Intrahaplotypic Variants Differentiate Complex Linkage Disequilibrium within Human MHC Haplotypes

Tze Hau Lam^{1, 2} Matthew Zirui Tay^{1, 3}, Bei Wang¹, Ziwei Xiao¹, Ee Chee Ren^{1,2*}

Supplementary Figure Legends:

Figure S1. SNP alignment of independent A33-B58-DR3 and A2-B46-DR9 chromosomes with consensus SNPs sequence of each haplotype. Green columns indicate SNP alleles identical to the consensus sequence while dark green columns indicate otherwise.

Figure S2. Sequencing coverage and no-call rate across chr6:25.0 – 35.0(Mb). No-call and coverage profile for each cell line across the MHC region. The average GC-corrected coverage and the no-call counts were binned into non-overlapping 20-kb windows.

Figure S3. Zygosity profile of variants derived from CG sequencing. The region chr6: 25Mb– 35Mb was binned into non-overlapping windows of 20 kb. The number of homozygous and heterozygous variants with respect to the NCBI Build 37.2 reference sequence was calculated in each bin. For each of the six individuals, the upper panel plot represents the homozygous variants counts while the lower panel plot represents the heterozygous variants counts across the region of interest.

Figure S4. Spikes in intra-CEH variations in the **(A)** A2-B46-DR9 haplotype and **(B)** A33-B58-DR3 haplotype. The variation counts were binned into non-overlapping 2-kb windows. Heightened intra-CEH variation in genomic segments extended to 120 kb and 240 kb were identified in the A2-B46-DR9 and A33-B58-DR3 haplotype, respectively.

Figure S5. Alignment of B58AL DNA templates derived via TA cloning. The DNA template was mapped to NCBI Build 37.2 reference sequence chr6:29,912,732–29,913,130 located within the HLA-A gene. The derived DNA sequences were also aligned with the sequence of the A*33:03 allele downloaded from IMGT/HLA database (http://www.ebi.ac.uk/ipd/imgt/hla/, Release 3.13.1).

Figure S6. Alignment of B58SC DNA templates derived via TA cloning. The DNA template was mapped to NCBI Build 37.2 reference sequence chr6:29,912,732–29,913,130 located within the HLA-A gene. The derived DNA sequences were also aligned with the sequence of the A*33:03 allele downloaded from IMGT/HLA database (http://www.ebi.ac.uk/ipd/imgt/hla/, Release 3.13.1).

Figure S7. Alignment of B58CF DNA templates derived via TA cloning. The DNA template was mapped to NCBI Build 37.2 reference sequence chr6:29,912,732–29,913,130 located within the HLA-A gene. The derived DNA sequences were also aligned with the sequence of the A*33:03 allele downloaded from IMGT/HLA database (http://www.ebi.ac.uk/ipd/imgt/hla/, Release 3.13.1).

Figure S8. Variant counts between pairwise sequence comparisons of B46BM, B46CM, and B46ZS with the A33-B58-DR3 haploid sequence. A sliding window of 1 kb in length was used to analyse nucleotide differences between the sequences in the MHC region of chr6:29.60–29.69(Mb).

Figure S9. Intra-CEH variants overlapping with H3K4me1 peaks and their respective allelespecific luciferase activity. **(A)** H3K4me1 levels at the genomic location of the intra-CEH variants. The H3K4me1 level at these sites are referenced from the B-LCL cell line GM12878 from the ENCODE data. **(B)** Luciferase activity for each allele of intra-CEH variants. Reporter plasmids carrying the fragment sequence of each unique allele of a certain variant were cotransfected with Renilla control vector into HT1080 cells. The luciferase activity readout was normalized to Renilla luciferase, and the representative results from three independent experiments are shown.

Figure S2

Α		
rsID	Position	H3k4me1 Signal
rs3117318	29611781	4.52
rs3129073	29615822	1.92
rs3117295	29653377	4.08
rs7738158	29667527	3.48
rs3129056	29670250	3.6
rs3129048	29670555	3.16
rs3129047	29670572	3.16
rs1610588	29676715	11.32
rs1610589	29677386	17.36

	SNP Geno	typing Platf	CG Sequencing Platform						
Sample ID	Start	End	Length (Mb)	No. of SNPs	No. of het SNPs	Start	End	Length (Mb)	No. of het variants
B58AL	26922906	33853071	6.93	8660	26	26350000	33830000	7.48	595
B58SC	26922906	33820059	6.90	8637	26	26350000	33810000	7.46	578
B58CF	28310997	32973794	4.66	6997	35	28350000	32950000	4.60	455
B46BM	29350854	32903900	3.57	6238	25	29367500	32917500	3.55	221
B46ZS	29577617	33910884	4.33	6975	21	29630000	33890000	4.26	146
B46CM	29728209	32739888	3.01	5283	16	29550000	32650000	3.10	167

 Table S1. Range of conserved extended region within the MHC for the six cell lines.

