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ABSTRACT Cell stiffness is a sensitive indicator of physiological and pathological changes in cells, with many potential appli-
cations in biology and medicine. A new method, real-time deformability cytometry, probes cell stiffness at high throughput by
exposing cells to a shear flow in a microfluidic channel, allowing for mechanical phenotyping based on single-cell deformability.
However, observed deformations of cells in the channel not only are determined by cell stiffness, but also depend on cell size
relative to channel size. Here, we disentangle mutual contributions of cell size and cell stiffness to cell deformation by a theo-
retical analysis in terms of hydrodynamics and linear elasticity theory. Performing real-time deformability cytometry experiments
on both model spheres of known elasticity and biological cells, we demonstrate that our analytical model not only predicts
deformed shapes inside the channel but also allows for quantification of cell mechanical parameters. Thereby, fast and quan-
titative mechanical sampling of large cell populations becomes feasible.
INTRODUCTION
The stiffness of cells is an important phenotypical marker
that can provide insights into cellular adaptation and differ-
entiation as well as pathological changes of cells (1–6).
Therefore, cell-mechanical phenotyping is an important
contribution to biological research and medicine including
applications in cell sorting and medical diagnostics (7–14).

Typical methods for the measurement of cell stiffness
include atomic force microscopy (AFM) indentation, mag-
netic twisting cytometry, optical stretching, and others
(15). Cell-mechanical studies based on these methods do
not allow for a throughput much beyond one cell per minute.
However, the population size and heterogeneity of cells in
medical and biological samples requires high-throughput
methods for classification and analysis. Recently, several
microfluidic techniques have been introduced that start to
address this need (13,16–18). Of these, deformability cy-
tometry (DC) (13) and real-time DC (RT-DC) (17) deform
cells purely by hydrodynamic interactions and without con-
tact with channel walls. Although DC probes cells in an
extensional flow at rates of thousands of cells per second,
it operates in a dynamic regime of Reynolds numbers of
z50. This renders the calculation of associated flow fields
a challenging, time-dependent, nonlinear problem. To
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date, no analytical or numerical modeling has been applied
to this method, which leaves the cell mechanical character-
ization purely phenomenological. By contrast, in RT-DC,
somewhat smaller rates of hundreds of cells per second
together with a more viscous carrier medium lead to a fluid
flow at low Reynolds numbers ðz0:1Þ, making it amenable
to theoretical analysis. In RT-DC measurements, suspended
animal cells are advected by a shear flow through a micro-
fluidic channel at a constant speed. In this process, cells
are deformed due to the existence of strong velocity gradi-
ents within the channel cross section (17). A sketch of the
measurement setup is depicted in Fig. 1 A. The observed
deformation of initially spherical cells in the flow channel
depends on cell stiffness, but it may also be influenced by
flow speed, relative cell size, and internal cell architecture.
To disentangle the influence of these parameters, it is neces-
sary to quantify the stresses exerted on the cells in the shear
flow and apply cell mechanical models to predict the result-
ing deformations.

Previous studies have presented extensive insight into the
deformation of advected red blood cells and vesicles in cy-
lindrical and square channels (19–21). Recent work has
focused in particular on numerical solutions where underly-
ing mechanical models anticipated either a fluid-like incom-
pressible membrane with bending stiffness (22,23) or elastic
microcapsules (23–26). An analytical approach to the elastic
deformation of microcapsules in a linear shear flow was
given by Barthès-Biesel (27), whereas Lighthill and Fitzger-
ald presented analytical studies of tight-fitting elastic pellets
in terms of lubrication theory (28,29). However, to our
knowledge, there exists as yet no full analytical derivation
http://dx.doi.org/10.1016/j.bpj.2015.09.006
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FIGURE 1 RT-DC setup and flow field around an advected sphere.

(A) Channel geometry for RT-DC measurements is adapted from Otto

et al. (17) (not to scale). Cells enter the flow channel, start to deform,

and acquire a steady shape in the end portion of the channel. There, defor-

mations of cells are measured with RT-DC. The inset representatively

shows a deformed HL60 cell. The inset scale bar is 5 mm. (B) Definition

of comoving spherical coordinates ðr; qÞ and cylindrical coordinates ðr; zÞ
with azimuthal symmetry. The sketch visualizes the boundary conditions

at channel walls (no-slip), vðR; zÞ ¼ �vez. At the inlet and outlet of the

channel at z/5N, we require that vðrÞ ¼ ½uðR2 � r2Þ=R2 � v�ez (Pois-
euille flow). The fraction l ¼ r0=R of channel radius R and sphere radius

