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S1. PERTURBATION APPROACH FOR THE CALCULATION OF THE

ELASTIC DEFORMATION OF AN ADVECTED SPHERE

We estimate surface stress and elastic strain of an advected, elastic sphere in terms of a

perturbation approach that is valid for small flow rates Q. To make this more precise, we

introduce a dimensionless flow rate Q̂ = ηQ
ER3 . Here, η is the viscosity of the carrier medium,

R is the channel radius and E is the sphere’s Young’s modulus. Our perturbation calculation

takes into account terms up to first order in Q̂. The hydrodynamic stress σH on the sphere’s

surface is a function of Q̂ and of the elastic deformation of the sphere captured by the strain

tensor ε. Accordingly, we make an expansion

σHij (Q̂, ε) = A0(ε) + A1(ε)Q̂+O(Q̂2)

As hydrodynamic stresses vanish if the flow rate is zero, A0(ε) equals zero. Further, ε is

also a function of Q̂ with

ε(Q̂) = O(Q̂).

Accordingly

A1(ε) = A1,0 +O(ε) = A1,0 +O(Q̂).

Therefore,

σHij (Q̂, ε(Q̂)) = A1,0Q̂+O(Q̂2).

We conclude, that for a perturbation approach up to first order in Q̂, we may estimate the

stress on the sphere’s surface using an undeformed sphere (ε = 0).

Although less intuitive, Q̂ may also be regarded as a function of ε with

Q̂(ε) = O(ε).

Therefore, a first order perturbation calculation in Q̂ is equivalent to a first order perturba-

tion calculation in elastic strain ε which is a common approach in elasticity theory.

S2. CALCULATION OF THE STRESS ACTING ON THE SURFACE OF AN

ADVECTED SPHERE

In the following, we explain in detail how to determine the expansion coefficients

(An, Bn, Cn, Dn) of the stream function Ψ introduced in Eq. (18) (main text).
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Characteristic scales and dimensional reduction. To simplify the notation and to find the

minimal set of independent parameters, we define the characteristic scales composed of the

radius of the sphere r0, the velocity of the sphere v in the rest frame of the channel, and the

fluid viscosity η. With this, we find a characteristic force Fc ≡ r0ηv and a characteristic stress

σc ≡ ηv
r0

. The latter can be used to define a dimensionless elastic modulus by Ê ≡ E/σc, a

dimensionless shear modulus by Ĝ ≡ G/σc, as well as a dimensionless pressure by p̂ ≡ p/σc.

Further, we introduce a dimensionless stream function Ψ̂ given by Ψ̂ ≡ Ψ/(vr2
0). Accordingly,

we define dimensionless expansion coefficients (Ân, B̂n, Ĉn, D̂n) that relate to Eq. (18) (main

text) by An ≡ vr2−n
0 Ân, Bn ≡ vrn+1

0 B̂n, Cn ≡ vr−n0 Ĉn and Dn ≡ vrn−1
0 D̂n. In addition,

we introduce the notation Ân := (Ân, B̂n, Ĉn, D̂n), so that {Ân} denotes the set of all

dimensionless expansion coefficients.

Calculating the constants (Ân, B̂n, Ĉn, D̂n) for a force-free motion of the sphere

through the channel. The linear system of equations that is found by the procedure

outlined in Appendix A of the main text reads [2]
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where I
(s)
1 , I

(s)
2 , I

(s)
3 are integrals that are given explicitly in [2] (p. 17 therein) and that

need to be evaluated numerically. δi,j is the usual Kronecker symbol. In Eq. (S1), we

have introduced the dimensionless quantities λ = r0/R with the radius of the advected

sphere r0 and the channel radius R, as well as û = u/v with the velocity of the sphere v

and the maximum flow velocity u of the Poiseuille flow at infinity. The above system of

equations (S1) is solved in terms of (a0, a2, ..., b0, b2, ...).

The expansion coefficients (Ân, B̂n, Ĉn, D̂n) can then be obtained from [2]

B̂n = (−1)
n
2

+1π

(
n!

2
an−2 +

n(n− 1)n!

2(2n+ 1)
bn

)
(S2a)

D̂n = (−1)
n
2

+1 πn!

