Supporting Information

Anda et al. 10.1073/pnas.1514326112

PNAS

Fig. S1. Schematic representation of the *Aureimonas* sp. AU20 genome. (*A*) Nine replicons are shown on the same relative scale. For the chromosome, circles, from the outermost inward, show (*i*) predicted protein-coding genes in the clockwise orientation; (*ii*) predicted protein-coding genes in the counterclockwise orientation; (*iii*) genes for tRNA (blue) or rRNA (red); (*iv*) putative genomic islands (yellow green), prophages (light blue), or insertion sequences (purple); (*v*) G+C content deviation (light gray for values higher than the average and dark gray for values lower than the average); and (*vi*) GC-skew values (pink for plus values and violet for minus values). (*B*) Extrachromosomal replicons are shown on different scales. Circles show the same information as the circles for the chromosome in *A*. Genomic islands, prophage regions, and insertion sequences were predicted by using IslandViewer (38), PHAST (39), and ISsaga (40), respectively. The G+C contents and GC-skew values were calculated by using ArcWithColor (www.ige.tohoku.ac.jp/joho/gmProject/gmdownload.html) with a window of 10 kb (for the chromosome), 5 kb (for pAU20a, pAU20b, and pAU20c), 1 kb (for pAU20d), 0.5 kb (for pAU20e, pAU20f, and pAU20g), or 0.1 kb (for pAU20*rrn*). Positions marked in red with A, B, and C on the chromosome indicate the loci showing systemy with the *rrnA*, *rrnB*, and *rrnC* regions, respectively, on the chromosomes of other strains (Fig. S5). The origin (*oriC*) and terminus (*ter*) of replication are also noted.