r0 defines the only independent parameter for this problem. Streamlines

(blue) and thick arrows illustrate directions of the flow in different regions

close to the advected sphere ðl ¼ 0:6Þ. Note that in the comoving frame,

some streamlines change direction and thus enter and exit on the same

side of the image. To see this figure in color, go online.
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FIGURE 2 Theoretical and experimental equilibrium velocities of unde-

formed spheres. (A) Size dependence of the velocity ratio, v=u, where v is

the equilibrium velocity of the sphere and u is the peak velocity of the

Poiseuille flow in the channel. Velocity ratios were obtained from the

stream-function approach (solid line), or from finite-element simulations

in a cylindrical channel (circle) or a square channel (square). The cylindri-

cal channel was chosen such that the equivalent channel radius condition,

2Req ¼ 1:094� L (inset), was satisfied (32). (B) Velocity measurement of

polystyrene beads of different mean diameters (10.4 mm, 12.3 mm,

15.2 mm, and 19.3 mm) being flushed through a microfluidic channel with

a square cross section (width L ¼ 20 mm) using a high-precision syringe

pump. The solid line depicts the solution derived from the stream-function

approach. The graph contains 817 measurement points (triangles). The

inset scale bars are 10 mm. To see this figure in color, go online.
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for the elastic deformation of an elastic sphere and the
deformation of a thin elastic shell in a cylindrical flow chan-
nel. Our perturbation approach of small deformations aims
for simple analytical expressions that allow the extraction
of scaling laws of the system and rapid fitting to experi-
mental data.

We employ an analytical expansion of the Stokes equa-
tion to calculate the flow field around a spherical object ad-
vected by a flow in a cylindrical channel (30). The obtained
flow field is used to derive hydrodynamic surface stresses
acting on the spherical object for the situation of a uniform,
force-free motion through the channel. Surface stresses are
then prompted as a boundary condition into linear elasticity
theory to calculate surface displacement fields of the spher-
ical object. As cell mechanical models, we anticipate the
scenario of either an elastic sphere or a thin elastic shell
with or without surface tension. We verify our theoretical re-
sults by numerical simulations and experimentally by RT-
DC measurements of agar beads and accompanying AFM
indentation measurements. Finally, we present to our knowl-
edge the first data on cell stiffness, as obtained from RT-DC
measurements for a human promyelocytic cell line (HL60).
This work constitutes a theoretical underpinning for high-
throughput RT-DC experiments directly relating measured
cell deformation to elastic parameters of the cell.
Biophysical Journal 109(10) 2023–2036
MATERIALS AND METHODS

Velocity measurements

We suspended commercially available polystyrene beads in a solution of

phosphate-buffered saline (PBS) without Mg2þ and Ca2þ and 0.5% (w/v)

methylcellulose (Sigma Aldrich, Hamburg, Germany), as used for cell mea-

surements with RT-DC. The nominal diameters of the beads given by the

manufacturer were (mean5 SD) 10:3751:27 mm (118, Phosphorex, Hop-

kinton, MA), and 12:2750:12 mm, 15:2150:31 mm, and 19:350:36 mm

(Q-F-0570, Q-F-KM194, and Q-F-KM223, Microparticles, Berlin, Ger-

many), which covers a wide range of sizes that are still small enough to

fit through the channel. The bead solution is driven through the channel

by a high-precision syringe pump. Videos are taken using a high-speed

camera built into a brightfield microscope and are later analyzed with

custom-built tracking software. Further details of the experimental setup

and the associated tracking software can be found in Otto et al. (17). After

the flow rate of the bead suspension was set, we waited for 5 min before

taking videos to ensure a stable and equilibrated flow of bead suspension.

Employing the equivalent channel radius, Req, (Section S3 in the Support-

ing Material), tracked bead sizes were used to calculate the parameter

l ¼ r0=R, where r0 is the sphere’s radius. Knowledge of channel dimen-

sions (square channel cross section of width L) and flow rate, Q, allows

calculation of the central flow velocity, u, as (31)

u ¼ K2

Q

L2
;

where K2z2:096. Measured bead velocities, v, were normalized by the flow

velocity, u, and plotted against the corresponding value of l. Measurements

were repeated and taken at two different flow rates (0.04 and 0.08 mL/s),

consistently yielding results as shown in Fig. 2 B. Further details of the

experimental setup can be found in Otto et al. (17).
Preparation of agar beads

Agar beads were obtained by preparing an emulsion using an aqueous so-

lution of low-gelling-point agarose (A0701, Sigma-Aldrich) as the

dispersed phase and light mineral oil (330779, density 0.84 g/mL, viscosity

30 mPa$s, Sigma-Aldrich) with 2% (v/v) Span-85 surfactant (S7135,
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M ¼ 957:52 g/mol, Sigma-Aldrich) as the continuous phase. Agarose solu-