2(2n− 3)
bn−2 (S2b)

Ân = −2n+ 1

2
B̂n +

1− 2n

2
D̂n (S2c)

Ĉn =
2n− 1

2
B̂n +

2n− 3

2
D̂n. (S2d)

An additional constraint on the system of equations (S1) emerges from the condition of a

force free steady-state motion of the sphere. As an expansion of the stress of the surface of
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the sphere, we introduced in the main text

σHrr
∣∣
r=r0

= σc

∞∑
n=1
n odd

fnPn(cos θ)

σHrθ
∣∣
r=r0

= σc

∞∑
n=1
n odd

gn
dPn(cos θ)

dθ
,

with

fn(Ân+1) = 2

(
2n+ 3

n
Ĉn+1 +

2n− 1

n+ 1
D̂n+1

)
(S3a)

gn(Ân+1) = −
(
n− 1

n
Ân+1 +

n+ 2

n+ 1
B̂n+1 +

n+ 3

n
Ĉn+1 +

n− 2

n+ 1
D̂n+1

)
. (S3b)

Integrating the general expansion of surface stress over the surface of the sphere and im-

posing a vanishing net force leads to the constraint relation f1 + 2g1
!

= 0. Plugging

Eqns. (S3a) and (S3b) into this relation and using 2Ĉ2 − 3B̂2 = 0 (this can be seen by

evaluating vr(r0) = 0 and vθ(r0) = 0) it follows that D̂2
!

= 0. It can be seen from Eq. (S2b)

that this is equivalent to b0 = 0. Hence, for a given λ, we simply solve Eqns. (S1) by setting

b0 = 0 and treating û = u/v as an additional unknown instead, whose value depend on the

particular choice of λ.

The described method provides a fast and numerically exact method to simultaneously de-

termine û(λ) (i.e. the size dependent steady-state velocity) and the expansion coefficients

{Ân} for the case where no net force acts on the sphere. Truncating the summations in

Eqns. (S1) at some even n = nmax and taking into account the first nmax + 2 equations up to

kmax = (nmax + 2)/2 − 1 yields a closed system that determines the nmax + 2 unknowns

(û, a0, a2, ..., anmax , b2, b4, ..., bnmax), which directly yield {Ân}n=2,4,...,nmax via Eqns. (S2a)-

(S2d). The physical steady state velocity of the advected sphere for a particular peak

flow velocity u in the channel is then determined by v(λ) = u/û(λ). We have checked that

the coefficients converge when nmax is increased. As shown in the following, the absolute

values of (Ân, B̂n, Ĉn, D̂n) additionally decrease for larger n, which justifies the suggested

truncation scheme.

Evaluation of expansion coefficients and hydrodynamic stresses for different λ.

Fig. S1 shows the amplitudes of the coefficient vector |Ân| =
√
Â2
n + B̂2

n + Ĉ2
n + D̂2

n, normal-

ized by its maximum at n = 2. The expansion coefficients decay slower with n for larger λ.
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This represents the increasingly complex interaction with the wall for larger spheres. De-

pending on the application, one can then choose an appropriate threshold to truncate the

series. In this work we have chosen to neglect terms with |Ân|/|Â2| < 10−4. This thresh-

old leads to a numerical precision of the derived hydrodynamic surface stresses σHij /σc of

approximately 10−3, which suffices for experimental purposes.

1
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FIG. S1: Normalized absolute value of the coefficient vectors Ân used in the stream function for

different λ. For the shown data we neglected all coefficients with |Ân|/|Â2| < 10−4. This threshold

is depicted by the dashed line, which shows that more and more terms have to be included for the

same numerical precision, when λ is increased. Ân = 0 for odd n.

Figure S2 depicts the values of the expansion coefficients fn and gn as given by

Eqns. S3a and S3b for different λ. As mentioned before, fn = gn = 0 for even n, which is

a consequence of the symmetry of the flow solution. Their amplitudes increase for greater

values of λ, which represents an increase in stress, if the object’s size is increased and all

other experimental parameters are left constant.

