
cgmisc: package tutorial
Marcin Kierczak, Jagoda Jabłońska, Simon Forsberg, Matteo Bianchi, Katarina Tengvall,

Mats Pettersson, Veronika Scholz, Jennifer Meadows, Patric Jern, Örjan Carlborg, Kerstin
Lindblad-Toh
17 June 2015

Contents

Synopsis 2

Package installation 2

Loading data 2

Example analyses 2

Quality control . 2

Detecting population structure . 3

Comparing subpopulations . 4

Association analyses . 6

Visualising and analysing linkage structure . 7

Visualising gene annotations . 8

Working with genomic regions . 9

Clumping procedure . 10

Improved quantile-quantile plots . 10

Interacting with the UCSC genome browser . 12

Examining LD decay . 12

Detecting runs of homozygosity . 13

Computing average heterozygosity using overlapping windows approach 13

Examining allele/genotype effect using phenotype boxplots . 14

Simple epistasis scan . 15

Data conversion functions . 16

Dog-specific utilities . 17

Endogenous retroviral sequences (ERV) . 17

List of function aliases 18

References 18

1

Synopsis

cgmisc is an R package for enhanced data analyses and visualisation in genome-wide association studies
(GWAS). This document will guide you through the installation process and to demonstrate package capa-
bilities in a series of practical examples based on a showcase data included in the package.

Package installation

The cgmisc package is available on GitHub repository and can be installed with the help of the devtools
package:

install.packages('devtools') # Install devotools if not installed
library(devtools) # Load the library
install_github('cgmisc-team/cgmisc') # Install cgmisc

In order to use the package functions, it is necessary to load it into environment:

library('cgmisc')

Loading data

Whenever possible, the cgmisc package works with data structures implemented and used by the GenABEL
(Aulchenko et al. 2007) package. In particular, the gwaa.data-class and the gwaa.scan-class structures
are used. The package is shipped with an example dataset called cgmisc_data. The example dataset
contains genotyping data (Illumina CanineHD array, canFam2 assembly) for N=207 German shepherds
originally collected for the project described in (Tengvall et al. 2013). However, to illustrate various features
of the cgmisc package, the phenotypes included in the example dataset have been simulated. Use the
following command to load the example dataset:

data('cgmisc_data')

Now, once the data have been loaded, we can start analyses.

Example analyses

In order to illustrate how to use particular functions, we will perform a much simplified GWAS analysis.
We begin by performing initial quality control.

Quality control

First, we will prune the data with per marker or per individual call rates below 95%. Based on 2000 randomly
selected autosomal markers, we remove one (the one with lower call rate) from each pair of too similar (more
than 95% similarity) individuals. We also set very low (10−3) threshold for pruning on minor allele frequency
(in practise only the monomorphic markers will be removed) and turn off checks based on the departure form
Hardy-Weinberg equilibrium (p.level=10e-18)

2

qc1 <- check.marker(data = data,
callrate = .95,
perid.call = .95,
ibs.threshold = .95,
ibs.mrk = 2000,
ibs.exclude = "lower",
p.level = 10e-18,
maf = 1e-3)

data.qc1 <- data[qc1$idok, qc1$snpok]

Detecting population structure

Now, we will analyse population structure using genomic-kinship information. Using all autosomal chro-
mosomes, we will calculate the Identity By State (IBS) matrix which captures pairwise genetic similarity
between individuals. Then, in order to visualize population structure, we will use the multidimensional
scaling (MDS) technique to reduce the IBS matrix to two dimensions.

autosomal <- which(data.qc1@gtdata@chromosome != 39) # 39 is the canine X chromosome
data.qc1.gkin <- ibs(data.qc1, snpsubset = autosomal, weight = 'freq')
data.qc1.dist <- as.dist(0.5 - data.qc1.gkin) # Compute pairwise distances
data.qc1.mds <- cmdscale(data.qc1.dist) # Multidimensional scaling
plot(data.qc1.mds, pch = 19, cex = .5, las = 1,

xlab = 'MDS1', ylab = 'MDS2',
cex.axis = .7, bty = 'n')

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

−0.2

−0.1

0.0

0.1

MDS1

M
D

S
2

3

We can see that there is a chance of population structure here: a somewhat tighter cluster of individuals to
the left. We should investigate this further, but for the purpose of this tutorial, let’s just run simple K-means
clustering with the number of clusters a priori set to K = 2.

kclust <- kmeans(data.qc1.mds, centers = 2)
plot(data.qc1.mds, pch = 19, cex = .5, las = 1,

xlab = 'MDS1', ylab = 'MDS2', cex.axis = .7,
bty = 'n', col = kclust$cluster)

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

−0.2

−0.1

0.0

0.1

MDS1

M
D

S
2

Now, we can assign our individuals to the calculated
clusters which represent subpopulations.
pop <- kclust$cluster

Comparing subpopulations

We can compare subpopulations by, e.g. looking at the differences in the reference allele frequency using the
pop.allele.counts and the plot.pac functions. Here, we will focus on the chromosome 2 only.

