Supplementary information

MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform

Yoshihisa Suyama^{1,*} and Yu Matsuki¹

¹Tohoku University, Kawatabi Field Science Center, Graduate School of Agricultural Science, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan *suyama@m.tohoku.ac.jp

Name	Sequences (5'-3')
Forward primers:	(Tail + anchor: CTG) + SSR + anchor
(CTG)₄AC-f	CGCTCTTCCGATCTCTGCTGCTGCTGAC
(GCT)₄TG-f	CGCTCTTCCGATCTCTGGCTGCTGCTGCTGCTGCTGG
(GTA)₄TG-f	CGCTCTTCCGATCTCTGGTAGTAGTAGTATG
(GTT)₄AG-f	CGCTCTTCCGATCTCTG
Reverse primers:	(Tail + anchor: GAC) + SSR + anchor
(CTG)₄AC-r	TGCTCTTCCGATCTGACCTGCTGCTGCTGAC
(GCT)₄TG-r	TGCTCTTCCGATCTGACGCTGCTGCTGCTGCTGC
(GTA)₄TG-r	TGCTCTTCCGATCTGAC GTAGTAGTAGTATG
(GTT)₄AG-r	TGCTCTTCCGATCTGACGTTGTTGTTGTTAG

Supplementary Table 1. Sequences of MIG-seq primer set-2 for the 1st PCR

Underlined and boldface nucleotides denote tail and anchor sequences, respectively. The differences between forward and reverse primer sets lie only in their tail sequences. SSR; simple sequence repeat

Supplementary Table 2. Segregation of allelic variants, their goodness of fit to the expected 1:1 ratio and linkage groups for 43 putative SNP loci, in megagametophyte samples from a mother tree of *Picea abies*

Locus	Genotype of the mother tree	Observed segregation in megagametophyte samples		P value (Chi-square test) * P < 0.05	Linkage groups with complete linkage
		Allele-1	Allele-2		
15	A / G	6	10	0.317	
40	A / G	11	5	0.134	А
136	G / T	10	4	0.109	
276	C / T	9	7	0.617	В
277	A / G	5	11	0.134	
343	C / T	9	7	0.617	
353	C / T	7	8	0.796	
416	C / T	7	8	0.796	
433	C / G	6	10	0.317	
437	A / G	6	10	0.317	
560	C / T	7	9	0.617	
666	A / T	7	9	0.617	
718		10	6	0.317	
756		12	4	0.046 ^	
776	A/G	8	8	1.000	
923	A / C	6	9	0.439	2
993	G / T	13	3	0.012 *	C
1005	A/G A/C	9	0	0.439	D
1048	A/G	5	71	0.134	D
1000		9	7	0.017	В
1110		9	/ 0	0.017	
1369	A/G	6 5	0 10	0.107	٨
1/10	A/G A/C	5	7	0.197	A E
1419		5	11	0.017	E
1420		5	4	0.134	Б
1750	G / T	8	3	0.027	C
1768	A / G	12	4	0.046 *	0
1771	C / T	8	8	1 000	
1853	С / Т	7	9	0.617	
1856	G / T	4	6	0.527	
2025	С / Т	7	9	0.617	
2054	A / G	9	7	0.617	E
2074	A / G	10	6	0.317	
2080	A / G	8	8	1.000	
2107	C / T	7	9	0.617	F
2113	C / T	7	9	0.617	F
2136	С / Т	9	7	0.617	
2148	A / C	12	4	0.046 *	
2263	C / G	10	5	0.197	
2315	A / C	7	9	0.617	
2324	G / T	11	5	0.134	
2402	C / G	11	5	0.134	

							Lo	cus						
Sample ID	Sasa	a718	BW	SS1	BW	SS3	BW	SS4	BW	SS5	BW	SS7	BW	SS8
Spa01	161	161	109	109	140	140	93	97	75	75	97	97	109	109
Spa02	148	173	109	109	170	170	93	97	75	75	88	93	109	109
Spa03	148	173	109	109	170	170	93	97	75	75	88	93	109	109
Spa04	161	179	109	109	140	140	93	97	75	75	86	88	109	109
Spa05	150	165	105	105	140	170	101	103	75	75	88	88	109	109
Spa06	161	173	109	109	170	170	97	97	75	75	88	93	109	109
Spa07	171	173	109	109	187	187	97	103	75	75	88	97	109	109
Spa08	171	173	109	109	187	187	97	103	75	75	88	97	109	109
Spa09	171	173	109	109	187	187	97	103	75	75	88	97	109	109
Spa10	165	165	109	109	140	140	97	103	75	75	86	86	109	109
Spa11	161	163	109	109	140	170	95	101	75	75	88	88	109	109
Spa12	148	167	109	109	170	170	101	101	75	75	88	88	109	109
Spa13	161	163	109	111	140	183	97	103	75	75	88	95	109	109
Spa14	161	169	109	109	140	191	97	99	75	75	82	86	109	109
Spa15	161	165	109	109	140	140	95	95	75	75	88	88	109	109
Spa16	148	163	109	111	140	170	93	101	75	75	88	97	109	109
Spa17	148	163	109	111	140	170	93	101	75	75	88	97	109	109
Spa18	163	165	109	109	140	140	103	103	75	75	86	88	109	109