Fig. S3 shows the stress amplitudes for λ = 0.9. All other parameters are as for Figure 3A

in the main text. Despite the overall increase of stress amplitudes, the vicinity of the

channel walls now leads to much more pronounced effects on surface regions around θ = π/2

compared to λ = 0.7. Again those results are verified by the Finite-Element method.
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FIG. S2: Expansion coefficients of the hydrodynamic stresses on the surface of the sphere for

different λ. fn relates to pressure, gn relates to shear stresses. Decay properties are very similar

to those of the stream function coefficients Fig. S1. Increasing λ leads to an overall increase of

coefficient amplitudes and hence stress, when experimental conditions (Flow rate Q and viscosity η)

are kept constant. fn = gn = 0 for for even n.
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FIG. S3: Hydrodynamic pressure (left) and shear stress (right) for λ = 0.9. Solid line shows results

from the stream function approach for Q = 0.012µl/s and η = 0.015 mPa · s (typical experimental

parameters, as used in Fig. 3B (main text)) and channel radius R = 10µm. While the essential

characteristics are still given by the 1st and 3rd Legendre polynomials and their derivatives, normal

and tangential stress amplitudes increase by a factor of 2 and 4, respectively, compared to λ = 0.7.

The strong stress gradients around π/2 (near the channel walls) lead to the bulge and groove for

deformed shapes shown in Fig. 4A (main text).
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S3. EQUIVALENT CHANNEL RADIUS

To map the situation of a steady flow in a channel with square cross-section of side length

L onto the problem of a steady flow in a cylindrical channel with radius Req, we take the

following approach: we derive a factor C with 2Req = C ·L such that the pressure drop is

the same in the circular channel as in the square channel. Textbook results for the fluid flow

through channels with circular and square cross-section [3] can be used to derive

C = 2
4

√
2K1

3π
≈ 1.094

with

K1 = 1− 6
∞∑
n=1

tanh(ωn)

ω5
n

with ωn = (2n− 1)
π

2
.

This defines λeq = r0/Req and we can identify the different geometries by λ = λeq.

S4. LEGENDRE POLYNOMIALS

We solve the stream function, stress components and displacements fields of the advected

elastic spherical object in terms of an expansion of Legendre polynomials. The defining

differential equation of Legendre polynomials Pn(x), x ∈ [−1, 1] reads

d

dx

[
(1− x2)

dPn(x)

dx

]
+ n(n+ 1)Pn(x) = 0. (S4)

To derive most of the equations related to displacement calculations in all models, we have

to make use of an identity that follows directly from (S4) by substituting x → cos θ and

reads
d2Pn(cos θ)

dθ2
= −

(
cot θ

dPn(cos θ)

dθ
+ n(n+ 1)Pn(cos θ)

)
.

S5. EQUILIBRIUM EQUATIONS OF LINEAR ELASTICITY IN SPHERICAL

COORDINATES

For the sake of completeness, we state the equilibrium equation of linear elasticity in spherical

coordinates, i.e. the components of

∇ ·σ = 0 (S5)
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where ∇ represents the covariant derivative the stress tensor σ. The components of Eq. (S5)

in spherical coordinates read [4]

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r sin θ

∂σrϕ
∂ϕ

+
2σrr − σθθ − σϕϕ + σrθ cot θ

r
=0

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
1

r sin θ

∂σθϕ
∂ϕ

+
3σrθ + (σθθ − σϕϕ) cot θ

r
=0

∂σrϕ
∂r

+
1

r

∂σθϕ
∂θ

+
1

r sin θ

∂σϕϕ
∂ϕ

+
3σrϕ + 2σθϕ cot θ

r
=0.

Stress-strain relations for an isotropic, linearly elastic material read in all coordinates [6]

σij = 2G

(
εij +

ν

1− 2ν
δijεkk

)
. (S6)

The components of the strain tensor relevant for the calculations of surface stresses relate

to the displacement fields by

εrr =
∂ur
∂r

εθθ =
1

r

∂uθ
∂θ

+
ur
r

εrθ = εθr =
1

2

(
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

)
. (S7)

S6. THE PAPKOVICH-NEUBER ANSATZ

Solutions to the force balance equation (S5) can in general be given by a Papkovich-Neuber

ansatz [7]

u = 4(1− ν)B−∇(r ·B +B0), (S8)

where B and B0 are a harmonic vector and a harmonic scalar potential, i.e. ∇2B and ∇2B0

vanish. A harmonic scalar B0 in spherical coordinates with azimuthal symmetry can be

written as [4]

B0 =
∞∑
n=0

[
ānr

n +
b̄n
rn+1

]
Pn(cos θ).