tion was prepared by dissolving agarose powder at a concentration of 0.5%

(w/w) in deionized water. The mixture was then placed for 3 min in a mi-

crowave oven. After a transparent solution was obtained, it was placed in a

submersion water bath at 70�C, where it was held for at least 1 h to allow air

bubbles to escape. The continuous phase was poured into a beaker on a

magnetic stirrer (VMS-C4, VWR International, Darmstadt, Germany)

with a stirring rate of 1250 rpm. Agar solution at 70�C (100 mL) was pipet-

ted into the oil, 1% (v/v), and vortexed for 40 s at room temperature, gener-

ating agar beads with a diameter between 2 and 50 mm. Afterward, the

bead solution was poured in a 15 mL centrifuge tube and stored in a refrig-

erator for 1 h. After overnight sedimentation, the oil was removed and

substituted with 2 mL of metacellulose solution, after three washings

with 2% w/v poly(ethylene glycol)monooleate (460176, density

1:034 g/mL, M ¼ 860 g/mol, Sigma-Aldrich) aqueous solution. The final

bead concentration was adjusted by pipetting 200 mL taken from the top

of the solution in 1 mL of metacellulose solution. The metacellulose

solution was prepared by dissolving methylcellulose (M 0512,

M ¼ 88; 000 g/mol, Sigma-Aldrich) at a concentration of 1% (w/v) in

PBS, with a final dilution of 50% in 2% w/v poly(ethylene glycol)monoo-

leate aqueous solution.
HL60 cells

The HL60 cell line was cultured according to the methods of Otto et al.

(17). To prepare the cell suspension for RT-DC measurements, cells were

centrifuged at 115 g for 5 min (Eppendorf 5805 R, Eppendorf, Hamburg,

Germany) and resuspended in a solution of PBS (without Mg2þ and

Ca2þ) and 0.5% (w/v) methylcellulose (Sigma Aldrich) to a final concentra-

tion of 106 cells/mL. For the deformation measurements, cells were taken

during log phase, ~36 h after splitting.
Shape fitting

Deformed shapes were tracked and transformed to polar representations,

9mðqiÞ, at 50 equidistant angles, qi. To exclude tracking of nonsymmetric

deformations with respect to the flow axis (e.g., due to imperfect spatial

cell focusing), the upper-half area, AU, and lower-half area, AL, of the con-

tours were calculated, and only objects with j1� AU=AL j < 0:005 were

used for shape fitting. Objects with A ¼ AU þ AL > 180 mm2 ðlECRz0:7Þ
were not considered for shape fitting, to avoid the influence of channel

boundary effects on the deformation. Assuming volume conservation

ðn ¼ 0:5Þ and a rotationally symmetric shape, we calculate l with respect

to the equivalent channel radius. At this point, the elasticity modulus, E,

and the positioning of the theoretical shape over the tracking data (two co-

ordinate parameters ðx; yÞ) are the only remaining fitting parameters. For

each value E and position ðx; yÞ tested, deformed shapes, 9Et ðqÞ, predicted
by our theories were calculated and sampled at angles qi in the same coor-

dinate system as the tracked shape. Minimization of the residual

rðEÞ ¼ P
i

��9mðqiÞ � 9Et ðqiÞ
�� 2 was achieved by using the nonlinear regres-

sion routine provided by MATLAB R2012b (www.mathworks.com). We

employed the robust fitting method with an iterative bisquare weighting

to reduce the impact of outliers in the tracked shapes. Relative symmetric

95% confidence intervals (fitting errors) of the elastic parameters ranged

from 5% to 40%.
RESULTS

We study a simple cell mechanical model where suspended
cells are regarded as linearly elastic, isotropic objects with a
spherical reference shape. To derive cell stiffness from cell
deformation in the flow channel, we pursue a perturbation
approach where we only consider contributions to the first
order in elastic strain. This approach is equivalent to a
first-order approximation in terms of the flow rate, Q,
through the channel, as small flow rates correspond to the
case of small surface stresses on the sphere (see Section
S1 in the Supporting Material). As a perturbation parameter,
we introduce a dimensionless flow rate, bQ ¼ hQ=ER3.
Here, h is the viscosity of the carrier medium, R is the
channel radius, and E is the sphere’s Young’s modulus.
Our perturbation calculation takes into account terms up
to the first order in bQ. Therefore, errors of our
solution scale with bQ2

or alternatively with e2, where e de-
notes the elastic strain. Accordingly, we will use in our cal-
culations the linearized expression of the elastic strain
tensor and we will neglect the feedback of the elastic defor-
mation onto the flow field (see Section S1).
Calculation of the flow field around a sphere
advected in a cylindrical channel