Cell lines	Mean Coverage Per bp	% bp Coverage >5X	% bp Coverage >20X	% bp Coverage >40X	% of MHC region covered
B58AL	44.67	98.14	91.09	61.40	95.31
B58SC	43.69	98.10	90.57	59.44	95.15
B58CF	39.06	97.96	88.14	49.10	94.66
B46BM	43.54	98.13	90.31	58.93	95.03
B46ZS	44.30	98.11	90.88	60.94	95.06
B46CM	37.13	97.86	86.64	44.20	94.18

 Table S2. CG sequencing coverage and performance.

Sample ID	Positions Compared	Differences hmz (1M-Duo) /hmz (CG)	Differences hmz (1M-Duo) /htz (CG)	Differences htz (1M-Duo/ hmz (CG)	Differences Total	% Match
B58AL	9916	15	1	23	39	99.6
B58SC	9876	14	4	26	44	99.6
B58CF	9880	12	8	27	47	99.5
B46BM	9908	11	8	14	33	99.7
B46ZS	9903	13	3	14	30	99.7
B46CM	9904	12	10	13	35	99.6

 Table S3. SNP genotype calls differences between Illumina Human 1M-Duo BeadChip and CG sequencing. Hmz

 indicates homozygous genotype call and htz indicates heterozygous genotype call.

Table S4. Re-sequencing experiments to assess mismatches between SNP genotyping and CG sequencing platform in

samples carrying A33-B58-DR3.

					B58AL		B58SC		B58CF		F		
Forward Primer	Reverse Primer	Position	rsID	Ref	SNP Array	CG	PCR	SNP Array	CG	PCR	SNP Array	CG	PCR
ACTGACAGAATGAAC CTGCAGAC	AATCACTCTCTGGTA CAGGATCTGG	29,796,376	rs12722477	С	C/C	A/A	?/?	C/C	A/A	A/A	C/C	A/A	A/A
TGAGAACTGGCGGG GAGATA	TCTCTTGCTGGCTCA GCTTT	29,819,909	rs2508053	С	C/T	C/C	C/C	C/T	C/C	C/C	C/T	C/C	C/C
CTGACTCATATCAAG GGCCAGAAA	AGAGAGGAAAGTCA GGACACAATAC	30,383,046	GA005234	С	C/G	C/C	C/C	C/G	C/C	C/C	C/G	C/C	C/C
ATAAAAACAGGCTGC ATGTGGTAAA	AGTTGAGGTTTTTCT GTTATGCCTG	30,418,354	rs34111681	G	T/T	G/G	G/G	T/T	G/G	G/G	T/T	G/G	G/G
CAGAACCAGGGAGA TGAGACATAC	TGTTCCTGCTTCTCT TTTCACTTTC	31,170,514	rs9263870	А	A/G	G/G	G/G	A/G	G/G	G/G	A/G	G/G	G/G
GAACATATGCTACAA AAGGCCAGAG	GGTGTGGAGAAGGC TGTGGG	31,321,327	rs9266095	А	A/G	A/A	A/A	A/G	A/A	A/A	T/T	G/G	?/?
CTCTTGAAGGACTCT GGGTTAGAAG	GCACCAGAGTTCAA GAGAGAAAATTA	31,639,979	rs9267532	С	C/T	T/T	T/T	C/T	T/T	T/T	C/T	T/T	T/T
CAATGCTTATAGGGT ATCCCCAGTC	GCAGTGTACACACA CAGATACTGAT	31,655,438	rs10573	G	A/G	A/A	A/A	A/G	A/A	A/A	A/G	A/A	A/A
TAGGGTCTCTAATCT CCAAAACACC	CTAAAAGCCAGAGC TCCCAGTCC	31,697,558	rs707916	G	A/G	A/A	?/?	A/G	A/A	?/?	A/G	A/A	A/A
CCTTTATGAGACCTG CATTGAACC	GGTACTCCAACACTG ATCATAGGG	32,130,937	rs10680	Т	C/C	T/T	T/T	C/C	T/T	T/T	C/C	T/T	?/?
TCAGATTGAATTTTT CCTCCCTTCC	GATTACAGCTTCCAC AAGTTCCATT	33,036,549	rs17509489	т	G/G	T/T	?/?	G/G	T/T	T/T	G/G	T/T	?/?

Table S5. Re-sequencing experiments to assess mismatches between SNP genotyping and CG sequencing platform in

samples carrying A2-B46-DR9.