Harmonic vectors in spherical coordinates with azimuthal symmetric components can be

derived by making the ansatz

Br =
∞∑
n=0
k=−∞

ankr
kPn(cos θ) and Bθ =

∞∑
n=1
l=−∞

bnlr
ldPn(cos θ)

dθ

in the vector Laplace equation ∇2B = 0. Taking into account the orthogonality of the

Legendre polynomials, we find a biquadratic equation in l = k, which yields expansions of
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the components of B of the form

Br =
∞∑
n=0

[
nc̄nr

n−1 − (n+ 1)
d̄n
rn+2

]
Pn(cos θ) (S9)

Bθ =
∞∑
n=1

[
c̄nr

n−1 +
d̄n
rn+2

]
dPn(cos θ)

dθ
(S10)

and

Br =
∞∑
n=0

[
−ēn(n+ 1)rn+1 + n

f̄n
rn

]
Pn(cos θ)

Bθ =
∞∑
n=1

[
ēnr

n+1 +
f̄n
rn

]
dPn(cos θ)

dθ
.

Note that Eqns. (S9) and (S10) are directly proportional to the respective components of

∇B0 and therefore they do not yield a new independent solution in the Papkovich-Neuber

ansatz. The coefficients of the displacement fields used in Eqns. (8a) and (8b) (main text),

an and bn, relate to the potentials discussed here by an = ēn and bn = ān, as those are the

only independent terms that converge for r → 0. The terms associated with b̄n and f̄n can

be used in the Papkovich-Neuber ansatz to calculate elastic deformations of thick shells, as

for example in [5].

S7. POLAR REPRESENTATION

Figure S4 sketches the geometry we have to consider to derive a polar representation of the

deformed shape. We have

%(θ) =
√

[r0 + ur(θ′)]2 + uθ(θ′)2 = r0 + ur(θ
′) +O(u2/r0). (S11)

Additionally we have to include the shift in the angle θ = θ′ + ∆θ′, that results from

tangential displacements:

tan(∆θ′) =
uθ(θ

′)

r0 + ur(θ′)
⇒ θ′ = θ − uθ(θ

′)

r0

+O(u2/r0). (S12)

Plugging Eq. (S12) into Eq. (S11) we find %(θ) and it takes the form

%(θ) = r0 + ur(θ) +O(u2/r0), i.e. other than the radial displacements ur, tangential

displacements uθ only contribute to second order to a polar representation of the shape.
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FIG. S4: Conversion between polar shape representation %(θ) and deformation in terms of displace-

ment fields ur(θ
′) and uθ(θ

′). %(θ) relates to the displacement fields ur and uθ given at θ′ = θ−∆θ′

in a non-trivial way.

S8. ERROR ESTIMATE OF HYDRODYNAMIC SURFACE STRESS AND

ESTIMATED YOUNG’S MODULUS

Here, we estimate the error in the surface stress of an advected sphere that stems from

neglecting the feedback of elastic deformation on the surrounding fluid flow. For this pur-

pose, we placed shapes of a deformed solid elastic sphere and a deformed shell depicted in

Figure 4A (main text) (λ = 0.7, d = 0.006) as rigid bodies into a cylindrical channel imple-

menting a finite-element simulation using COMSOL Multiphysics [11]. The velocity of the

deformed shape was chosen such that the net force vanishes within numerical precision. The

resulting stress profile σd on the surface of the deformed shapes rd(θ) = r0er(θ) + u(θ) was

compared to the stress σu on the undeformed sphere r0(θ) = r0er(θ) at equal values of θ for

normal stresses σdn and shear stresses σds , respectively. Note, that this mapping between r0

and rd is unique. The resulting profiles are shown in Figure S5A and B. We estimate the

relative stress errors as δi = |σdi − σui |/(σui,max − σui,min) (i = n, s), where σui,max and σui,min

denote the maximal and minimal value of stress on the surface of the undeformed, advected

sphere (see Fig. S5C). For the deformed solid elastic sphere, we find that the stress deviates

nowhere on the surface more than 9 % and on average only about 3.5 %. For the deformed

shell the deviations are slightly larger, with δs reaching up to 16 %. However, the surface
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regions where those values occur (close to the channel walls) represent a rather small fraction

of the whole surface, such that the average deviations are less than 7 %.