We model the problem of a cell in an RT-DC setup as a
sphere advected in a cylindrical flow channel at constant ve-
locity. To determine the hydrodynamic stresses acting on
this sphere, we calculate the surrounding flow field. Rey-
nolds numbers of the flows involved in RT-DC measure-
ments are typically on the order of 0.1, and therefore, they
are dominated by viscous forces. To describe the velocity
distribution of the fluid flow, we solve the Stokes equation
in a cylindrical channel for a Newtonian fluid together
with the incompressibility condition:

Vp� hV2v ¼ 0 (1)

V$v ¼ 0: (2)
Here, h is the dynamic viscosity of the fluid, and v and p are

its velocity and pressure fields, respectively. For the purpose
of our calculation, we consider a sphere of radius r0 that is
advected in the center of an infinitely long cylindrical tube
of radius R at constant speed (Fig. 1 B). No-slip boundary
conditions are imposed on the surface of the sphere and
the cylinder walls. As boundary conditions for the flow pro-
file at the channel inlet and outlet, i.e., at z ¼ 5N, we
impose a Poiseuille flow (31), as the presence of the sphere
is not relevant there.

For our calculation, we choose coordinates that are co-
moving with the sphere (Fig. 1 B). To adapt to the given
domain boundaries (surface of the sphere, cylinder walls,
and channel ends), cylindrical coordinates ðr; z;4Þ and
spherical coordinates ðr; q;4Þ are employed alternately
(30). The axial symmetry around the cylinder axis allows
definition of a unique stream function, Jðr; qÞ, such that
the components of the flow field, v, read (33)

vr ¼ 1

r2sin q

vJ

vq
(3a)
Biophysical Journal 109(10) 2023–2036
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1 vJ

vq ¼ �

r sin q vr
: (3b)

The contour lines of J are the streamlines of v. Therefore,
the stream function J encodes all the information of the
flow field around the spherical object. Equations 1 and 2
lead to a single partial differential equation in J, which is
solved taking into account the described boundary condi-
tions (30). The additional constraint of a vanishing net force
acting on the sphere at steady state yields the velocity at
which it passes through the channel (see Appendix A). We
find that for this setting, the stream function, J, and there-
fore the flow field, is uniquely parameterized by the relative
sphere size, l ¼ r0=R, where r0 is the sphere’s radius and R
is the channel radius.
Equilibrium velocity of an undeformed sphere in
theory and experiment

Fig. 2 A shows the normalized steady-state velocity function,
v=u, of an undeformed sphere in a cylindrical channel, where
v is the advection velocity of the sphere and u is the peak
velocity of the Poiseuille flow in the channel. The latter is
related to the total flow rate, Q, by ufQ=R2. Velocities
derived from the analytical theory (solid line) and from
finite-element simulations (circles) using COMSOL Multi-
physics (www.comsol.com) are in good agreement. Further-
more, we employed finite-element simulations to investigate
whether a similar relation can be found in a channel with a
square cross section and how those results compare to the
flow field in the cylindrical channel (see Fig. 2 A, squares).
For this comparison, we map the flow in the square channel
onto the flow in a cylindrical channel with radius Req, which
is the so-called equivalent channel radius (32). This radius is
chosen such that there is the same pressure drop along the cy-
lindrical channel and the channel with square cross section
(see Section S3). To test these predictions experimentally,
we used commercially available polystyrene beads of
different sizes and flushed them through a microchannel
with a square cross section of L ¼ 20 mm width (see Mate-
rials andMethods). The results of the velocity measurements
are shown in Fig. 2 B. The measured normalized bead veloc-
ities show good quantitative agreement with normalized
velocities, v=u, as derived from the stream-function
approach, using the equivalent channel radius, Req. Devia-
tions of experimental results from the theoretical predictions
for l< 0:55 are presumably due to an imperfect centering of
the beads in the flow channel. The increasing deviation for
l> 0:9 is due to the use of the equivalent channel radius,
which leads to leqz0:91 for a bead diameter of the size of
the channel width. Therefore, beads with a relative cell
size>0.91 are expected to have direct contact with the chan-
nel walls. Hence, our approach of deriving the flow profiles
around the sphere is correct within a useful range of l.
Biophysical Journal 109(10) 2023–2036
Hydrodynamic stress acting on the sphere’s
surface

For a velocity field, v, of an incompressible Newtonian fluid
with viscosity h, the hydrodynamic stress tensor is given in
Cartesian coordinates by

sH
ij ¼ �pdij þ h

�
vvj
vxi

þ vvi
vxj

�
:

Due to the no-slip boundary condition, we have v ¼ 0 and
vqvi ¼ 0 on the surface of the sphere. Together with the in-
compressibility condition (Eq. 2), this implies also vrvr ¼ 0

at r ¼ r0. Further taking into account the azimuthal symme-
try, the hydrodynamic stress components on the surface of
the sphere read

sH
rr

��
r¼ r0

¼ �p (4a)

H
� vvq �
srq
�
r¼ r0

¼ h
vr

�
r¼ r0

: (4b)

Using Eqs. 1, 3, and 4, we find that the hydrodynamic stress
is given in the form

sH
rr

��
r¼ r0

¼ sc

X
n¼ 1

N

n odd

fnPnðcos qÞ (5a)

� XN dPnðcos qÞ

sH
rq
�
r¼ r0

¼ sc

n¼ 1
n odd

gn
dq

; (5b)

where Pnðcos qÞ denotes the nth Legendre polynomial. The
coefficients fn and gn are linear functions of the expansion
coefficients of the stream function, J (see Appendix A).
Note that fn ¼ gn ¼ 0 for even n, which reflects the symme-
try of the flow field.

Although the stress components scale with the character-
istic stress, sc ¼ hv=r0, their value changes along the
sphere’s surface depending on the polar angle, q. The expan-
sion coefficients fn and gn quickly converge to zero for
increasing n (see Fig. S2), implying that the stress compo-
nents are dominated by the first few Legendre polynomials
or their derivatives, respectively.

In Fig. 3, A and B, we depict the normal and tangential
surface stresses for an undeformed sphere with l ¼ 0:7
and typical experimental parameters. As for the steady-state
velocity, we used the finite-element simulations to confirm
the analytical results from the stream-function approach
numerically (Fig. 3 B). Normal stresses are highest at the
rear and front of the sphere and antisymmetric with respect
to q ¼ p=2. This behavior corresponds to a pushing from the
back and an equal pulling at the front, which can be under-
stood by the fact that in a steady-state situation, the peak

http://www.comsol.com
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FIGURE 3 Surface stresses on an undeformed sphere passing through

channels of circular and square cross section. (A) Hydrodynamic pressure

(normal stress, left) and hydrodynamic shear stress (right) for

Q ¼ 0:012 mL/s, h ¼ 15 mPa$s (typical experimental parameters used for

RT-DC), R ¼ 10 mm, and r0 ¼ 7 mm. Arrows depict the direction of locally

applied forces. Forward-directed normal forces are highest at surface regions

close to the symmetry axis, and backward-directed shear forces are highest at

surface regions close to the cylinder wall. (B) Comparison of the solution

presented in (A) (solid line) with a finite-element simulation (circles) in

dependence of the polar angle q. Insets depict the first two Legendre polyno-

mials that appear in the expansion of the respective stress component.

(C) Surface stresses from the finite-element simulation on a sphere passing

through a channel with a square cross section of 20 mmwidth (channel walls

are parallel and perpendicular to the plane of projection). Peak normal and

tangential surface stresses reach values of ~0.5 kPa and 0.4 kPa, respectively.

Values are shown for a situation identified with (A) using the equivalent

channel radius (r0 ¼ 7:6 mm), with h and Q as in (A) and (B).
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velocity, u, of the flow is greater than the velocity of the
sphere, v. The highest tangential stresses occur at regions
closest to the cylinder walls as a result of the no-slip condi-
tions on the sphere and the channel walls. Those boundary
conditions produce shear rates of order v=ðR� r0Þ at sphere
surface regions close to the cylinder walls. This conse-
quently leads to very high shear stresses for larger spheres,
where 1� l becomes small (Fig. S3). The shear stress acts
tangentially on the surface of the sphere and imposes a drag
force, Fd, opposite to the flow direction. The net balance be-
tween this backward drag and the forward driving normal
pressure forces, Fp, then leads to the force-free, uniform mo-
tion of the sphere, i.e., Fp þ Fd ¼ 0.

By choosing a rotationally symmetric description, we
implicitly neglect small azimuthal surface stresses, sr4,
that are present in a square channel. Hydrodynamic shear
stresses, srqðr ¼ r0Þ, in channels with square cross section
are similar in their stress peak values when compared to re-
sults in a cylindrical channel using the equivalent channel
radius (see Fig. 3 C).
Elastic deformation of a sphere advected
in a cylindrical channel

Since the cells reach a steady-state shape toward the end of
the flow channel (17), we choose to describe those shapes by
time-independent, i.e., elastic, material parameters. The
assumption of isotropic and linear elastic material properties
additionally simplifies the theoretical treatment. We solve
the general deformation problem and adapt the solution to
boundary conditions that are provided by the previously
calculated hydrodynamic surface stresses (Eq. 5). This
approach corresponds to a perturbation expansion, where
higher-order contributions coming from the feedback of
the deformation onto the flow field around the object are ne-
glected (see Section S1). The deformation of the sphere is
given in terms of a displacement field, u ¼ urer þ uqeq,
such that the deformed surface is described by
rðq;4Þ ¼ r0 þ u ¼ ðr0 þ urÞer þ uqeq. As we aim for a
description of suspended animal cells in flow channels, we
will take into account different possible architectures of
the spherical object corresponding to different cell mechan-
ical models.