Α

tRNA-Ala (M673_01770) GGGGCCATAGCTCAGCTGGGAGAGCGCTTGAATGGCATTCAAGAGGTCGTCGGTTCGATCGCATCGATCG	
trna-ala (pAU20rrn) GGGGCTTTAGCTCAGCTGGGAGAGCACCTGCTTTGCAAGCAGGGGGTCGTCGGTCG	
tRNA-Thr (M673_13785) GCCGGCTTAGCTCAGCTGGTAGAGCACCTGATTTGTAATCAGGGGGTCGCGGGTTCGAGCCCTGCAGCCGGCACCA	
BUP element	
pAU20rrn GGTTCGACCTTTTTTTGATGACAAGGGGTTGACCCTTCCTGAAGAATCCCCTTATAAGCCGCCTA-CGACAACGGCGGTGGGG pAUTrrn GATTCCGTTCATGACGGGGGTGTGACGCCCCCCCGAGGAACACCCCCTATAAGCCGC-TCATCGACGACGGGCTG-GGGCGGGGG AU2_rrnC GGAAAATTGAAGTTTGAAGCTGCCGCTGACGCCCCCGCCCG	CGG -464 CGG -460 TGG -456 GGG -464
pAU20rrn ACGGACCGGCCTGGAAGGCTCGTTTGTTCTGCGTT-GAGCTGACGGTTTGGTTCCCTG-GAAATTTTCAGGGGGTAAGCTGGTCGGCTGGTTT pAU7rrn ACAAGCCGGCCTGGAAGCTCGTTTGTTCCCGGTAGACCTGACGTTGGTTCCTG-GTTACCAAGGGGGTAGACTGGTCGGCGCTGGTT AU4_rrnC ACGGGCCTTGGTCGGTGGTTGGTCGGCGGGAAGTTGGACGCGGGGAGGTTGGCTGGC	TTG -370 TTG -365 TTG -359 TTG -365 ***
pAU20rrn CGCCTTCGGGTGTCAGAAGTTTCGAAGTGTCTGTTGGATGCTTTGCGAGGTTGGCCTCAGGGTTGACCGACGGTGGTTCC	286 282 TTT -264 TTT -269
pAU20rrn GCCGTGATCTTTGAAAACTGAAGAGTG-TTGGAAGAAAGAGAAACGTGGACGGCGCGTGTTGGCC-GAGGACGCCGCTCTGGATGGATGTATTTC pAU10rrn GCCGTGATCTTTGAAAACTGAAGAGTG-TTGGAAGAAAACGTGGACGGCGCGTGTTGCCC-GAGGACGCCGCCTTGAATGTATTTC AU4 rrnC TTGGTCTGGGCGTGTTCTTTGACAACTGAAGAGAGACGACGACGACGCGCGTGTTGCCC-GAGGACGACGACGACGACGACGACGACGACGACGACGACG	CTT -195 CTT -191 CTT -166 TTT -175
pAU20rrn TCCATCTGAGTGACGTCCGAGAGAACAACTCGACGAG-AACACGTTTCGCCAAGAGA-TGAGAGTGTACGCGCTCCGGTTTGGCTGGAGTGTTTTGGCC pAU7rrn TCCATTGAGTGACGACCGACGAACAAACCGACGAG-ACACGTTTCGTT-GAGA-TGAGAGTGTACACGCTCCGACCGCCGGAGGAGTGTTT-GAC AU4 rrnC TGCGTGTG-GACGTCCGAGGAACGACGACGACGACGACGACGACGAGAGAATGAAGGTGGG AU22_rrnC TGCGTGTGCGAGGAGCGAGCGAGCGACGACGACGACGACGTTCGGTGTAGAGGAGATGAAGGGTGGG AU22_rrnC TGCGTGGCCGAGGAGCCGAGGAGCCGACGACGACGACGTTCGGTGTAGAGGAGAGGGGCCAGGGCGCGCGCGCGCGCGCGCGCG	GAT -97 GAT -95 TAG -100 GGT -105 16S rRNA
pAU20rrn CATGTTGCGCTGGCTGGCTTGCGGCCGGCGGGCGGTGTTTGGTCGTTCTCTCGTCGAT-GCTTTGAGACAGTGACTAGTCGGGAACAG pAU1rrn CATGT-GCGCTGGTTGGCTGGCCGGCCGGCGGGTGTTTGGTCGTTCTCTCGTCGAT-GCTTTGAGACAGTGACTAGTCGGGAACAG AU4 rrnC GTTTGGGCCTGGTGGAGAGAGTCGTGGCCGGTGGTTGGCGGTAGTCTGCGCACGTCGTCTTTGGTCTTTGGACAGTGT-TGGTCAGCAGTGA- AU22_rrnC GTTTGGGCTGGGAGGAGGCTTGGCCGGTTGGTGGCTGGTCGTCTGACAAAACTCTCGTGAT-GCTTGAGACAGTGACTAGTCGGGAACAA * ******* ******* * ************************************	CTCTTA-ATCAA CTCTT-ATCAA CTCTTATATCAA CTCTTATATCAA CTCTT-ATCAA
C 5S rRNA ΔG (kcal)	
pAU20rrn ECTGCCAATCGCATCTTCTTTCTTTCCTTCCAAAAAACCCCCGTTCTCTCCCCGAGGGGGGTTTTTGCTTGC	
PAUTERN TETECCAATCACATCCTTCTTCTCTTCCTTCCTTCAAAAACCCCCC	
AU4 FEB FUCGCCCATCGCATCCCTTCTTCCATCCACACCAAAACGCCCGCC	
AU12 rrn FCTGCCAATCGCATCAACTCTTTCCCGCACCCCCCACGCCCCTCAAAGCCGGGGGGTTTGCCGTTTGCAGT -21.6	
AU22 rrn TCTGCCAATCGCATCCCTTGTCTCTCTCGCCTCCCCTCAACGCCCCGCCACGGTTCGCCCTGGCGGGGGCGTTTTGCGTCTC -19.5	