Supplementary Table 3. Genotypes of seven microsatellite loci in 18 ramets (samples) of *Sasa palmata.* Three groups with identical genotypes (clones) are enclosed by a dotted line

Supplementary Table 4. Description of DNA extraction for the eight species analyzed by

Species	Method (kit)	Amount of tissue used for DNA extraction (approx. mg, fresh weight)	Amount of DNA used as PCR template (ng)
Norway spruce (<i>Picea abies</i>)	DNeasy Plant Mini Kit (Qiagen)	0.01 (seed), 50 (leaf)	10–50
Dwarf bamboo (<i>Sasa palmata</i>)	CTAB method*	50	50–100
Nameko mushroom (Pholiota microspora)	Illustra Nucleon PhytoPure (GE Healthcare)	50	10–100
Calanoida copepod (<i>Eodiaptomus japonicus</i>)	GenElute Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich)	0.006 (dry)	2–3
Japanese common sea cucumber (<i>Apostichopus japonicus</i>)	QuickGene DNA tissue kit S (Kurabo)	5	10–20
Predatory sea snail (<i>Laguncula pulchella</i>)	DNeasy Blood & Tissue Kit (Qiagen)	0.6–2.1	10–20
Carolina anole (Anolis carolinensis)	Wizard Genomic DNA Purification Kit (Promega)	5	50–100
Lady's-slipper orchid (<i>Cypripedium macranthos</i> var. <i>rebunense</i>)	DNeasy Plant Mini Kit (Qiagen)	20–50	10–20

MIG-seq

*Reference: Murray, M.G. & Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res.

8, 4321–4325 (1980).

Supplementary Table 5. Sequences of six-base indices in the reverse primer for the 2nd PCR