Comparing of allele counts

We can perform Fisher’s exact test on the observed per-population reference allele counts and the counts ex-
pected assuming null hypothesis of no population structure (all individuals drawn from the same population).
Significant deviations from this expected frequency mark divergent regions.

4

pac <- pop.allele.counts(data = data.qc1[,data.qc1@gtdata@chromosome == 2],
pops = pop,
progress=F)

plot.pac(data = data.qc1[,data.qc1@gtdata@chromosome == 2],
allele.cnt = pac,
plot.LD = T,
legend.pos='topleft')

0

1

2

3

4

5

Mbp

−
lo

g 1
0(

p−
va

lu
e)

3.15 8.7 14.26 21.66 29.06 36.46 43.87 51.27 58.67 66.07 73.47 80.88 88.28

r2

(0.8−1.0]
(0.6−0.8]
(0.4−0.6]
(0.2−0.4]
[0.0−0.2]

Computing fixation index FST

In a similar way, we can compute and plot fixation index FST :

fst <- compute.fstats(data = data.qc1[,data.qc1@gtdata@chromosome == 2],
pops = pop)

plot.fstats(data = data.qc1[,data.qc1@gtdata@chromosome == 2],
fstats = fst,
est.type = 'naive')

5

0.00

0.02

0.04

0.06

0.08

Mbp

F
S

T

3.15 8.7 14.26 21.66 29.06 36.46 43.87 51.27 58.67 66.07 73.47 80.88 88.28

Association analyses

Having defined and briefly analysed the subpopulations, we can proceed to association analyses using,
e.g. mixed model with genomic kinship as random effect.

h2h <- polygenic(formula = ct ~ sex,
kinship.matrix = data.qc1.gkin,
data = data.qc1,
llfun = 'polylik')

mm <- mmscore(h2object = h2h, data = data.qc1, strata = pop)

The per-marker significance of associations can be now plotted (Manhattan plot):

par(las = 1, cex.axis = .7) # Tweak graphics
plot(mm, cex = .5, pch = 19, col = c('darkgrey', 'grey'))

6

mmscore(h2h, data.qc1, pop)

Chromosome

−
lo

g 1
0(P

−
va

lu
e)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 29 31 34 37 39

As we can see, there is a very strong association signal on chromosome 2. We can examine it a bit closer
using the plot.manhattan.ld function.

Visualising and analysing linkage structure

Say, we would like to zoom in on chromosome 2 and visualise linkage disequilibrium (LD) of every marker
in the region to the top-associated marker. First, we need the name and coordinates of the top-associated
marker:

summary(mm, top = 1)

Summary for top 1 results, sorted by P1df

Chromosome Position Strand A1 A2 N effB se_effB
BICF2S2365880 2 38256927 u T C 205 1.097095 0.1469296
chi2.1df P1df Pc1df effAB effBB chi2.2df P2df
BICF2S2365880 55.75325 8.216247e-14 3.997282e-13 NA NA 0 NA

The top-associated marker is BICF2S2365880 and its position is 38256927bp. We will zoom in on
a 2 Mbp region centered on the marker using the plot.manhattan.ld function. The function produces a
standard so-called Manhattan plot with color-coded linkage disequilibrium (LD) to a specific reference marker
measured by r2. Given genotyping data (as GenABEL gwaa.data-class object) and GWAS result in the
form of p-values vector together with genetic coordinates of a region to be plotted (up to entire chromosome),
plot.manhattan.ld produces a plot with genomic coordinates on the x-axis and −log10(p−value) on the y-axis.
Linkage disequilibrium to a reference marker is represented by specific colors. By default, colors represent 5
discrete intervals of r2: [1.0, 0.8[; [0.8, 0.6[; [0.6, 0.4[; [0.4, 0.2[and [0.2, 0[, where: [a, b[:= x : a >= x > b. If
desired, the intervals can be altered using function parameters.