Fig. 52. Sequence comparison between the *rm*-plasmids and the chromosomes in the genus *Aureimonas*. (A) Sequence alignment of the tRNA^{Ala} gene on pAU20*rm* and the tRNA^{Ala} and tRNA^{Thr} genes on the AU20 chromosome (locus tags indicated in parentheses). (*B*) Regions upstream of the 165 rRNA genes. The sequences were from *rm*-plasmids (pAU20*rm* from AU20 and pAUT*rm* from *A. ureilytica*) and chromosomes (*rmC* from AU4 and AU22). For the numbering of nucleotides, the 5'-terminus of the 165 rRNA gene (shown in white letters on a black background with an arrow at the bottom right) is set to +1. Asterisks below the alignment mark nucleotides identical in the four sequences. The positions of the -35 and -10 consensus hexamers of the putative core promoters are marked; these hexamers are similar to the hexamers of the *rm* operons in *Sinorhizobium meliloti*, a species belonging to the order Rhizobiales (41, 42). The position of A+T-rich segments preceding the -35 hexamers, which possibly act as the UP elements (13, 43), is also marked (A and T are shown in white letters). Segments similar to BoxA of the *E. coli rm* operons (43) are labeled "BoxA-like," although an associated stem-loop is present only in the AU22 sequence (indicated by arrows below the alignment upstream of the BoxA-like sequence). A position for the upstream arm of the putative 16S processing stalk (44) is marked (nucleotides complementary to those nucleotides in the other arm downstream of the 16S rRNA gene are shown in white letters). (C) Putative rho-independent terminators located downstream of the 5S rRNA genes. The sequences were from pAU20*rm*; pAUT*rm*; and the genomes of AU4, AU12, and AU22 (note that the corresponding sequences were identical in all of the *rm* operons within each strain). The 3'-terminus of the 5S rRNA gene is shown in white letters of the sequences with a horizontal line. Nucleotides involved in the stem structure (underlined) and the associated change in free energy (ΔG) (shown on the right) were

480

M673_02140 (hemE)

470

475

120	GGCGATGCGC	CCAAGCCTCG	ACCTTCGTCG	CTTCGCCGGG	GGCTCGGGCT	CAGGAGGGAA	GGAACGCTGG	AGCGGCCCGC	CGGCGGCGGG	CGTCGCGAAA	TTTCTCGGCT	CATGAAGGGC
240	GTCTTCCCCG	TGGATCGGAT	TCGCGCCGGT	TCCCGGCGCC	CCTCGGACCG	CCCACGCGTT	CTTCCGCTCT	CCCCTCGACC	TCCGGCGAAA	GTCTCGTCCC	ATGGCTTGCC	CTCGCACCCC
360	GTCAGATCCC	GGGCGGGATC	AGAGAAAACC	GACCTCTGCC	AAGGGGAGGG	TGTCCCCGGC	CGGCCCCTCT	TGCGATCTCT	GCCCTTAGGC	GCTTCGTCCA	GGGAATGGGC	GGACATGGCG
480	ACCAAGCTGC	TCCCGCCCCC	CGCTTAGCTT	CGCCGCGCGG	GATTCACAGG	GGATTGAGGG	ATGAGTCGGT	TTCTAATTCT	TGAATCTGGA AT-rich region	GAAATTCTAT	TTCCCTCAAA	CAGCCCGCTC
600	GTGGAGGAAT	GTCTCGATCT	CCCGGGTCAT	CCGTCCACAC	TCACAAGTTC	CCCCCGTTTT Dna	TGCGAGGATT	GCGCGGGCGC	AAAGCGACCG	CAAGGATTCC	AGGATTCGCC	CGGTTGACGG
720	CAAACCCCGA	AGACTTGTTC	TCCGGGTCGA	CCCGGGCGTA	CCCCAAGAAT	GCTCACAGGA	CTCCCGGGTT	GCCCCAGCTT	CGCCGAACTT	CCGAACCCCC	CCCGGGAGGG	CGGGGGTTTT
840	TGTCGCGAGG	GATTTTTGGG	GCCGGCGAGG	GCGGCGGAGG	TGGAAATTCG	AGAGTCTGTT	CGCCTGCCTT	AAATCCCGAA	CTTAACCATA	GCGAGCGATT	TCCGTTCCCG	TCGGAGTCCG
960	GAAAAAGAAC	GGGCGACGAC	TCTCGCCCTG	GCGCAGCATG	TGCTGCGCTT	GCGAGACCTC	ATGCGGACGG	GCAACGGTCC	GCGAGGATTG	GGCGGCATCG	AGTCGATGCC	CGCCAAACGC
1080	CGAGCCGCAT	GAAGAGGGAA	AAGGCAACAG	CTCTAGGAAG	CCGTCGCAGG	TGCTGCCGCG	CTGGACGGCT	GCTTCTCGCC	AGGCTCATGA	GTTTCCAAAC	ACCCGACCGA	CGTCGGACCG
5 (maf)	M673 0213											

485

1 kb

490 (kb)