FIG. S5: Comparison of surface stresses σu and σd on undeformed (solid lines) and deformed

shapes (dashed and dot-dashed lines). Objects were advected at steady state in a Poiseuille flow

at low Reynold’s number. The deformed shapes were generated as a first order deformation of a

solid elastic sphere and a thin elastic shell with λ = 0.7 (see Fig. 4, main text) and dimensional

parameters were as Figure 3 (main text): sphere radius r0 = 7µm, channel radius R = 20µm, flow

rate Q = 0.012µl/s, viscosity η = 0.015 Pa. (A) Normal hydrodynamic stress. (B) Hydrodynamic

shear stress. (C) Deviations δi = |σdi − σui |/(σui,max − σui,min) for normal stress i = n (left) and shear

stresses i = s (right).

We performed the same analysis for shapes with deformations d = {0.01, 0.02, 0.025} and find

that the relative error increases with increased deformation (Table S1). Maximal deviations

are generally larger on a deformed shell, as compared to a deformed solid elastic sphere of

equal deformation and they are localized to surface regions that are close to the channel

walls. Due to this localisation the average error across the surface on an elastic shell shape

stays small ( < 12 %) within the regime of deformations considered in this work.

To confirm that small errors in surface stresses correspond to small errors in estimated

elastic moduli when fitting our analytic theory to experimental shapes, we employed a
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d = 0.006 d = 0.01 d = 0.02 d = 0.025

δmax
n , δmax

s (sphere) 7 %, 9 % 9 %, 12 % 12 %, 18 % 14 %, 21 %

δmax
n , δmax

s (shell) 8 %, 16 % 12 %, 21 % 19 %, 30.5 % 20 %, 33 %

δ̄n, δ̄s (sphere) 3 %, 3.5 % 3 %, 4.5 % 4 %, 6.5 % 4.5 %, 7.5 %

δ̄n, δ̄s (shell) 4 %, 6.5 % 4 %, 8 % 5 %, 11.5 % 7 %, 11.5 %

TABLE S1: Relative errors of hydrodynamic stresses on surfaces of deformed shapes as calculated

with the model of a solid elastic sphere (sphere) and a thin elastic shell (shell) for different values of

deformation d. δmax
i depicts maximal deviation that occur on surface regions close to the cylinder

walls δ̄i depict deviations averaged over the surface.

fully coupled finite element simulations of a linearly elastic sphere advected in a cylindrical

channel (see Sec. S12). This simulation takes into account the coupling between deformation

and changes in the surrounding flow field. We used it to generate steady-state shapes for

typical experimental parameters, which then were fitted using our analytical theory of an

elastic sphere (Fig. S6). For increasing deformations one can identify shape features in the

finite-element model that can not completely be captured by the analytical theory, as the

changes in the hydrodynamic stresses due to the deformation becomes more relevant (see

Table S1). However, when fitting our analytical theory to those shapes the elastic moduli

put in the phase field model are quantitatively still very well reproduced with relative errors

of less then 4 %.

FIG. S6: Fitting of shapes from a fully coupled finite element simulation (see Sec. S12). Steady-

state shapes with different deformations were generated using a numerical phase field model (see

Sec. S12) (gray dots). The contours were fitted using our analytical theory (solid lines) resulting in a

predicted elastic modulus Efit. For all three shapes we have λ ≈ 0.7, Q = 0.012µl/s, η = 15 mPa · s

and a channel radius R = 10µm.
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S9. AFM INDENTATION EXPERIMENTS.