					B46BM		B46ZS			B46CM		M	
Forward Primer	Reverse Primer	Position	rsID	Ref	SNP Array	CG	PCR	SNP Array	CG	PCR	SNP Array	CG	PCR
AGTACATGTAGACAG CTCACAGT	GCACAGGGAATGTG TTCTCG	29,801,958	rs2743944	Т	T/C	T/T	T/C	T/C	T/T	T/C	T/C	T/T	T/C
GGGGTTTCTTTGCAT TGGATGTATT	TTGTCTCTTGATACC ACAAGGAGAT	29,913,509	rs1062405	Т	C/C	T/T	T/T	C/C	T/T	T/T	C/C	T/T	T/T
ATAGAATTAGAAAGA GGCTGGGGTC	GTGCTAATGAAAGTT GGGCCTTAG	29,942,191	rs2232236	Т	G/G	del/del	del/del	G/G	del/del	?/?	G/G	del/de	l del/del
CTTTCAGTTCTCTTC TGTGTCTCCA	AGTATATTAGGTTAG CGGGTGGTAG	30,704,985	rs28380598	т	C/C	T/T	T/T	C/C	T/T	T/T	C/C	T/T	T/T
CCGTGGGGATGGCT AGAAAA	CCCTGAGGGAATCT GGGGTA	31,079,236	rs1265055	G	A/G	A/A	A/A	A/G	A/A	A/A	A/G	A/A	A/A
GATTCCAGACTTGGA GTTTCAACAG	GAGTAAAGGACTGA GAGGATGGGA	31,082,304	rs3130554	Т	G/T	T/T	T/T	G/T	T/T	T/T	G/T	T/T	T/T
CCTTTATGAGACCTG CATTGAACC	GGTACTCCAACACTG ATCATAGGG	32,130,937	rs10680	Т	C/C	T/T	T/T	C/C	T/T	T/T	C/C	T/T	?/?
TCAGATTGAATTTTT CCTCCCTTCC	GATTACAGCTTCCAC AAGTTCCATT	33,036,549	rs17509489	Т	G/G	C/T	C/T	G/G	T/T	T/T	G/G	T/T	T/T

Table S6. Intra-CEH SNVs within coding sequence region.

A2-B46-DR9							
Position Start	Position End	Alternate Allele	Reference Allele	Variant Type	Effect	Gene	Exon
29,634,002	29,634,003	С	G	SNV	missense	MOG	3
32,190,483	32,190,484	А	G	SNV	synon	NOTCH4	3

A33-B58-DR3

		Alternate	Reference	Variant			
Position Start	Position End	Allele	Allele	Туре	Effect	Gene	Exon
29,913,036	29,913,037	А	G	SNV	missense	HLA-A	7

Position						B58AL		B58SC		B58CF	
Start	Position End	Region	VarType	Zygosity	Reference	CG Sequence	TA Cloning	CG Sequence	TA Cloning	CG Sequence	TA Cloning
29,912,652	29,912,657	Intron	SUB	Hom	AGACC	CT/CT	CT/CT	CT/CT	CT/CT	CT/CT	CT/CT
29,912,667	29,912,669	Intron	SUB	Hom	TA	GG/GG	GG/GG	GG/GG	GG/GG	GG/GG	GG/GG
29,912,753	29,912,754	Intron	SNV	Het	G	G/A	G/A	G/A	G/A	G/A	G/A
29,912,765	29,912,766	Intron	SNV	Het	Α	A/T	A/T	A/T	A/T	A/T	A/T
29,912,766	29,912,767	Intron	SNV	Het	G	G/C	G/C	G/C	G/C	G/C	G/C
29,912,829	29,912,830	Intron	SNV	Hom	Т	C/C	C/C	C/C	C/C	?/?	C/C
29,912,851	29,912,852	Exon 6	SNV	Hom	Т	C/C	C/C	C/C	C/C	C/C	C/C
29,912,855	29,912,856	Exon 6	SNV	Hom	Α	T/T	T/T	T/?	T/T	T/T	T/T
29,912,884	29,912,885	Intron	SNV	Hom	С	A/A	A/A	A/A	A/A	A/A	A/A
29,912,889	29,912,893	Intron	SUB	Hom	GCCT	CCAA/CCAA	CCAA/CCAA	CCAA/CCAA	CCAA/CCAA	CCAA/CCAA	CCAA/CCAA
29,912,895	29,912,897	Intron	SUB	Hom	GG	AA/AA	AA/AA	AA/AA	AA/AA	AA/AA	AA/AA
29,912,899	29,912,901	Intron	SUB	Hom	CT	AC/AC	AC/AC	AC/AC	AC/AC	AC/AC	AC/AC
29,912,917	29,912,918	Intron	SNV	Het	G	?/?	G/A	G/A	G/A	?/?	G/A
29,912,922	29,912,923	Intron	SNV	Het	С	?/?	C/A	C/A	C/A	?/?	C/A
29,912,924	29,912,925	Intron	SNV	Het	Α	?/?	A/G	A/G	A/G	?/?	A/G
29,912,926	29,912,927	Intron	SNV	Het	G	?/?	G/T	G/T	G/T	?/?	G/T
29,912,934	29,912,935	Intron	SNV	Hom	С	T/T	T/T	T/T	T/T	T/T	T/T
29,912,943	29,912,944	Intron	SNV	Hom	Т	C/C	C/C	C/C	C/C	C/C	C/C
29,912,960	29,912,961	Intron	SNV	Het	G	?/?	G/T	G/T	G/T	G/?	G/T
29,913,000	29,913,001	Intron	SNV	Het	Т	T/C	T/C	T/C	T/C	T/C	T/C
29,913,036	29,913,037	Exon 7	SNV	Het	G	G/A	G/A	G/A	G/A	G/A	G/A
29,913,041	29,913,042	Exon 7	SNV	Hom	С	T/T	T/T	T/T	T/T	T/T	T/T
29,913,066	29,913,067	Intron	SNV	Hom	Т	C/C	C/C	C/C	C/C	C/C	C/C
29,913,069	29,913,070	Intron	SNV	Het	G	G/C	G/C	G/C	G/C	G/C	G/C
29,913,073	29,913,074	Intron	SNV	Hom	Α	G/G	G/G	G/G	G/G	G/G	G/G
29,913,077	29,913,078	Intron	SNV	Hom	А	G/G	G/G	G/G	G/G	G/G	G/G
29,913,097	29,913,098	Intron	SNV	Het	С	C/A	C/A	C/A	C/A	C/A	C/A
29,913,110	29,913,111	Intron	SNV	Het	А	A/G	A/G	A/G	A/G	A/G	A/G