AGTTCGAAGA CTGAATGTGC GGAGAAGTTG GAAAAAGCGCG TCGATCCACT CGTCCTTTTG CAGGACGAAG CGTCCTGACG CTCAGCCGAG ATCGAACTCG ATTTGCAGGC CGTCATAGGC 380 M673_11350

Fig. 53. Prediction of the *oriC* and *ter* regions on the AU20 chromosome. (*A*) Map of the predicted *oriC* region. This region was located at a position showing a GC-skew shift (45) that was in the vicinity of *hemE* and *maf* homologs, which are among the genes typically localized near *oriC* (46). Locus tags for the ORFs are shown above the map. Annotations are shown with the color code on the right. (*B*) Nucleotide sequence of the intergenic region between *hemE* and *maf* homologs. The start positions and the orientations of these ORFs (indicated by arrows), an AT-rich region (shaded), and a putative DnaA box similar to the *E. coli* consensus sequence 5'-TTATCCACA-3' (boxed) are marked. (C) Cumulative numbers of FtsK orienting polar sequence (KOPS) motifs (with the sequence 5'-GGGNAGGG-3') plotted against the distance from the predicted *oriC* site on both strands of the chromosome. The inflection points on the lines suggest that the *ter* region was located on the chromosome at coordinates 2,491–2,495 (kb) (47). (*D*) Map of the predicted *ter* region. This region was located on the basis of the GC-skew and the distribution of KOPS motifs over the chromosome. Locus tags for the ORFs are shown above the map. Annotations are shown with the color code below. (*E*) Nucleotide sequence of the intergenic region between M673_11345. The start position of M673_11345 (indicated by a dashed line); and a predicted *dif* site [a site for site-specific recombination to resolve dimeric chromosome; shaded (an inner palindrome is shown by arrows)], which is similar to the 28-nt motif identified in some members of the order *Rhizobiales* (48), are marked on the sequence.

Fig. S4. Features of the *rrn*-plasmid. (A) Sequence comparison among RepA proteins from pAU20*rrn* (234 aa), pAUT*rrn* (233 aa), and pPS10 (230 aa; accession no. CAA41700). Asterisks above the alignment mark residues identical in the three sequences. Residues shown in red and blue are those residues predicted by the Jpred 3 server (49) to adopt α -helix and β -sheet secondary structures, respectively. The secondary structure elements evidenced from the crystal structure of the dimeric N-terminal domain of the pPS10 RepA (17) are shown below the sequence; the α -helical segments that can be remodelled into loops or β -strands in the monomeric RepA are indicated in blue. (*B*) Multiple sequence alignment of putative *oriV* sites on the five *rrn*-plasmids. An AT-rich region (shaded), including three 5'-GTTTTT-3' repeats (indicated by arrows); a putative iteron consisting of three 20-nt tandem repeats and an additional repeat of the opposite orientation with the sequence 5'-(T/A)ATTCT(C/G)CCTTTTTCCGGGT-3' (indicated by arrows labeled iteron and iteron', respectively); a putative DnA box matching at eight of nine positions with the one located at *oriC* (Fig. S3) (boxed); an inverted repeat with each arm matching half of the repeat in the iteron (indicated by dashed arrows); and the *repA* ORF (boxed) are shown in the aligned sequences. (C) Growth curve of AU20 harvested to determine copy numbers of pAU20*rrn*. The optical density at 600 nm (OD₆₀₀) is shown as the mean of three independent cultures (\pm SD, as indicated by the error bars, which are not visible because of small variations). Arrowheads indicate the time points at which aliquots of the culture were sampled for DNA extraction. (*D*) Number of molecules of *rrs* (pAU20*rrn* marker) and *rpsB* (chromosome marker) contained in the total AU20 DNA (mean \pm SD; n = 3).

Fig. 55. Chromosomal synteny breaks of the rrn regions in the genus Aureimonas. (A and D) rrnA. (B and E) rrnB. (C and E) rrnB lines with three-letter symbols for their charged amino acids, and arrows in parentheses indicate orientations of the genes (otherwise, the opposite orientations). The blue line with a red arrowhead indicates a *dif* site. (D-F) Multiple alignments comparing sequences of the AU20 chromosome and scaffolds from strains AU12, AU22, AU4, D3, and A. *ureilytica* (the scaffolds are listed in Table S3) by GenomeMatcher using blastn with a parameter set "-FF -W 21 -e 0.01." Strain names are shown on the left; maps in D and E are from the same strains when compared horizontally. A line color represents the percentage (%) of nucleotide identity between connected sites. In each map, rrn (oriented rightward in all drawings) is indicated in blue, maf and hemE in black, tRNA genes by blue arrowheads, oriC by a black arrowhead, and dif by an open arrowhead.