Agar films were prepared using the same agar solution as for the beads. 600µl of agar

solution were cast into a petri dish (34 mm Ø, TPP Switzerland). Agarose films were then

covered with PBS (1 ml) for at least 2 hours before starting the measurement. For the

AFM indentation experiments a nanowizard I (JPK Instruments, Berlin) equipped with

Cellhesion Module was used. Arrow-T1 cantilevers (Nanoworld, Neuchatel) that had been

modified with a polystyrene bead of 10µm diameter (microparticles GmbH, Berlin) were

calibrated prior measurements using the thermal noise method. To determine the stiffness

of the agarose films, the cantilever was lowered with a speed of 5µm/s onto the agarose

surface until a relative setpoint of 2.5 nN was reached. The resulting force distance curves

were analysed using the JPK image processing software (JPK instruments). Force distance

data were corrected for the tip sample separation [10] and fitted with a Hertz model fit for

a spherical indenter [8]. A Poisson ratio of 0.5 was assumed (See Sec. S10). Experiments

were carried out in PBS and at room temperature. Similar methodical settings were used

for indentation experiments on HL60 cells. Arrow -T1 cantilevers were modified with a

polystyrene bead of 5µm diameter and lowered with a speed of 5µm/s onto the cell surface

until a relative setpoint of 2 nN was reached. Force distance data were analyzed as mentioned

above. Experiments were carried out at 37◦C in CO2 independent medium (life technologies,

Darmstadt) within 1.5 hours.

S10. INFLUENCE OF POISSON RATIO ON FITTED ELASTIC MODULI

In AFM indentation measurements, the Hertz model is used to fit the elastic modulus

E∗ = E/(1− ν2), where E is the Young’s modulus and ν is the Poisson ratio [8]. Therefore,

assuming a different Poisson ratio ν ′ leads to a different estimate of the Young’s Modulus

E ′ = E(1− ν ′2)/(1− ν2) .

For the fitting of data acquired using RT-DC, we assumed incompressibility of beads and

cells (ν = 0.5). This is motivated by their large water content together with the very short

measurement times of RT-DC (≈ 1 ms) which render it unlikely that water fluxes into and

out of the cell play a major role. In order to examine the influence of different choices of ν on

our estimate of Young’s moduli E, we have performed the same data analysis using ν = 0.3
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and ν = 0.4. The results are shown in Table S2. We conclude that changing values of the

ν = 0.3 ν = 0.4 ν=0.5

Agarose film (AFM, bulk) 2.5± 0.1 2.31± 0.09 2.06±0.08 kPa

Agarose beads (RT-DC, bulk) 1.71±0.92 1.89±1.02 2.15±1.10 kPa

HL60 cells (AFM, bulk) 206± 103 190± 95 170±85 Pa

HL60 cells (RT-DC, bulk) 1.11±0.44 1.24±0.50 1.48±0.51 kPa

HL60 cells (RT-DC, shell) 21.47±7.88 22.64±8.16 23.69±8.42 nN/µm

TABLE S2: Estimated Young’s moduli for beads and cells under the assumption of different Poisson

ratios ν (mean ± standard deviation). (legend: AFM, bulk - measured with AFM indentation using

the Hertz model, RT-DC, bulk - RT-DC measurement fitted using the model of an isotropic elastic

sphere, RT-DC, shell - RT-DC measurement fitted using the model of an isotropic elastic thin

shell)

Poisson ratio ν within the interval [0.3, 0.5] does not change the Young’s modulus estimate

by orders of magnitude but only up to 25%. Therefore, it cannot explain the difference in

Young’s moduli obtained from AFM and RT-DC measurements on cells. However, a change

of Poisson ratios gives rise to opposing trends for AFM and RT-DC measurements. While

assuming lower values for the Poisson ratio increases the extracted Young’s modulus in AFM

measurements, it decreases Young’s moduli extracted from RT-DC measurements.

S11. DISTRIBUTION OF STIFFNESS VALUE IN AFM INDENTATION AND

RT-DC MEASUREMENTS

We measured cells of a human promyelocytic cell line (HL60) in an RT-DC setup and an-

alyzed deformed cell shapes just as in the case of deformed agar beads described above

(see Fig. 5, main text). Employing the cell mechanical model of an isotropic elastic sphere,

we obtain on average a cell elastic modulus of E = 1.47 ± 0.51 kPa (N=281, mean±SD).