Table S7. Variants within DNA template chr6:29,912,732 – 29,913,130.

 Table S8. Re-sequencing to verify CDS intra-CEH variants.

Forward Primor	Reverse Primer	Position	Variant	Effoct	Gono	Evon	Ref	B46BM	B46ZS	B46CM
Forward Filmer	Reverse Fillier	FUSILION	Туре	Ellect	Gene	EXUIT	Rei	CG PCR	CG PCR	CG PCR
CTTCAGGGCTAA GCTCAGGG	AGTTGCATGGAGC TGCTAGG	29634003	SNV	missense	MOG	3	G	G/G G/G	C/C C/C	G/G G/G
CAGTTCCATCTTC CCCACCCAC	GTCTCTGGGACA AGGGACCTG	32190484	SNV	synonymous	NOTCH4	3	А	A/G A/G	G/G G/G	A/G A/G

Forward Primer	Reverse Primer	Position	Variant	Effoct	Gene	Exon	Ref	B58AL	B58SC	B58CM	
			Туре	Ellect				CG PCR	CG PCR	CG PCR	
AGCAGTCACAAGT CACAGGG	CAGCCCATCGCA TGCTCAAT	29913037	SNV	missense	HLA-A	7	G	A/G A/G	A/G A/G	A/G A/G	