PNAS

,352,202

280,900

Table S1. Strains sequenced in this study

PNAS PNAS

Strain	Source (location)	Ref.
Aureimonas sp. AU20	Soybean stem (Miyagi, Japan)	11
Aureimonas sp. AU40	Soybean stem (Miyagi, Japan)	11
Aureimonas sp. D3 [= Pd-E-(I)-m-D-e (3)]	Rice shoot (Shiga, Japan)	19
Aureimonas sp. N4 [= Pd-S-(I)-I-N-4 (3)]	Rice shoot (Shiga, Japan)	19
Aureimonas ureilytica NBRC106430 ^T (= 5715S-12 ^T)	Air dust (Suwon, Korea)	18
Aureimonas sp. AU12	Soybean stem (Miyagi, Japan)	11
Aureimonas sp. AU4	Soybean stem (Miyagi, Japan)	11
Aureimonas sp. AU22	Soybean stem (Miyagi, Japan)	11
Aureimonas altamirensis DSM21988 ^T (= S21B ^T)	Terrestrial cave (Altamira Cave, Spain)	50
Aureimonas frigidaquae JCM14755 ^T (= CW5 ^T)	Water-cooling system (Gwangyang, Korea)	51
Aurantimonas coralicida DSM14790 ^{T} (= WP1 ^{T})	Diseased coral (Florida Keys, United States)	52
Aurantimonas manganoxydans DSM21871 ^T (= SI85-9A1 ^T)	Fjord water (Sannich Inlet, Canada)	53
Fulvimarina pelagi DSM15513 ^T (= HTCC2506 ^T)	Sea water (Western Sargasso Sea)	54

Table S2.	Outline for	draft	assemblies of	of th	ie genome	sequences
-----------	-------------	-------	---------------	-------	-----------	-----------

PNAS PNAS

	No. of	Total	No. of	Estimated		
Strain	reads	length, bp	contigs	genome size, Mb	Coverage	Contig accession no.
Aureimonas sp. AU40	1,336,160	270,613,677	90	5.5	49	LC066393, BBWL01000001–01000065, 01000067–01000090
Aureimonas sp. D3	1,214,449	194,144,157	127	5.4	36	LC066394, BBWM01000001–01000084, 01000086–01000127
Aureimonas sp. N4	1,336,419	255,523,246	85	5.3	48	LC066398, BBWS01000001–01000069, 01000071–01000085
A. ureilytica	1,434,497	298,080,307	106	5.3	56	LC066381, BBWT01000001–01000072, 01000074–01000106
Aureimonas sp. AU12	1,290,323	234,581,545	89	4.8	49	LC066382–066384, BBWH01000001–01000015, 01000017–01000028, 01000030–01000034, 01000036–01000041, 01000043–01000057, 01000061–01000094
Aureimonas sp. AU4	1,314,008	220,880,662	121	4.7	47	LC066388–066392, BBWK0100002–01000025, 01000027–01000040, 01000042, 01000043, 01000045–01000047, 01000049–01000054, 01000056–01000060, 01000062–01000072, 01000076–01000090, 01000092–01000100, 01000102, 01000103, 01000105, 01000106, 01000108, 01000109, 01000111, 01000114, 01000117, 01000119, 01000121–01000125, 01000129–01000139, 01000141
Aureimonas sp. AU22	1,270,908	217,991,647	84	4.7	46	LC066385–066387, BBWJ01000001–01000043, 01000046–01000051, 01000053–01000057, 01000059–01000061, 01000063–01000065, 01000067–01000073, 01000075–01000080, 01000082–01000089
A. altamirensis	1,308,463	278,815,906	26	4.2	66	LC066369–066371, BBWQ0100002–0100008, 0100010–01000017, 01000020–01000022, 01000024, 01000027, 01000028, 01000030, 01000032
A. frigidaquae	1,321,097	275,827,698	22	4.1	68	LC066375–066377, BBWR01000004–01000009, 01000011, 01000014–01000017, 01000019–01000026
A. coralicida	1,363,567	282,065,433	87	4.7	60	LC066372–066374, BBWN01000001–01000015, 01000017, 01000018, 01000020–01000029, 01000031–01000041, 01000043, 01000044, 01000047–01000054, 01000056–01000074, 01000076–01000085, 01000087–01000093
A. manganoxydans	1,224,134	251,756,642	85	4.3	59	LC066378–066380, BBWP01000001–01000015, 01000019–01000022, 01000024–01000029, 01000031–01000048, 01000050–01000059, 01000061–01000074, 01000076, 01000077, 01000079–01000084, 01000086, 01000087, 01000089–01000091, 01000093, 01000094
F. pelagi	1,434,753	300,888,349	50	3.8	79	LC066395-066397, BBWO0100001-01000004, 0100006-01000011, 01000013-01000015, 0100018-0100026, 0100028-01000030, 201000032, 01000035-01000044, 01000046, 01000048, 01000050-01000052, 01000054, 01000055, 01000058-01000061