Solid elastic sphere

First, we consider a solid elastic sphere advected at a con-
stant velocity in the cylindrical channel. This scenario cor-
responds to the case of a dominant, homogeneous cell
bulk in the process of deformation. Due to the absence of
external volume forces, the equilibrium equation inside
the sphere reads (34)

V$s ¼ 0; (6)

where

s ¼ G

�
VuT þ Vuþ 2n

1� 2n
ðV$uÞ I

�
: (7)

Here, G and n are the shear modulus and the Poisson ratio of
the material, respectively. Using a Papkovich Neuber ansatz
(see Section S6), we can find general solutions to Eq. 6 of
the form (35)

urðr; qÞ ¼
X
n¼ 1

N �
anðnþ 1Þðn� 2þ 4nÞrnþ1

þ bnnr
n�1

�
PnðcosqÞ (8a)

XN � � dPnðcosqÞ

uqðr; qÞ ¼

n¼ 1

anðnþ 5� 4nÞrnþ1 þ bnr
n�1

dq
:

(8b)
Biophysical Journal 109(10) 2023–2036
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The above displacement field allows calculation of an asso-
ciated elastic stress tensor, s. Boundary conditions require
that this elastic stress equals the hydrodynamic stress in
Eq. 5 on the surface of the sphere. This condition determines
the constants an and bn (see Appendix B). On the surface of
the sphere, we denote the displacement field as

ur
��
r¼ r0

¼
X
n¼ 1

N

asp
n Pnðcos qÞ (9a)

u
�� ¼

XN
bspdPnðcos qÞ

; (9b)
q r¼ r0
n¼ 1

n dq

where the constants asp
n and bspn follow from Eq. 8, setting

r ¼ r0 (see Appendix B).
Thin elastic shell

In the following, we consider the cell as a thin elastic,
incompressible shell immersed in the shear flow. This is
motivated by the actin cortex being the dominant mechani-
cal element of the cell, as suggested by previous measure-
ments (36).

We assume a shell of thickness h � r0 with Young’s
modulus E. In such a shell, the bending energy, EB, is small
compared to the stretching energy, ES, of the shell surface;
in fact, EB=ESfðh=r0Þ2 � 1. The stretching energy is
given by the surface integral (34):

ES ¼ pr20

Z p

0

�
Eh

1� n2

	
e244 þ e2qq þ 2ne44eqq


�
sin qdq:

Furthermore, we have to consider the potential energy, EP, of

the shell (37) that is altered by a displacement, u, of a surface
element, dA, as a result of the hydrodynamic loading, sH

EP ¼ �
Z

u$sH$dA

¼ 2pr2
Z p�� �

sHu þ sH u
��
sin qdq:
0

0
rr r rq q

Combining expressions of stretching energy and potential
energy, we find the total energy of a thin elastic shell
Esh ¼ ES þ EP, which yields the final Euler equations for
the displacement fields ur and uq:

dEsh

dur
¼ 00

1

r20

Eh

1� n

�
2ur þ u0q þ uqcot q

�� sH
rr ¼ 0

(10)

dEsh ¼ 00
1 Eh �

uq cot
2 qþ nuq
duq r20 1� n2

� ð1þ nÞu0r � u00q � u0q cot q
�� sH

rq ¼ 0:

(11)

We use the ansatz
Biophysical Journal 109(10) 2023–2036
ur ¼
X
n¼ 2

N

ash
n Pnðcos qÞ (12a)

u ¼
XN

bshdPnðcos qÞ
; (12b)
q

n¼ 1

n dq

where the first Legendre polynomial has been omitted in the
expansion of ur, as it would merely induce a constant shift of
the object along the channel axis. The above ansatz yields a
decoupled set of equations for each n that can easily be
solved for ash

n and bshn ðnR2Þ, giving

ash
n ¼ scr

2
0

2Eh

ðnðnþ 1Þ þ n� 1Þfn þ nðnþ 1Þð1þ nÞgn
nðnþ 1Þ

2
� 1

(13a)

bsh ¼ scr
2
0 ð1þ nÞðfn þ 2gnÞ

(13b)
n 2Eh nðnþ 1Þ
2

� 1

and
bsh
1 ¼ scr

2
0

2Eh
ð1� nÞf1:

Elastic shell with surface tension

Here, we again consider the advected cell as a thin elastic
shell and additionally allow for a surface tension, in analogy
to active mechanical tension generated by motor proteins in
the cell cortex (38). In the presence of hydrodynamic stress
acting on the shell, the energy functional, Esh, for a shell
without surface tension needs to be complemented by the
volume work due to the hydrostatic pressure excess, P, in-
side the shell and by a surface-tension term that penalizes
the increase of the shell’s surface area. In total, we have

Etot ¼ Esh � PDV þ gDA: (14)

Here,DV andDA denote the volume and surface area change,

respectively (see Appendix C). For the undeformed, spher-
ical shell of radius r0, the surface tension, g, is balanced by
an internal hydrostatic pressure excess, P0, which is given
by the Laplace law, P0 ¼ 2g=r0 (39). The symmetry proper-
ties of the flowfield implyDV ¼ Oðu2Þ (seeAppendixC).As
we consider only terms up to orderOðu2Þ in the energy func-
tional, we can set P ¼ P0. Deriving the Euler equations for
the displacement fields from Eq. 14, it can be shown that
only Eq. 10 is modified and now reads (40)

1

r20

Eh

1� n

�
2ur þ u0q þ uqcot q

�� sH
rr

�g

r20

�
2ur þ u0rcot qþ u00r

� ¼ 0:
(15)
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The variation of the governing energy functional (Eq. 14)
with respect to the tangential displacement, uq, again results
in Eq. 11. We can solve the system (Eqs. 11 and 15) again
with the ansatz (Eq. 12). The final analytical solution for
the full problem is given by

ash
n;g ¼ scr

2
0

ðnðnþ 1Þ þ n� 1Þfn þ nðnþ 1Þð1þ nÞgn
½nðnþ 1Þ � 2�½Ehþ gðnðnþ 1Þ þ n� 1Þ�

(16a)

ð1þ nÞðfn þ 2gnÞ þ g ð1� n2Þ½nðnþ 1Þ � 2�
re
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FIGURE 4 Deformations of an elastic sphere and a thin elastic shell with

and without surface tension generated by the hydrodynamic loading in a cy-

lindrical channel. (A) Representative example shapes for relative cell sizes

l ¼ 0:7 (top row) and l ¼ 0:9 (bottom row). In each row, material parame-

ters were chosen such that shapes have the same deformation, d. The
bsh
n;g ¼ scr

2
0

Eh

½nðnþ 1Þ � 2�½Ehþ gðnðnþ 1Þ þ n� 1Þ� :

(16b)

By construction, Eq. 13, a and b, is just a special case of Eq.
16, a and b, i.e., we formally write ash

n;g¼0 ¼ ash
n and

bshn;g¼0 ¼ bshn . For g[Eh, this result implies ash
n;gf1=g

and bshn;gf1=Eh. Hence, in the case of large surface tension,
normal displacements are highly suppressed, whereas
tangential displacements are similar to those of a shell
without surface tension.
curvature fraction, x, discriminates between the different models.

(B) Displacement fields urðqÞ (solid lines) and uqðqÞ (dashed lines) for the

elastic sphere (red) and elastic shell (black) for l ¼ 0:7. Deformations of

the elastic sphere are dominated by uq, whereas deformations of the elastic

shell are dominated by the radial displacement, ur . (C) Interdependence of

d and x for l ¼ 0:7 (upper gray band) and l ¼ 0:9 (lower gray band) for

all three models under variation of material stiffness or flow rate, respec-

tively. The solid lines with triangles correspond to g ¼ 0:02� Eh (right col-

umn in A), for which shapes occupy the intermediate shape space between

elastic sphere and elastic shell without surface tension in each l band. For

an increased contribution of surface tension, g ¼ 0:1� Eh (solid line with

circles), there can be a crossing with the elastic sphere model, i.e., regions

where d and x can hardly discriminate between elastic sphere and elastic

shell with surface tension. To see this figure in color, go online.
Deformed shapes

To quantify the magnitude of deformation for different
sphere architectures, we use a previously introduced mea-
sure of deformation, d ¼ 1� c (17), where c is the circu-
larity, defined as

c ¼ 2
ffiffiffi
p

p ffiffiffi
A

p

P
:

In this expression, A is the area and P the perimeter of the
(central) cross section of the deformed shapes. Note that
d ¼ 0 for a circle and d > 0 for any other shape. Hence,
this measure describes the degree of deformation away
from a circular cross section. Example solutions of
deformed spheres at a fixed deformation, d, are depicted
in Fig. 4, A and B. Comparing relative sphere sizes of
l ¼ 0:7 (top row) and l ¼ 0:9 (bottom row), we find that
increased relative sphere sizes lead to larger deformations.
This observation reflects a commonly reported effect of
enhanced confinement (22), which originates from an
accompanying increase in hydrodynamic stress. For larger
l, there are regions of very high normal and tangential stress
(see Fig. S3), resulting in shapes that show grooves and
distinct bulges at qzp=2 (Fig. 4 A, bottom row).