Position	Position	Alternate	Reference		Position	Position	Alternate	Reference	
Start	End	Allele	Allele	Gene	Start	End	Allele	Allele	Gene
28,840,256	28,840,257	С	А	LOC401242 Downstream	29,913,944	29,913,945	G	А	HLA-A Downstream
29,035,463	29,035,464	G	A	LOC100129636 intron	29,914,625	29,914,626	С	Т	HLA-A Downstream
29,035,477	29,035,478	Т	С	LOC100129636 intron	29,914,943	29,914,944	С	Т	HLA-A Downstream
29,734,245	29,734,246	Т	G	IFITM4P Downstream	29,914,944	29,914,945	Т	G	HLA-A Downstream
29,747,779	29,747,780	A	С	IFITM4P Downstream	29,915,123	29,915,124	A	С	HLA-A Downstream
29,765,233	29,765,234	С	А	LOC554223 3' UTR	29,915,147	29,915,148	Т	С	HLA-A Downstream
29,779,058	29,779,059	G	А	HLA-G Downstream	29,915,148	29,915,149	G	А	HLA-A Downstream
29,779,067	29,779,068	G	А	HLA-G Downstream	29,915,150	29,915,151	G	Т	HLA-A Downstream
29,783,925	29,783,926	С	Т	HLA-H Upstream	29,915,966	29,915,967	Т	С	HLA-A Downstream
29,783,930	29,783,931	Т	С	HLA-H Upstream	29,926,156	29,926,157	A	G	HCG9 Upstream
29,783,931	29,783,932	A	С	HLA-H Upstream	29,944,177	29,944,178	A	С	HCG9 intron
29,784,433	29,784,434	С	Т	HLA-H Upstream	29,944,307	29,944,308	G	Т	HCG9 intron
29,859,618	29,859,619	A	С	HLA-H Downstream	29,944,308	29,944,309	G	С	HCG9 intron
29,859,620	29,859,621	С	Т	HLA-H Downstream	29,944,324	29,944,325	А	Т	HCG9 intron
29,859,927	29,859,928	G	А	HLA-H Downstream	29,944,326	29,944,327	G	А	HCG9 intron
29,859,928	29,859,929	Т	С	HLA-H Downstream	29,944,327	29,944,328	С	G	HCG9 intron
29,867,025	29,867,026	Т	А	HLA-H Downstream	29,955,808	29,955,809	С	Т	HCG9 Downstream
29,867,026	29,867,027	G	С	HLA-H Downstream	29,956,118	29,956,119	G	А	HCG9 Downstream
29,869,426	29,869,427	G	А	HLA-H Downstream	29,956,126	29,956,127	С	G	HCG9 Downstream
29,869,429	29,869,430	А	С	HLA-H Downstream	29,956,134	29,956,135	С	А	HCG9 Downstream
29,869,434	29,869,435	С	Т	HLA-H Downstream	29,956,137	29,956,138	С	Т	HCG9 Downstream
29,872,187	29,872,188	G	А	HCG4B Upstream	29,956,138	29,956,139	A	G	HCG9 Downstream
29,872,188	29,872,189	А	G	HCG4B Upstream	29,956,484	29,956,485	С	Т	HCG9 Downstream
29,872,841	29,872,842	А	Т	HCG4B Upstream	29,956,486	29,956,487	G	Т	HCG9 Downstream
29,872,843	29,872,844	А	Т	HCG4B Upstream	29,960,539	29,960,540	С	Т	HLA-J Upstream
29,890,605	29,890,606	А	С	HCG4B Upstream	29,960,552	29,960,553	A	Т	HLA-J Upstream
29,903,515	29,903,516	G	С	HLA-A Upstream	29,960,564	29,960,565	Т	С	HLA-J Upstream
29,904,860	29,904,861	Т	С	HLA-A Upstream	29,967,872	29,967,873	Т	С	HLA-J Upstream
29,906,004	29,906,005	А	С	HLA-A Upstream	29,968,000	29,968,001	А	С	HLA-J Upstream
29,906,078	29,906,079	С	А	HLA-A Upstream	29,968,002	29,968,003	С	G	HLA-J Upstream
29,906,079	29,906,080	Т	С	HLA-A Upstream	29,968,011	29,968,012	G	А	HLA-J Upstream
29,906,654	29,906,655	Т	С	HLA-A Upstream	29,968,015	29,968,016	С	G	HLA-J Upstream
29,906,674	29,906,675	С	Т	HLA-A Upstream	30,467,075	30,467,076	А	G	HLA-E Downstream
29,909,682	29,909,683	С	Т	HLA-A Upstream	30,467,077	30,467,078	С	G	HLA-E Downstream
29,909,685	29,909,686	Т	С	HLA-A Upstream	30,467,086	30,467,087	G	А	HLA-E Downstream
29,909,688	29,909,689	А	С	HLA-A Upstream	31,348,653	31,348,654	G	А	HLA-E Downstream
29,909,834	29,909,835	G	А	HLA-A Upstream	31,348,655	31,348,656	Т	G	HLA-E Downstream
29,913,273	29,913,274	С	Т	HLA-A 3' UTR	31,363,403	31,363,404	Т	А	MICA Upstream
29.913.837	29.913.838	С	G	HLA-A Downstream	<u> </u>				•

Table S9. Novel SNVs in the A33-B58-DR3 haplotype.