7

plot.manhattan.LD(data = data.qc1,
gwas.result = mm,
chr = 2,
region = c(37256927, 39256927),
index.snp = 'BICF2S2365880',
legend.pos = 'topleft')

Position (Mb)

−
lo

g 1
0(p

−
va

lu
e)

r2

(0.8−1.0]
(0.6−0.8]
(0.4−0.6]
(0.2−0.4]
[0.0−0.2]

37.3 37.7 38.1 38.5 38.9

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

00.05
0.25
0.5

MAF

Visualising gene annotations

The plot.manhattan.genes extends the plot.manhattan.ld function by enabling visualisation of genes
provided in a BED file. In the cgmisc package, we provide a BED file containing information on protein
coding genes in dog canFam3.1 assembly. The file was prepared using Broad Improved Canine Annotation
v.1 available at the UCSC Genome Browser. Below, we use this file to visualise genes in a specified region:

fpath <- system.file('extdata', 'canFam3.1.prot.bed', package = 'cgmisc')
plot.manhattan.genes(data = data.qc1,

gwas.result = mm,
chr = 2,
region = c(37256927, 39256927),
index.snp = 'BICF2S2365880',
bed.path=fpath)

8

0

5

10

−
lo

g 1
0(p

−
va

lu
e)

r2

INDEX
[0.0−0.2]
(0.2−0.4]
(0.4−0.6]
(0.6−0.8]

0.0
0.1
0.2
0.3
0.4
0.5

M
A

F

FGF1
ARHGAP26

Q3HTT7_CANFA

HMHB1(human)

YIPF5
CFRNASEQ_PROT_00061307

KCTD16

37256927 38256927 39256927
Position (bp)

Working with genomic regions

To extract markers from a given genomic region that are in high LD to a given index marker the
choose.top.snps function can be used.

top.snps <- choose.top.snps(data = data.qc1,
chr = 2,
region = c(37256927, 39256927),
index.snp = 'BICF2S2365880')

print (top.snps[1:4,])

r2 coord
BICF2S2365880 INDEX SNP 38256927
BICF2P462003 0.916279689260684 37817567
BICF2P425207 0.866030555369713 38248275
BICF2P612394 0.843123203444902 37952464

To extract markers within the user-defined (in bp) neighborhood of a given marker, one can use the
get.adjacent.markers function.

adjacent <- get.adjacent.markers(data = data.qc1,
marker = 'BICF2S2365880',
size.bp = 1e4)

print(adjacent[1:4,])

BICF2P425207 BICF2S2365880
dog224 1 1
dog225 0 0
dog226 1 1
dog227 1 1

9

Clumping procedure

We can also use the clumping procedure as outlined in PLINK documentation (http://pngu.mgh.harvard.
edu/purcell/plink/clump.shtml) to single out regions of interest. As we can see, there are two clumps
represented by grey and violet points respectively. The clumps are shown on both the standard Manhattan
plot (upper panel) and, for improved clarity, also on a dedicated clump panel (lower panel). In short: a
clump contains markers in high LD that are also significantly associated with the examined trait.

clumps <- clump.markers(data = data,
gwas.result = mm,
chr = 2)

plot.clumps(gwas.result = mm,
clumps = clumps,
chr = 2,
region = c(37256927, 39256927))

37.3 37.6 38.0 38.3 38.7 39.1

0

2

4

6

8

10

12

Position (Mb)

−
lo

g 1
0(p

−
va

lu
e)

Improved quantile-quantile plots

A quantile-quantile plot (QQ plots) is a graphical way of comparing two probability distributions. In GWAS
studies, QQ plots are commonly used to compare computed per marker p-values with the ones expected
under the null hypothesis of no association. This comparison is then used to compute genomic-inflation
factor λ which is a good measure of the degree of confounding caused by population structure. The cgmisc
package provides the plot.qq function for better visualization and improved interpretation of standard QQ
plots. The function plots expected vs. observed distribution of p-values and shows theoretical confidence
interval computed using approach outlined in (Casella and Berger 2002). Apart from showing the theoret-
ical confidence interval, it can also perform a number of randomization tests (shuffling the phenotype) to
determine empirical confidence interval which, due to LD, is often narrower than the theoretical one. Empir-
ical p-values can be supplied by the user, otherwise a randomisation test on Grammar gamma-transformed
residuals is performed as outlined in (Belonogova et al. 2013).

