- 75 A Ready-Set-Go kit was used according to the manufacturer's protocol (eBioscience)
- 76 for ELISA of IL-17A and IL-22. Mouse IgG ELISA Quantitation set (Bethyl
- 77 Laboratories Inc, TX), Mouse IgA ELISA kit (Immunology consultants Laboratories Inc,
- 78 Portland) and Mouse IgE ELISA kit (Morinaga, Yokohama, Japan) was used according
- to the manufacturer's protocol for ELISA of serum and fecal immunoglobulins.
- 80 Quantitative real-time PCR (qPCR)

81	RNA was harvested from splenic γ/δ^+ T cells or skin with RNeasy $^{\mbox{\tiny B}}$ Plus Micro Kit or
82	RNeasy [®] Protect Mini Kit (QIAGEN, Venlo, Netherland) according to the
83	manufacture's protocol. RT was performed using ReverTra Ace [®] qPCR RT Kit
84	(TOYOBO, Ohsaka, Japan). Analysis of IL-17A, IL-22, IL-23R, IL-23p19, S100A8,
85	Keratin16, Reg3g, Period2 (Per2), Bmal1 (Arntl), and Clock mRNA levels was
86	performed using commercially available primer/probe sets (TaqMan ® Gene Expression
87	Assay, Applied Biosystems, Foster City, CA). The accession numbers of the
88	primer/probe sets are as follows; Bmall (Arntl): Mm00500226-m1, Clock:
89	Mm00455950-m1, Gapdh: Mm999999915-g1, IL-17A: Mm00439618-m1, IL-22:
90	Mm01226722-g1, IL-23p19: Mm01160011-g1, IL-23R: Mm00519943-m1, Keratin16:
91	Mm01306670-g1, Per2: Mm00478113-m1, Reg3g: Mm00441127-m1, S100A8:
92	Mm00496696-g1. The <i>Clock</i> primers/probe (Mm00455950-m1) are designed to amplify
93	the specific sequences in the exon 15-16 of the gene and the deletion of the exon 19
94	$(Clock^{\Delta 19/\Delta 19})$ does not affect the mRNA stability of mutated $Clock$ (Vitaterna et al.
95	1994). Relative levels of expression were determined by normalization to GAPDH.
96	Samples were assayed on Step One Plus TM Real Time PCR Systems (Applied

97 Biosystems).

98 Chromatin immunoprecipitation (ChIP) assay

- 99 ChIP assay was performed as previously described (Nakamura et al. 2014). Antibodies
- 100 used for the immunoprecipitation are anti-mouse/human KAT13D/CLOCK antibody
- 101 ChIP grade (rabbit polyclonal IgG) (Abcam, Cambridge, MA), control purified rabbit
- 102 IgG (Invitrogen, Inc., Carlsbad, CA), control purified mouse IgG (Life Technologies
- 103 Cooperation, Carlsbad, CA). Equivalent masses of immunoprecipitated and input DNA
- 104 were analyzed by real-time PCR using primers and a TaqMan probe for the promoter
- 105 region of IL-23R as described below.
- 106 IL-23R primers;
- 107 Sense (5'-CTCCAAATCCAGGCCTGTCTT-3'),
- 108 Antisense (5'-CGGCCCTGTAAATCCTGAAGAT-3'),
- 109 TaqMan probe (5'-FAM-CTCCTCTTGGCATTTGT-MGB-3').
- 110 Data are presented as the ratio of the cycling threshold value of immunoprecipitated
- 111 DNA to that of input DNA.
- 112 Histology and immunohistochemistry

113	Sections from 4% paraformaldehyde, paraffin-embedded ears and back skins were
114	stained with H&E. For immunohistochemistry, sections were deparaffinized and
115	hydrated by washing sections in Xylene followed by a graded alcohol series. Sections
116	were incubated in target retrieval solution (DAKO #S2367) 95°C for 30 min, and
117	endogenous peroxidase activity was quenched by treating sections with 0.3% hydrogen
118	peroxide methanol for 10 min at room temperature. Sections were blocked for 60 min
119	(DS pharma #UKB40) at room temperature followed by incubation with primary Abs
120	(goat anti-CD3ɛ, Santa Cruz #SC-1127, ×2000) over night at 4°C. Samples were
121	washed and incubated for 60 min with secondary Abs (rabbit anti-goat
122	immunoglobulins/biotinylated, DAKO #E-0466, ×500) and developed using DAKO
123	LSAB+System-HRP (#K0679). All stained sections were counterstained with
124	hematoxylin. The staining intensity was measured in five randomly selected fields (660
125	\times 875 $\mu m)$ at a magnification of $\times 200.$ The mean intensity was calculated for each
126	specimen.

127 Statistical analysis

128 The statistical analyses were performed using the unpaired Student's *t*-test for two

129 group-comparisons, and ANOVA for comparison of more than two groups.

130

131 Supplementary Reference

- 132 Nakamura Y, Nakano N, Ishimaru K, et al. (2014) Circadian regulation of allergic
- 133 reactions by the mast cell clock in mice. *J Allergy Clin Immunol* 133:568-575.

 $Clock^{\Delta 19/\Delta 19}$ mice do not have obvious developmental defects in the immune system.