Performing AFM indentation experiments on the cells, we find on average a Young’s mod-

ulus of E = 170± 85 Pa (N=169). Associated distributions of measured cell elastic moduli

are shown in Fig. S7. While the means of AFM and RT-DC measurements are different,

the distributions of measurement points show similar characteristics. In particular, distri-
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butions exhibit a long tail towards higher elastic moduli. This similarity of distributions

may indicate that elastic moduli are simply scaled by a constant factor when changing from

one measurement technique to the other, something that might be accounted for by the

time-scale dependence of cell mechanics [12].

0

200

400

600

800

AFM RT-DC

E
la

st
ic

5m
o

du
lu

s5
[P

a]

E
la

st
ic

5m
o

du
lu

s5
[k

P
a]

0

1

2

3

4

5

A B

FIG. S7: Distribution of elastic moduli measured with AFM and RT-DC. (A) AFM indentation

experiments (N = 169, E = 170±85 Pa). (B) RT-DC experiment (N = 281, E = 1.47±0.51 kPa).

S12. FULLY COUPLED FINITE ELEMENT SIMULATIONS

To verify the predicted shapes of our analytic theory, we finally conduct finite element

simulations that take into account the coupling between flow field and elastic deformation.

Our simulations rely on the Stokes equation for the fluid phase (carrier medium) and linear

elasticity theory for an incompressible elastic solid.

The computational method employed is based on a phase field approach, first described in

[13]. The elastic sphere and the surrounding fluid are discretized on a common grid and a

phase field φ is used to distinguish between the phases, i.e. φ = 1 in the fluid, φ = 0 in the

cell. Thereby the stationary Stokes equation (1)-(2) can be extended over the full domain,

including the elastic stress tensor σ in the region where φ = 0.

∇p− η∇2v = ∇ · ((1− φ)σ)

∇ ·v = 0

In the fluid phase (φ = 1) we recover the original Stokes equation (1)-(2). In the cell region

(φ = 0) in the stationary limit (v = 0) we recover the equation of linear elasicity of an
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incompressible material. The use of a common grid here offers several advantages: no re-

gridding is needed and the implicit inclusion of the stress balance between viscous fluid and

elastic solid, stabilizes the coupling. Further, the elastic stress evolves according to

∂tσ + (v − vc) · ∇σ −∇v ·σ − σ · ∇vT =
E0

6

(
∇v +∇vT

)
− kφσ.

where E0 = 1 kPa is a reference Young’s modulus and we added a penalty constant

k = 106 s−1 to enforce vanishing stress in the fluid region. Note, that we have subtracted

the cell velocity vc (computed from the last respective time step) in the advection terms to

keep the cell in the middle of our computational domain.

Finally, the phase field is moved with the flow by an advected Cahn-Hilliard equation.

∂tφ+ (v − vc) · ∇φ = M∇2µ,

µ = ε−1(4φ3 − 6φ2 + 2φ)− ε∇2φ

The included 4th order diffusion with mobility constant M = 10mm3/s ensures that the

phase field keeps the distinct values of 0 and 1 in the two phases with a smooth but rapid

transition at the interface. The thickness of the transition region is controlled by the pa-

rameter ε = 0.05µm [14].

As initial condition we use a spherical bubble (for φ), poisseuille flow (for v) and zero elastic

stress (σ = 0). We prescribe a pressure difference between in- and outflow as boundary

condition. This pressure difference is iteratively adapted such as to obtain a prescribed

value for E (see Fig. S6) according to the rescaling introduced on page 13, main text.

Consistently with the analytical calculations we consider an axisymmetric setting here which

reduces the problem to a two-dimensional computational domain Ω = [0, 40]µm× [0, 10]µm.

Axisymmetric versions of the above evolution equations can be found in [15, 16].

We solve the time-dependent problem with a time step of 1µs until the bubble shape has

reached an (almost) stationary state. The compuational grid is adaptively controlled such

that the grid size is 0.1µm close to the cell boundary and 0.8µm further away from it.

More details on the numerical discretization with the Finite-Element toolbox AMDiS can

be found in [14].
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