10

http://pngu.mgh.harvard.edu/purcell/plink/clump.shtml
http://pngu.mgh.harvard.edu/purcell/plink/clump.shtml

Perform permutation tests
h2h <- polygenic(formula = ct ~ sex,

kinship.matrix = data.qc1.gkin,
data = data.qc1,
llfun = 'polylik')

result <- c()
h2h.tmp <- h2h
pb <- txtProgressBar(min = 0, max = 10, initial = 0, style = 3)
for (i in 1:10) {

h2h.tmp$grresidualY <- sample(h2h$grresidualY)
tmp <- qtscore(h2h.tmp$grresidualY,

data = data.qc1,
strata = pop,
clambda = F)

result <- rbind(result, sort(-log10(tmp@results$P1df)))
setTxtProgressBar(pb, i)

}

plot.qq(data = data.qc1,
obs = mm[,'P1df'],
emp = h2h,
N = 10,
plot.emp = T, step = 100)

11

ob
se

rv
ed

 −
lo

g 1
0(

p)

0 1 2 3 4 5

0

2

4

6

8

10

12

expected − log10(p)

4.
9

theor. distr.
theor. conf. int.
emp. distr.
emp. conf. int.
emp. thr.

Interacting with the UCSC genome browser

It is often convenient to display p-values from a genome-wide association scan directly in UCSC Genome
Browser (Kent et al. 2002) to easily align annotations with the signals of interest. This can be done with
gwaa.to.bed function that exports coordinates and p-values from gwaa.data-scan into a BED file that can
easily be used to set a custom path in the UCSC Genome Browser.

Using the open.region.ucsc function, it is possible to automatically open an Internet browser window
containing UCSC Genome Browser result for a set of predefined genomic coordinates and assembly of interest.

open.region.ucsc(chr = 2,
coords = c(37256927, 39256927),
assembly = 'canFam3')

Examining LD decay

To visualise LD decay on chromosome 28, one can call the plot.ld.decay function.

plot.LD.decay(data = data.qc1[,data.qc1@gtdata@chromosome == 28])

12

0e+00 1e+07 2e+07 3e+07 4e+07

0.00

0.05

0.10

0.15

0.20

0.25

0.30

distance in bp

r2

mean
median

Detecting runs of homozygosity

The get.overlap.windows function divides the selected chromosome (or the whole genome) into overlapping
chunks of given size and overlap. The function returns a list containing window coordinates along with a
logical matrix where each window is represented by a row and the logical value per-marker is set to true if
the marker is contained within the window and to false otherwise. One can specify (in bp) size of a window
as well as overlap between windows. If overlap is set to 0, non-overlapping windows will be used.

We will divide chromosome 2 into overlapping windows and then use them to calculate mean heterozygosity
and identify runs of homozygosity:

my.LW <- get.overlap.windows(data = data.qc1,
chr = 2,
size = 125e3,
overlap = 2500)

Computing average heterozygosity using overlapping windows approach

Heterozygosity is evaluated based on allelic frequencies of markers in particular overlapping windows and
the basic Hardy-Weinberg theorem equation. The values range from 0 to 1 and correspond to the probability
that the given set of loci, represented by the window, is heterozygous.

het.windows <- het.overlap.wind(data = data.qc1,
LW = my.LW,
progress = F)

Now, having calculated average heterozygosities we can visualize them with the plot.overlap function:

13

plot.overlap(LW = my.LW, heter.zyg = het.windows)

window

av
er

ag
e

he
te

ro
zy

go
si

tie
s

0 100 200 300 400 500 600 700

0.0

0.1

0.2

0.3

0.4

0.5

We can use the calculated heterozygosity to detect runs of homozygosity across the selected chromosome or
region. We will use the get.roh function to check if we have any stretches of reduced heterozygosity on
chromosome 2. All windows with the average heterozygosity below a given threshold, here 0.30, be deemed
homozygous.

get.roh(data = data.qc1,
chr = 2,
LW = my.LW,
hetero.zyg = het.windows,
threshold = 0.30,
strict = TRUE)

window begin end length
[1,] 8 4010290 5360290 87
[2,] 197 27162790 28022790 54
[3,] 316 41740290 42477790 52
[4,] 436 56440290 57667790 77

As a result we get a matrix with runs coordinates, length (in windows) and first window that starts a stretch.

Examining allele/genotype effect using phenotype boxplots

For quantitative traits, the boxplot.snp function can be used to visually examine allele or genotype effect
by plotting phenotype boxplots for the individuals in every genotypic class. The function works for both
outbreed (three boxes) and inbreed (two boxes) data.