- a. Frequency of T cells and B cells in the thymus and spleen obtained from wild-type and $Clock^{\Delta 19/\Delta 19}$ mice.
- b. Serum IgG, IgA, IgE, and fecal IgA levels in wild-type and Clock^{Δ19/Δ19} mice
- c. Frequency of γ/δ T cells in the spleen and skin in wild-type and *Clock*^{$\Delta 19/\Delta 19$} mice at ZT2. Representative data (a-c) out of 3 independent experiments are shown.

The number of infiltrating CD3+ T cells into the mouse skin.

The number of infiltrating CD3+ T cells into the skin in IMQ-treated wild-type mice

or Clock^{\Delta 19/\Delta 19} mice on Day 6 (n=3 per group). Scale bar=100 $\mu m.$

The values represent the means \pm SD. *p < 0.05

IL-23 and IL-23R mRNA expression in the mouse skin on Day 0 and Day 6 IL-23 or IL-23R mRNA expression in the skin of IMQ-treated wild-type mice or $Clock^{\Delta 19/\Delta 19}$ mice at ZT2 on Day 0 and Day 6 (n=3-5 per group). The values represent the means ± SD.

Frequency of IL-17⁺ T cells in the cervical lymph nodes of IMQ-treated mice Frequency of IL-17⁺ T cells (γ/δ^+ IL-17⁺ cells, CD3⁺IL-17⁺ cells) in the cervical lymph nodes evaluated by FACS analysis in IMQ-treated wild-type or Clock^{Δ19/Δ19} mice on day 6 (n=3-5 per group). The values represent the means ± SD. cattacgactggaagcaagcaatcaaacagacacagtgctggagcagtagttgagagctccattgagtcaataagttggaggcaggga catcaagattgttcctgttctctggtctagcttttgaacccttaaagctcacccctagtggcacaccttccctcaggacacaccttctaacccttc caagacagtccaccaactagaagccaagcatccaagttcatgagtccaaggggccattctcattcaatccaccacatgaactgtcttagt cagggattctattcctgcacaaacattatgcccaagaag<mark>caagtt</mark>ggggaggaaagggtttattccatacttctgttcatctccaaggggag acaggaaccacaaggaaaaacgtgaagggatgaacatgaagcagtcactctgccacttacaggaagctgcaaagctggcttccctgc tccacttttcctttcctttcctcaaatccaggcctgtcttccctgtctcctcttggcatttgttggcaatcttcaggatttacagggccgtaagatctgtccc Sense primer TaqMan probe Antisense primer ctctacctttgtaagatgccccttgccctggcttaggctcctttttatgtctttggctggaggtacatatatagcttccctccattctcatttctca tttcacaagctaaaatttgttgttctttcactcaccattcgccctcaagaacgagggggaagattgacacagagaaccttccacttctggatg gggaagcacggtgtctgtgttaagcctcaacaagcttctgagtatagggttgggaaatgaggctgacaggagagagtggtgctactgcct actccagtgtatgttgcaggtacaaaaatcaactgcttcatagactgacattttcttttaaagatgttttcgttttgctaccaggtctcactatgta gctctacctaggtgacttagttaaagtttcattgatgtgaagagacaccatgactacgacaactcttagagagaacaacatttaattagactg gcttacagttlcaatgattcagtccattatcatcatggcgggaagcatggcagccttcaggcagacatggtgatggaggaactgaggggtc taaatcctgatccgaaggcagctaggaagagactctgttctgctctgggtgaagcttggacaccaagagtccttaaaacccacctgcaca gtgacacacttcctccaataaggtcacacccattccaacaagaccacacctcctaataatgccacttcccatgagccaagcatattcaaa ccaccacctggcctagagctcccatagaccaggttgaccttgaactcaaagatctgcttacctctgtctcctatgtgcaggaattaaaatgtg catgaccaccattgacctgtttgacttcttgcagaagactctgttttcaattaaggcaaggaaaaaaacactgacaaggcagctcactttca gtaatctgggtttttccaaatagtgacatgacaactagtcattatgaaatggacacgagttcctcttcaagaaatgaaaatgtaggtcaggg ctctgctgacatttccatttgcctcataggtaaaagcctgaagcaaatgctaacagtCAGGCAGTGGGAAAGAAGACAGC

Figure S5

E-box-like elements in the promoter region of the mouse *IL-23R* There are several E-box-like elements ("CANNTG" or "CANNTT") present in the promoter region of the mouse *IL-23R*. CLOCK/BMAL1-mediated circadian control of a gene transcription can be driven by non-canonical E-box sequences in the promoter region of the gene. "CANNTG" or "CANNTT" indicate green. The 1st exon sequence indicates blue. Primers and probe sequence sites used for the ChIP assay (*IL-23R*) are also shown in red.

Mast cells play a marginal role in IMQ-induced dermatitis in the current experimental conditions. a-d. Mast cell-deficient W/Wv mice and their control mice were treated daily with topical IMQ for 5 days and PASI score in the dorsal skin (a), ear thickness (b), epidermal thickness (c),

and frequency of CD3⁺ $\gamma/\delta^{+}T$ cells in the cervical lymph nodes (d) are shown (n=5 per group).

The values represent the means \pm SD.