of MIG-seq

Index ID	Sequence	Index ID	Sequence	Index ID	Sequence	Index ID	Sequence
R001	AACATA	R097	AAAGTG	R193	AACATT	R289	AACGCC
R002	AACTAG	R098	AACCTG	R194	AACTAA	R290	AAGGAC
R003	AAGACT	R099	AATGTA	R195	AAGCCA	R291	AAGTGG
R004	AAGTTG	R100	ACACTG	R196	AATTCT	R292	ACAATT
R005	AATTGT	R101	ACCGAG	R197	ACCACG	R293	ACGAAT
R006	ACCCGA	R102	ACGACG	R198	ACCTGC	R294	ACTAGC
R007	ACCTCA	R103	ACGCTC	R199	ACGACA	R295	AGATCA
R008	ACGGCT	R104	ACGTGA	R200	AGACCT	R296	AGCCTG
R009	ACGTAT	R105	ACTATC	R201	AGCCGA	R297	AGGATG
R010	ACTACT	R106	ACTGAC	R202	AGGACT	R298	ATCATG
R011	ACTOGT	R107	ACTTAA	R203	AGGCGC	R299	ATGTTG
R012	ACTOCG	R108	AGATCT	R204	ATGGAG	R300	
R012		R100		R205	CAACGT	R301	CACCTT
D014		R103	ACCAAT	R200	CACCCC	1/00/1	CATTAC
R014 D015	AGAAGI	RT10 D111	AGCAAT	R200	CAUCUGG	R302	CATTAG
	AGAGTT		AGCGAC	R207	CAIGIA	R303	CCATAG
R010	AGCUTT	RIIZ	AGCIIG	R200	CCACIG	R304	CCGGAI
R017	AGUICU	R113	AGIGAI	R209	CCGATC	R305	CUTUGA
R018	AGTAGG	R114	ATATAC	R210	CGACCA	R306	CGACIC
R019	ATACCG	R115	ATCACT	R211	CGCIGA	R307	CGAGCC
R020	ATATGG	R116	ATCCGG	R212	CGGTAG	R308	CGGACC
R021	ATCATC	R117	ATCGTG	R213	CGTTAA	R309	CGTGGT
R022	ATCCTA	R118	ATGCTT	R214	CTACTT	R310	CGTTGG
R023	ATGCAC	R119	ATGGTA	R215	CTCTTG	R311	CTGACG
R024	ATGGCC	R120	ATGTGC	R216	CTTATG	R312	CTTCAT
R025	ATGTAA	R121	ATTCTC	R217	GAACAC	R313	GACGAC
R026	ATTAGC	R122	ATTTCG	R218	GACCAT	R314	GAGTTC
R027	ATTGCT	R123	CAATTA	R219	GAGCGA	R315	GATCTC
R028	CAAGCG	R124	CACTCC	R220	GATTCC	R316	GCCTAG
R029	CACGCA	R125	CATAGG	R221	GCCGGA	R317	GCTCAA
R030	CATACA	R126	CATCTG	R222	GCTAGG	R318	GCTGTG
R031	CATCAT	R127	CATTGC	R223	GCTGAT	R319	GGACAT
R032	CCACAT	R128	CCAATG	R224	GGAGTT	R320	GGATAA
R033	CCCAAT	R129	CCACGA	R225	GGTATC	R321	GTAAGT
R034	CCGAGT	R130	CCGACA	R226	GTAGAG	R322	GTAGCA
R035	CCGTTG	R131	CCGCAC	R227	GTGTAC	R323	GTGTTA
R036	CCTGGC	R132	CCTACC	R228	GTTCCA	R324	TAACAA
R037	CGAGGT	R133	CGAAGG	R229	GTTGGA	R325	TACTCA
R038	CGATTT	R134	CGATAC	R230	TACGTG	R326	TAGCGG
R039	CGCCCT	R135	CGCAAC	R231	TAGCCT	R327	TAGTAT
R040	CGCTTC	R136	CGCGTT	R232	TCAACG	R328	TCATGC
R041	CGGATT	R137	CGGACG	R233	TCGGCT	R329	TCTACA
R042	CGTTCC	R138	CGTACT	R234	TCTTGT	R330	TGCCAA
R043	CTATCT	R139	CTACAA	R235	TGATTG	R331	TGCTGT
R044	CTCGAC	R140	CTATTC	R236	TGCGCA	R332	TGTAGA
R045	CTGATC	R141	CTCTCG	R237	TGGCTC	R333	TTACGC
R046	CTGGAT	R142	CTGCCA	R238	TTAACC	R334	TTAGCG
R047	CTGTGA	R143	CTGTAC	R230	ττατω	R335	ττςδάτ
D049	CTTGAA	D144	CTTACG	P240	TICAAC	D336	TTCACA
R040	CAACTO	R144 D145	CHACG	R240 D241		R330	
	CAACAT	R 140	CANTOO	FZ41		1667 1	AATOGT
	CAACCC	R 140	CACTTO	FZ4Z	AATOOO	C000	
		K 14/	CACCOA	K243	ACATOO	K339	
KU02	GAAIGI	K 148	GAGUUA	K244	ACAILG	K340	
KU53	GACACA	R149	GAGIGA	K245	ACCGUI	K341	ACCATA
KU54	GAUUGA	R150	GAICUI	K246	ACTAAG	K342	ACCIAI
R055	GAGATA	R151	GCAAGG	K247	ACICIG	K343	ACGIGI
R056	GAGIAI	R152	GUUGGI	K248	AGCACA	K344	ACIGAA
R057	GATAAT	R153	GCGACT	R249	AGCGGC	R345	AGCATC
R058	GATTAA	R154	GCTCAT	R250	ATAGTG	R346	AGCTAC