14

marker <- 'BICF2S2365880'
trait.name <- 'response'
boxplot.snp(data = data.qc1,

marker = marker,
trait = trait.name,
recode = F,
font = 2)

C/C T/C T/T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

n = 29 n = 92 n = 83

Simple epistasis scan

To gain further understanding of the genetic architecture underlying our trait, we might want to search for po-
tential epistasis between pairs of SNPs. In the function epistasis.scan, we implement a simple way of doing
this by fitting linear models including two SNPs: y = β0 + β1 ∗ SNP + βi ∗ SNPi + βi,int ∗ SNP ∗ SNPi + e,
where y is the phenotype, SNP and SNPi are the genotypes at the two SNPs, and e is the residual. i = 1...n,
where n is the number of SNPs in the input to the function. The function takes a SNP, phenotypes,
and a gwaa.data-class object as input. It then fits linear models between SNP and all markers/SNPs
in the gwaa.data-class object. To visualize a potential two-SNP interaction, one can use the function
boxplot.snp.twoWay. This function shows a two-locus genotype-phenotype map by plotting phenotype
boxplots for the individuals in every genotypic class, as defined by the two SNPs jointly. This gives nine or
four boxes, for outbred and inbred data respectively.

es <- epistasis.scan(data = data.qc1[,data.qc1@gtdata@chromosome == 2],
SNP = 'BICF2S2365880',
trait.name = 'response')

boxplot.snp.twoWay(data.qc1,
marker1 = 'BICF2S2365880',
marker2 = 'BICF2S2337600',
trait = 'response')

15

0

1

2

3

n = 12 n = 28 n = 22 n = 12 n = 46 n = 39 n = 5 n = 18 n = 22

C/C T/C T/T C/C T/C T/T C/C T/C T/T

G/G G/T T/T

Data conversion functions

Our package provides a number of functions which enable navigating between various data formats such as
FASTA or the input format used by the PHASE software.

gwaa.to.bigrr The bigRR package implements a computationally-efficient generalized ridge regression (RR)
algorithm for fitting models with a large number of parameters (Shen et al. 2013). gwaa.to.bigrr function
exports gwaa.data-class object to bigRR-compatible input structure.

gwaa.to.vgwas In a standard approach to GWAS, associations are detected based on differences in mean
phenotypic values across genotype classes. Shen et al. (2012) have proposed an extended approach where
the associations are detected based on differences in variances, not means only. They have implemented the
approach in the vGWAS R package. The gwaa.to.vgwas function converts gwaa.data-class object to a
format readable by the vGWAS package.

gwaa.to.phase enables the user convert a GenABEL gwaa.data-class object to the intrnal PHASE input
format.

phase.to.fasta PHASE is a software for haplotype reconstruction and our phase.to.fasta function can
be used to parse a part of PHASE output to a customised FASTA format:

'>haplo_1_count_176'
'TCGGGCTC'

In the above example, the first line contains the name of the haplotype along with its count, the second line
provides the haplotype sequence.

phase.to.haploview Converts PHASE output format to the Haploview input format. Haploview is a
popular software which faciliates haplotype and LD analyses.

gwaa.to.bed produces a BED file containing p-values from a pre-defined region of dataset. The file can be
used to, e.g. visualize GWAS p-values as the UCSC Genome Browser custom track.

16

Dog-specific utilities

Current approaches to finding genome-wide associations in diploid organisms often encounter difficulties
when analysing non-autosomal parts of the genome, e.g. the sex chromosomes (Young, Kirkness, and Breen
2008). In cgmisc, the chr.x.fix.canfam function partially addresses this issue by creating an artificial
autosome which consists of pseudo-autosomal regions of the X chromosome. This additional autosome can
be analysed in a way similar to all other autosomes. Currently, the function is specific to data coming from
the domestic dog (Canis familiaris, assemblies canFam2 and canFam3.1).

chr.x.fix.canfam (data = data.qc1, assembly = 'canFam3')

Endogenous retroviral sequences (ERV)

The get.erv function returns information about endogenous retroviral sequences (ERV) in the analysed
region. At first, we need to obtain a list of ERV sequences in the defined genomic region using the get.erv
function. In the cgmisc package, we provide collection of canine ERVs identified in canFam3.1 assembly
but you can also supply any other database.