Position	Position	Alternat	e Referend	ce	Position	Position	Alternat	e Referen	ce
Start	End	Allele	Allele	Gene	Start	End	Allele	Allele	Gene
29,632317	29,632,318	Т	С	MOG intron	29,717,380	29,717381	G	С	HLA-F-AS1 Downstream
29,634,002	29,634,003	С	G	MOG exon 3	29,770,566	29,770,567	Т	С	LOC554223 Downstream
29,635,507	29,635,508	А	G	MOG intron	29,855,724	29,855,725	Т	С	HLA-H intron
29,642,911	29,642,912	С	G	ZFP57 intron	29,855,725	29,855,726	С	Т	HLA-H intron
29,645,725	29,645,726	Т	С	ZFP57 Downstream	29,914,696	29,914,697	А	С	HLA-A Downstream
29,650,130	29,650,131	G	А	ZFP57 Downstream	29,914,943	29,914,944	С	Т	HLA-A Downstream
29,654,569	29,654,570	А	Т	ZFP57 Downstream	29,914,944	29,914,945	Т	G	HLA-A Downstream
29,665,318	29,665,319	Т	С	ZFP57 Downstream	29,914,968	29,914,969	А	С	HLA-A Downstream
29,665,360	29,665,361	G	А	ZFP57 Downstream	29,915,112	29,915,113	Т	А	HLA-A Downstream
29,666,307	29,666,308	G	А	ZFP57 Downstream	29,915,118	29,915,119	G	А	HLA-A Downstream
29,667,478	29,667,479	Т	С	ZFP57 Downstream	29,923,565	29,923,566	С	А	HLA-A Downstream
29,670,365	29,670,366	Т	С	HLA-F Upstream	30,100,792	30,100,793	Т	С	TRIM40 Upstream
29,670,442	29,670,443	А	G	HLA-F Upstream	30,570,769	30,570,770	Т	С	PPP1R10 intron
29,671,092	29,671,093	А	G	HLA-F Upstream	30,768,863	30,768,864	С	Т	IER3 Downstream
29,671,299	29,671,300	Т	G	HLA-F Upstream	30,789,947	30,789,948	Т	С	DDR1 Upstream
29,671,769	29,671,770	А	С	HLA-F Upstream	30,981,052	30,981,053	G	А	MUC22 intron
29,672,940	29,672,941	С	Т	HLA-F Upstream	30,981,055	30,981,056	А	G	MUC22 intron
29,673,817	29,673,818	С	Т	HLA-F Upstream	30,981,057	30,981,058	Т	С	MUC22 intron
29,673,928	29,673,929	А	G	HLA-F Upstream	30,981,064	30,981,065	G	А	MUC22 intron
29,676,316	29,676,317	А	G	HLA-F Upstream	31,197,816	31,197,817	С	Т	HLA-C Upstream
29,677,099	29,677,100	А	G	HLA-F Upstream	31,197,818	31,197,819	Т	С	HLA-C Upstream
29,677,640	29,677,641	С	Т	HLA-F Upstream	31,197,820	31,197,821	С	Т	HLA-C Upstream
29,677,786	29,677,787	Т	С	HLA-F Upstream	31,496,777	31,496,778	G	С	MCCD1 5' UTR
29,682,866	29,682,867	С	Т	HLA-F Upstream	31,850,914	31,850,915	А	G	EHMT2 intron
29,683,808	29,683,809	Т	С	HLA-F Upstream	32,050,846	32,050,847	Т	С	TNXB intron

Table S10. Novel SNVs in the A2-B46-DR9 haplotype.

 Table S11. Regions of low and high variation between the sequenced MHC haplotypes.

Regions w	ith variatio	ns belo	w genome av	/erage
		Length	Mean	
Start	End	(kb)	variant /5kb	Genes
28350000	28415000	65	0.61	ZSCAN12, ZSCAN23
28430000	28495000	65	1.96	GPX6
28560000	28670000	110	0.78	Downstream SCAND3, Upstream LOC401242
29545000	29630000	85	1.47	SNORD32B, OR2H2, GABBR1
30545000	30680000	135	1.49	PPP1R10, MRPS18B, ATAT1, C6orf136, DHX16, PPP1R18, NRM
31690000	31805000	115	1.66	DDAH2, CLIC1, MSH5, SAPCD1, VWA7, VARS, LSM2, HSPA1L, HSPA1A, HSPA1B
31845000	31895000	50	1.90	EHMT2, C2, ZBTB12
31905000	31965000	60	1.39	C2, CFB, NELFE, SKIV2L, DOM3Z, STK19, C4A, C4B
31980000	32160000	180	1.84	CYP21A2, TNXB, ATF6B, FKBPL, PRRT1, LOC100507547, PPT2, EGFL8, AGPAT1, RNF5, AGER, PBX2
32855000	32895000	40	1.35	LOC100294145

Regions w	vith extreme	e variati	on	
		Length	Mean	
Start	End	(kb)	variant /5kb	Genes
29665000	29715000	50	16.16	HLA-F
29730000	29805000	75	26.54	HCG4, LOC554223, HLA-G
29820000	29975000	155	36.93	HLA-H, HCG4B, HLA-A, HCG9
31005000	31105000	100	19.59	HCG22, C6orf15, PSORS1C1, CDSN
31155000	31360000	205	45.62	HCG27, HLA-C, HLA-B
31375000	31415000	40	22.38	MICA
32190000	32220000	30	18.97	Downstream NOTCH4
32665000	32775000	110	37.40	HLA-DQA2, HLA-DQB2