R	R059	GCCATC	R155	GCTTAC	R251	ATGATA	R347	AGGCTT
R	R060	GCCTGC	R156	GGACCA	R252	ATTCCT	R348	ATGCCG
R	R061	GCTAGC	R157	GGATAG	R253	CAATCC	R349	ATTGCC
R	R062	GCTCTC	R158	GGCACT	R254	CACGAT	R350	CAATGG
R	R063	GCTTCT	R159	GGCTAT	R255	CATTGA	R351	CATGAC
R	R064	GGAGTG	R160	GGGTGC	R256	CCATGT	R352	CCAAGC
R	R065	GGATTC	R161	GGTGAC	R257	CCGTAA	R353	CCGAAG
R	R066	GGCCAC	R162	GTACGA	R258	CGAGAT	R354	CCTAAT
R	R067	GGCTGA	R163	GTATAA	R259	CGGCTA	R355	CGAATA
R	R068	GGTACA	R164	GTGAAG	R260	CGTATT	R356	CTAAGG
R	R069	GTAACC	R165	GTGCCT	R261	CTAACA	R357	CTAGCT
R	R070	GTAGCT	R166	GTTCTA	R262	CTCAAC	R358	CTCGAA
R	R071	GTATGC	R167	TAAACG	R263	CTGATT	R359	CTGCGT
R	R072	GTGATT	R168	TAACTG	R264	CTTCTA	R360	CTTGCA
R	R073	GTTAGT	R169	TACAAG	R265	GAAGGC	R361	GACTCT
R	R074	GTTGCA	R170	TACTTA	R266	GACGTA	R362	GATACT
R	R075	TAACGC	R171	TAGGTA	R267	GATAAC	R363	GATTAT
R	R076	TAATCC	R172	TATCGT	R268	GCACCG	R364	GCAAGA
R	R077	TACGAC	R173	TATCTC	R269	GCGGTA	R365	GCATTA
R	R078	TAGATC	R174	TATGCG	R270	GCTCGC	R366	GCGTGA
R	R079	TATACC	R175	TCCATT	R271	GCTTCA	R367	GCTCTT
R	R080	TATGGC	R176	TCCTAC	R272	GGCTCC	R368	GGAACT
R	R081	TCCCTA	R177	TCGCAT	R273	GTAATG	R369	GGACGA
R	R082	TCGAGG	R178	TCGGAG	R274	GTGCAA	R370	GGCTTA
R	R083	TCGCTG	R179	TCGTAA	R275	GTTACC	R371	GTACTA
R	R084	TCTATG	R180	TCGTGC	R276	GTTGCG	R372	GTGGCC
R	R085	TCTGGT	R181	TCTCGC	R277	TAATCT	R373	GTTCAC
R	R086	TCTTCG	R182	TCTGTA	R278	TACTGG	R374	TACCTC
R	R087	TGACAT	R183	TGAAGC	R279	TAGGTT	R375	TAGAGT
R	R088	TGAGTA	R184	TGAGGG	R280	TCCACC	R376	TCCGCG
R	R089	TGCACG	R185	TGATGT	R281	TCTCGG	R377	TCTGAG
R	R090	TGCTTT	R186	TGCGTG	R282	TGACGG	R378	TGAATC
R	R091	TGGTGA	R187	TGGACC	R283	TGCCGC	R379	TGATAT
R	R092	TTACAC	R188	TGTGCT	R284	TGCTTC	R380	TGCGAG
R	2093	TTCTCA	R189	TTAGCA	R285	TGTTCG	R381	TGGAGC
R	2094	TTGACT	R190	TTCCGC	R286	TTAGAC	R382	TGTTGC
R	R095	TTGCGT	R191	TTCGTA	R287	TTCGTT	R383	TTCTCG
R	R096	TTTACA	R192	TTGCTA	R288	TTGCTG	R384	TTGGCA

Supplementary Figure 1. Differences in the number of amplified reads among eight primers used for the 1st PCR

Modify the protocol of sequence reading program.

OSDisk(C)/Illumina/MiSeq Control Software/Recipe/V3/Amplicon-dark17-3/Protocol/2Read1Index.xml

Supplementary Figure 2. Procedure for setting the DarkCycle in the MiSeq Control Software

Edit "SamplePrepkits" and "Applications" folders in OSDisk(C)/Program Files (x86)/Illumina/Illumina Experimental Manager/

 In "SamplePrepkits" folder, copy an existing file ("TruSeq LT.txt" etc.). Change [Name] and [PlateExtension] column, and replace the index list of [P7]. Save the file as the same name of [name] column.

Original "TreSeg LT.txt"	Modified file for original indices
Tudeq LTak-Holped C	Image: 1001-038 tot-leteped Fie fast Fie fast </th
Caution: the sequence of listed index must be the rever Example: primer sequence R001_AACATA: CAAGCAGAAGACGGCATACGAGATAACAT	se complement of index sequence of primer oligo. AGTGACTGGAGTTCAGACGTGCGTGCTCTTCCGATCTGAC
 Edit "Assembly.txt" in "Applications" folder. Add the modified sample prep kit to the list of [Compatible Sample Prep kits] The added sample prep kit will be fould in Illumina Expe Manager 	rimental Assemblyate - Notepad File fait Figment View Help [Version] I Workflow Name] Assembly [Display Name] Assembly [Category] Small Genome Sequencing [Compatible Sample Prep Kits] Truseq LT Nextera XT v2 Set B Nextera XT v2 Set C Nextera Truseq HT Nextera Mate Pairl Indices1-4.001-384 [Settings] Continue Regenerate Manager Hurnine Experiment Manager Sample Sheet Wizard - Workflow Pr New First New First Samis First New First Samis Res K New First Samis Res K New First New First New First Res New First Res New First Res New First Res New First Res

Supplementary Figure 3. Procedure for setting the original indices in the Illumina

Experimental Manager in the program files of the MiSeq operation system

Supplementary Figure 4. Examples of clone identification by MIG-seq analysis based on different parameters (the minimum depth of coverage required to create a stack (m) = 5, 5 and 20; the minimum number of populations in a locus (r) = 0.5, 0.75 and 0.75 for **a**, **b** and **c**, respectively) used in the data analysis (see Figure 2 and Methods). Matrix of the differences between pairwise numbers of SNPs (left) and a histogram showing the frequency distribution of the differences between the pairwise numbers of SNPs (right) are presented.