Let’s search for ERVs on chromosome 2

NOTE! In this example, we are using ERV database for the canFam3.1 assembly on canFam2 data which
may not be the optimal way. We shall perhaps use the Liftover software to map coordinates between the
assemblies.

ervs <- get.erv(chr = 'chr2', coords = c(10e6, 40e6))
print(ervs[1:4,])

id chromosome strand start end length score
1 2651 chr2 S 10015031 10006437 8594 309
2 2653 chr2 S 10128297 10123555 4742 847
3 2659 chr2 S 11537301 11525069 12232 319
4 2667 chr2 P 13840823 13856123 15300 324
subgenes
1 5LTR PBS MA CA NC Prot IN TM PPT 3LTR
2 5LTR PBS MA NC Prot RT 3LTR
3 5LTR PBS CA Prot IN TM PPT 3LTR
4 5LTR CA Prot RT IN PPT 3LTR

Having a list of ERV sequences, we are able to plot them with plot.erv function using the same region:

plot.erv(chr = 'chr2', coords = c(10e6, 40e6))

17

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Mbp

−
lo

g 1
0(s

co
re

)

10 20 30 40
+ strand
− strand

List of function aliases

plot.manhattan.ld: plot.manhattan.LD
plot.ld.decay: plot.LD.decay
phase.to.haploview: phase2haploview, PHASE.to.Haploview, PHASE2Haploview
phase.to.fasta: phase2fasta, PHASE.to.FASTA, PHASE2FASTA
open.region.ucsc: open.region.UCSC
gwaa.to.vgwas : gwaa2vgwas, gwaa.to.vGWAS, gwaa2vGWAS
gwaa.to.phase: gwaa2phase, gwaa.to.PHASE, gwaa2PHASE
gwaa.to.bigrr: gwaa2bigrr, gwaa.to.bigRR, gwaa2bigrr
gwaa.to.bed: gwaa2bed
get.ld.colors: get.LD.colors
plot.fstats: plot.Fst
compute.fstats: compute.Fstats
create.haploview.info: create.Haploview.info

References

Aulchenko, YS, S Ripke, A Isaacs, and CM Van Duijn. 2007. “GenABEL: an R library for genome-wide
association analysis.” Bioinformatics 10 (23): 1294–96.

Belonogova, NM, GR Svishcheva, CM van Duijn, YS Aulchenko, and TI Axenovich. 2013. “Region-based
association analysis of human quantitative traits in related individuals.” PloS One 8 (6): e65395.

Casella, G, and RL Berger. 2002. Statistical Inference. Duxbury Advanced Series in Statistics and Decision
Sciences. Thomson Learning. http://books.google.se/books?id=0x/_vAAAAMAAJ.

Kent, WJ, CW Sugnet, TS Furey, and KM Roskin. 2002. “The human genome browser at UCSC.” Genome
Research, no. 12: 996–1006.

18

http://books.google.se/books?id=0x/_vAAAAMAAJ

Shen, X, M Alam, F Fikse, and L Rönnegård. 2013. “A novel generalized ridge regression method for
quantitative genetics.” Genetics 193 (4): 1255–68.

Shen, X, M Pettersson, L Rönnegård, and Ö Carlborg. 2012. “Inheritance beyond plain heritability: variance-
controlling genes in Arabidopsis thaliana.” PLoS Genetics 8 (8): e1002839.

Tengvall, K, M Kierczak, K Bergvall, M Olsson, M Frankowiack, FHG Farias, G Pielberg, et al. 2013.
“Genome-wide analysis in German shepherd dogs reveals association of a locus on CFA 27 with atopic
dermatitis.” PLoS Genetics 9 (5): e1003475.

Young, AC, EF Kirkness, and M Breen. 2008. “Tackling the characterization of canine chromosomal
breakpoints with an integrated in-situ/in-silico approach: the canine PAR and PAB.” Chromosome Research
: An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome
Biology 16 (8): 1193–1202.

19

	Synopsis
	Package installation
	Loading data
	Example analyses
	Quality control
	Detecting population structure
	Comparing subpopulations
	Association analyses
	Visualising and analysing linkage structure
	Visualising gene annotations
	Working with genomic regions
	Clumping procedure
	Improved quantile-quantile plots
	Interacting with the UCSC genome browser
	Examining LD decay
	Detecting runs of homozygosity
	Computing average heterozygosity using overlapping windows approach
	Examining allele/genotype effect using phenotype boxplots
	Simple epistasis scan
	Data conversion functions
	Dog-specific utilities
	Endogenous retroviral sequences (ERV)

	List of function aliases
	References