Table S3.	rrn-carrving	contigs an	d scaffolds in	the draft of	aenome assemblies

	Scaffold							
Strain	Order of contigs linked in the scaffold*	Length, bp						
A. ureilytica	LC066381 (pAUTrrn)	9,969						
Aureimonas sp. AU40	LC066393 (pAU40 <i>rrn</i>)	9,396						
Aureimonas sp. D3	LC066394 (pD3 <i>rrn</i>)	9,912						
Aureimonas sp. N4	LC066398 (pN4rrn)	9,902						
A. altamirensis	LC066369 (oriC, rrnA)	235,734						
	LC066370 (rrnB)	491,202						
	LC066371 (<i>rrnC, dif</i>)	563,239						
A. frigidaquae	LC066375 (rrnA, oriC)	709,689						
	LC066376 (rrnB)	251,770						
	LC066377 (dif, rrnC)	1,054,539						
Aureimonas sp. AU22	LC066385 (rrnA)–BBWJ01000053(oriC)	134,825						
	LC066386 (rrnB)	93,746						
	LC066387 (dif, rrnC)	377,401						
Aureimonas sp. AU4	BBWK01000040(oriC)-LC066388(rrnA)	208,524						
	LC066389(<i>rrnD</i>)–BBWK01000060 [†] –BBWK01000059 [†] – BBWK01000058 [†] –BBWK01000057 [†] –BBWK01000056 [†] – LC066390(<i>rrnB</i>)–BBWK01000027	352,520						
	1 C066391(dif) = 1 C066392(rrnC)	270,387						
Aureimonas sp. AU12	LC066382(<i>rrnA</i>)–BBWH01000034 ⁺ –BBWH01000033(<i>oriC</i>) ⁺ – BBWH01000032 ⁺ –BBWH01000031 ⁺	403,858						
	LC066383 (rrnB)	124,947						
	LC066384 (pAU12 <i>rrn</i>)	13,404						
F. pelagi	LC066395 (rrnA)	210,368						
	LC066396 (rrnB)	89,502						
	LC066397 (rrnC)	624,009						
A. coralicida	BBWN01000047(oriC) ⁺ –LC066372(rrnA)	209,738						
	LC066373 (rrnB)	203,547						
	LC066374 (rrnC)	395,184						
A. manganoxydans	BBWP01000039(oriC) [†] –BBWP01000038 [†] –BBWP01000071– BBWP01000083–LC066378(rrn <i>A</i>)	154,368						
	LC066379 (rrnB)	195,490						
	LC066380 (rrnC)	426,327						

*Contigs are listed under their accession numbers. A copy of the *rrn* operon, a putative *oriC* or *dif* site that is present in the contig, is shown in parentheses after the accession number (*dif* sites are listed in Table S4). In the case of a contig corresponding to a small circular replicon, the replicon name is shown in parentheses. [†]Contig is arranged in the reverse orientation.