Table S12. Prime pairs to amplify genomic fragment carrying specific alleles of eachintra-CEH variant s for cloning into expression vector.

rsID	Forward Primer	Reverse Primer
rs3117318	CTTTTTGTGTTTTTAGTAGAG (G/A) TGGGGATTCACCTT GTTGGTC	TCGAGACCAACAAGGTGAATCCCCA (C/T) CTCTACTAAAAAACACA AAAAGAGCT
rs3129073	CTATGTCATCCACAAAGTTCT (G/A)TCACCCTATTCCATA GCATAC	TCGAGTATGCTATGGAATAGGGTGA(C/T)AGAACTTTGTGGATGA CATAGAGCT
rs3095271	CGAGTAGCTGGGATTACAGGC(A/G)CACGCCACCATGC CCAGCTAC	TCGAGTAGCTGGGCATGGTGGCGTG(T/C)GCCTGTAATCCCAGC
rs29228	CTACGCCCATCTCGGACAAAA(A/G) CAGAAATGTATGTC TCAGTTC	TCGAGAACTGAGACATACATTTCTG(T/C)TTTTGTCCGAGATGGG CGTAGAGCT
rs3095294	CGGCCCAGCGCCGTGGCTCAC(A/G)CCTGTAATCCCAG	TCGAGCACAGTGCTGGGATTACAGG(T/C)GTGAGCCACGGCGCT GGGCCGAGCT
rs3129069	CAGATCACAAGGTCAGGAGAT(T/C)GAGACCATCCTGG	TCGAGGTTTTAGCCAGGATGGTCTC(A/G)ATCTCCTGACCTTGTG
rs3130251	CGCGGTGGCTCACACCTATAA(C/T)CCCAAAACTTTGGG	TCGAGCGGCCTCCCAAAGTTTTGGG(G/A)TTATAGGTGTGAGCC
rs3095290	CCCCAGCACTTTGGGAGGCC(A/G)AGGCCAGCGGATCA	TCGAGCCTCAGGTGATCCGCTGGCCT(T/C)GGCCTCCCAAAGTG
rs374317	CAGAAAGGAAAGGAGGCCGGA(T/C)GCGGTGGCTCAC	TCGAGTTACAGGCGTGAGCCACCGC(A/G)TCCGGCCTCCTTTCC
rs375248	CGTGAGCCAAGATCGCGCCAC(T/C)GCACTCCAGCCTG	TCGAGTGCCACCCAGGCTGGAGTGC(A/G)GTGGCGCGCATCTTG
rs3094579	CGGGTGACAGAGCGAGAGCTCC(A/G)TCTCAAAAAAAAAA	TCGAGTCTTTTTTTTTTTTTGAGA(T/C)GGAGTCTCGCTCTGTCA
rs375984	AAAAAGAC CTGAAGGATGCCAGGATGGTG (T/C) GGGAGATGGAGAA	TCGAGAGACTTTCTCCATCTCCC(A/G)CACCATCCTGGCATCC
rs376319	AGGTCTTC CAGTCCAGGACCTGGACCCCA (T/C)CTCTCTCTAGCTTA	TTCAGAGCT TCGAGGGAGACTAAGCTAGAGAGAG(A/G) TGGGGTCCAGGTCC
13370313	GTCTCCC CTCCCTCAAAGCTGGGCCAC(A/C)GAGTTCAGGGCCCT	TGGACTGAGCT TCGAGGGTGACCAGGGCCCTGAACTC(T/G)GTGGCCCAGCTTTG
182535238	GGTCACCC CGCCTGGGCTAGGTGTCTGCC(C/G)TCTGTTCTACCCT	AGGGAGAGCT TCGAGTAGAAGCAGGGTAGAACAGA(G/C)GGCAGACACCTAGCC
rs2/4/421		
rs3129063	GCTTTC	TTGAGAGCT
rs387642	CCATGC	AAAGGAGCT
rs387640	CGCAGATCATCTGAGGTCAGG (G/A) GTTCGAGATCAGC CTGGTCAC	TCGAGTGACCAGGCTGATCTCGAAC (C/T) CCTGACCTCAGATGA TCTGCGAGCT
rs3129062	CGTTGCCATGAGCCAAGACTG (T/C) GCCACTGCACTCC AGCCTGGC	TCGAGCCAGGCTGGAGTGCAGTGGC(A/G)CAGTCTTGGCTCATG GCAACGAGCT
rs448489	CTTGCACTCCAGCCAGGGAAA (C/T) GAGAGTGAAACTC CGTCTCAC	TCGAGTGAGACGGAGTTTCACTCTC (G/A) TTTCCCTGGCTGGAG TGCAAGAGCT