PNAS PNAS

8 of 9

Table S4. Predicted *dif* sites in the contigs

		Contig				
Strain	Sequence $(5' \rightarrow 3')^*$	Accession no.	Location (nucleotide no.)			
Aureimonas sp. AU20	AATACTCATAATATGGATTATGGAACAC	CP006367	2,493,549–2,493,576			
Aureimonas sp. AU40	AATCCTCATAATATGGATTATGGAACAC	BBWL01000041	393,104–393,077			
Aureimonas sp. D3	TGTTCTCATAATATGGATTATGGAACCA	BBWM01000035	69,577–69,604			
Aureimonas sp. N4	TGTTCTCATAATATGGATTATGGAACCA	BBWS01000042	121,177–121,204			
A. ureilytica	AATACTCATAATATGGATTATGGAACAT	BBWT01000015	119,318–119,291			
Aureimonas sp. AU12	CGATGGCATAATATGGATTATGGAACAT	BBWH01000001	95,271–95,298			
Aureimonas sp. AU4	AAGTGGCATAATATGCATTATGGAACTA	LC066391	52,184–52,211			
Aureimonas sp. AU22	AAATTGCATAATATGGATTATGGAACAT	LC066387	180,819–180,792			
A. altamirensis	AAATGGCATAAGATAGATTATGGAACCA	LC066371	279,206–279,179			
A. frigidaquae	AAATGGCATAAGATGGATTATGGAACCA	LC066377	676,504–676,531			
A. coralicida	AAGTTGCATAAGATAGATTATGGAACCG	BBWN01000036	70,610–70,583			
A. manganoxydans	AAGTTGCATAAGATAGATTATGGAACCG	BBWP01000052	10,286–10,313			
F. pelagi	AAGTTGCATAATATAGATTATGGAACTG	BBWO01000001	132,315–132,342			

*Nucleotides involved in the palindrome are underlined.

PNAS PNAS

Table S5.	Accession	numbers	of the	aenes	and	contias	used	for	phv	loc	ienetic	anal	vses
10010 001	/	manna cro	0. 0.00	genes		contrags	asca		P,		Jenetic	annan	,

Strain*	rrs	atpD	dnaK	gyrB	rpoB	rpoC
Aureimonas sp. AU20	CP006375	CP006367	CP006367	CP006367	CP006367	CP006367
Aureimonas sp. AU40	AB600141	BBWL01000033	BBWL01000030	BBWL01000030	BBWL01000064	BBWL010000064
Aureimonas sp. D3	AB600180	BBWM01000034	BBWM010000047	BBWM010000047	BBWM01000083	BBWM01000083
Aureimonas sp. N4	AB600181	BBWS01000006	BBWS01000008	BBWS01000008	BBWS01000062	BBWS01000062
A. ureilytica	DQ883810	BBWT01000005	BBWT010000017	BBWT01000001	BBWT010000074	BBWT010000074
Aureimonas sp. AU12	AB600133	BBWH01000021	BBWH01000031	BBWH01000029	BBWH010000057	BBWH01000057
Aureimonas sp. AU4	AB600129	BBWK01000006	BBWK01000034	BBWK01000063	BBWK01000092	BBWK01000092
Aureimonas jatrophae	JQ346805	_	_	_	_	—
Aureimonas sp. AU22	AB600138	BBWJ010000047	BBWJ01000026	BBWJ010000051	BBWJ01000065	BBWJ01000065
Aureimonas phyllosphaerae	JQ346806	_	_	_	_	—
Aureimonas rubiginis	JQ864241	—	—	—	—	—
Aureimonas ferruginea	JQ864240	_	_	_	_	—
A. altamirensis	DQ372921	BBWQ010000011	BBWQ010000025	BBWQ01000020	BBWQ01000004	BBWQ01000004
A. frigidaquae	EF373540	BBWR01000005	BBWR01000003	BBWR010000011	BBWR01000022	BBWR01000022
Aurantimonas litoralis HTCC2156	AY178863	—	—	—	—	—
A. coralicida	AJ786361	BBWN01000008	BBWN010000017	BBWN01000001	BBWN010000056	BBWN01000056
Aurantimonas manganoxydans	AJ786360	BBWP010000013	BBWP01000006	BBWP01000004	BBWP01000026	BBWP01000026
F. pelagi	AY178860	BBWO010000012	BBWO010000012	BBWO01000001	BBWO01000032	BBWO01000032
Martelella mediterranea	AY649762	_	_	_	_	—
Aminobacter aminovorans	AJ011759	—	—	—	—	—

*Type strains of the respective species were used unless strain names are specified.