rs2747427	CACCCAAAACCCTTTATCCAC (G/A) GCAATTCTGAGAAT GATGAGC	TCGAGCTCATCATTCTCAGAATTGC (C/T) GTGGATAAAGGGTTTT GGGTGAGCT
rs2747428	CACCCTTTATCCACAGCAATT(G/C) TGAGAATGATGAGA ATCCCCC	TCGAGGGGGATTCTCATCATTCTCA(C/G) AATTGCTGTGGATAAA GGGTGAGCT
rs417764	CACAGCAATTCTGAGAATGAT(A/G)AGAATCCCCCTCAC CCCTCAC	TCGAGTGAGGGGTGAGGGGGGATTCT (T/C) ATCATTCTCAGAATT GCTGTGAGCT
rs3129058	CTTAGTGGGATTCACCCTTGT(T/C)GTCACCAACCCTGC TACTCCC	TCGAGGGAGTAGCAGGGTTGGTGAC(A/G)ACAAGGGTGAATCC CACTAAGAGCT
rs2747429	CGGGCGCTCCTGGCCCTGTCC(C/T)CCGCGCTTAGTTT GTCATTGC	TCGAGCAATGACAAACTAAGCGCGG(G/A)GGACAGGGCCAGGA GCGCCCGAGCT
rs416568	CCGGAGATCGCGCCATTGCAC(A/T)CCAGCCAGGGAAA TGAGAGTC	TCGAGACTCTCATTTCCCTGGCTGG(T/A)GTGCAATGGCGCGAT CTCCGGAGCT
rs365052	CCCGCGCTTAGTTTGTCATTG(C/G)GCGCCCAGATCCG GAACCCCC	TCGAGGGGGTTCCGGATCTGGGCGC(G/C)CAATGACAAACTAAG CGCGGGAGCT
rs2747431	CTACCTTCCCCGATGCCCATC(T/C)GCCCAGAATCTTCC TTCTGGC	TCGAGCCAGAAGGAAGATTCTGGGC (A/G) GATGGGCATCGGGG AAGGTAGAGCT
rs3117295	CTTCCTTTCTATGCCCCTTTA (C/T) CTCTAATGTCCCTAT TCTGCC	TCGAGGCAGAATAGGGACATTAGAG(G/A)TAAAGGGGCATAGAA AGGAAGAGCT
rs7738158	CCCCGTCTCACTCTCCCAAGT(A/G)GCTGGAATCACTG GCGCATGC	TCGAGCATGCGCCAGTGATTCCAGC(T/C)ACTTGGGAGAGTGAG ACGGGGAGCT
rs3129056	CCACTGTTTTGGCCTGGAGGT (G/A) TCTCTTCCCTAAAG CCAAAAC	TCGAGTTTTGGCTTTAGGGAAGAGA(C/T)ACCTCCAGGCCAAAAC AGTGGAGCT
rs3129048	CGCAGACGGGGCTGAACCTGA(A/G)GTCAACCACGCTG AGACGGAC	TCGAGTCCGTCTCAGCGTGGTTGAC(T/C)TCAGGTTCAGCCCCG TCTGCGAGCT
rs3129047	CTGAGGTCAACCACGCTGAGA(T/C)GGAGGTTCCTCCT GAGCACCC	TCGAGGGTGCTCAGGAGGAACCTCC(A/G)TCTCAGCGTGGTTGA CCTCAGAGCT
rs1610588	CGCCCAGAAACCCATGAATAG(T/C)GTCCTTGGGCTGA CCTATGCC	TCGAGGCATAGGTCAGCCCAAGGAC(A/G)CTATTCATGGGTTTC TGGGCGAGCT
rs1610589	CACCTGCTCATCTGCATGGCC(A/G)TGTGCCTGACATG GTCAGAAC	TCGAGTTCTGACCATGTCAGGCACA(T/C)GGCCATGCAGATGAG

Cell line	RCCX Structure	C4A	C4B	C4L	C4S	TNXA
COX		0	2	0	2	0
QBL	Monomodular	2	0	2	0	0
MOU		0	2	2	0	0
PGF		2	2	4	0	2
SSTO		2	2	4	0	2
DBB	Bimodular	2	1	2	2	2
WT51		4	0	4	0	2
MADURA		2	2	0	4	2
CB6B	Quadrimodula	r 4	4	6	2	6
WT8		1	2	3	0	1
DAUDI	Hotorozygouo	2	1	2	1	1
MANIKA	neterozygous	2	3	2	3	3
HOM		3	2	4	1	3

Table S13. RCCX modular structure in 13 reference human cell lines.