To quantify the differences between an elastic sphere and
a thin elastic shell in more detail, we introduce a second
deformation measure, x, defined as the fraction between
minimal and maximal curvature of the shape boundary of
a centered cross section x ¼ kmin=kmax. Although deforma-
tion, d, quantifies the overall deviation from a spherical
shape, x is more sensitive to local shape properties. In
fact, the onset of the appearance of bulges and grooves in
deformed shapes upon increasing relative cell size and/or
flow rate is now simply encoded in a sign change of x.

In Fig. 4 C, we depict the behavior of d and x for l ¼ 0:7
and l ¼ 0:9, varying the material stiffness or, equivalently,
the flow rate, Q. We can identify distinct hyperplanes occu-
pied by sphere and shell deformations in the shape space.
Therefore, extracting shape measures d and x from experi-
mental data at sufficiently high accuracy would allow
discrimination between the cases of an elastic sphere and
a thin shell.

Incorporating surface tension into our shell model results
in a reduction of normal displacements. It is therefore
possible to find combinations of surface tension, g, and shell
stiffness, Eh, that produce shapes and deformation measures
very similar to those of an elastic sphere with a certain shear
modulus, G (Fig. 4 C). This implies that in the linear defor-
mation regime, contributions from a surface tension, g, can
disguise a thin elastic shell as an elastic sphere.
Biophysical Journal 109(10) 2023–2036
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Using deformed shapes as presented in Fig. 4 A (top row),
we estimated the change in hydrodynamic stress on the
sphere’s surface due to its deformation. To this end, we
placed deformed shapes as rigid objects into a cylindrical
channel and determined the hydrodynamic stress on their
surface using finite-element simulations. We find that there
is a small change of ~3.5% on average across the surface,
with peak values of 9%, which mainly result from a slight
shift of stress peaks (see Section S8). Generally, we find
average stress changes, (10%, for deformations of elastic
spheres and elastic shells up to dz0:02. To quantify the
shape differences arising from these stress changes, we
additionally performed fully coupled finite-element simula-
tions of a solid elastic sphere that take the feedback between
flow-field changes and elastic deformations into account
(see Sections S8 and S12). We find good agreement between
shapes generated by these fully coupled numerical simula-
tions and shapes obtained from our analytical theory for de-
formations up to 0.02 (see Section S8). These numerical
simulations confirm that the error in the stress on the
sphere’s surface is not critical within the deformation
regime considered in this work.
Testing the validity of our theory in square
channels

To test the predictive power of our calculations for spheres
advected in square channels, we analyzed the deformation
of spherical agar beads measured in an RT-DC setup (see
Materials and Methods). Beads were flushed through a
square channel and imaged by brightfield microscopy
focusing at the channel midheight. Agar beads were de-
tected and their boundaries extracted (see Fig. 5, A and B)
using our custom-built tracking software (17). The obtained
two-dimensional shapes were fit to theoretically predicted
shapes of a deformed elastic sphere advected in a cylindrical
channel with equivalent channel radius assuming a Poisson
ratio of 0.5. Fitting results point to an average bead stiffness
of 2:1551:10 kPa (N ¼ 228, mean 5 SD). Stiffness varia-
tions originate here partly from bead inhomogeneities and
partly from fitting errors, which are on average ~0.55 kPa.
Simultaneously, agar films (thickness T1 mm) were cast
from the same agar preparation, whose stiffness was
measured by AFM indentation (41) (see Section S9), giving
an average elastic modulus of 2:0650:08 kPa assuming
n ¼ 0:5 (N ¼ 48). Comparing results for the stiffness of
the agar used, we find on average very good quantitative
agreement between agar films measured with AFM indenta-
tion and the analysis of deformed beads in the channel
(Fig. 5 C).
Measurement of cell stiffness

In addition, we measured cells of a human promyelocytic
cell line (HL60) in an RT-DC setup and analyzed deformed
Biophysical Journal 109(10) 2023–2036
cell shapes just as in the case of the deformed agar beads
described above (see Fig. 5, D–F). Employing the cell me-
chanical model of an isotropic elastic sphere and assuming
incompressibility ðn ¼ 0:5Þ, we obtain on average an
apparent cell elastic modulus of E ¼ 1:4850:51 kPa (N ¼
281, mean5 SD). The spread of the data may be accounted
for by the fitting error of the elastic modulus (average value
of 0.46 kPa) and by the biological variation of cells. Per-
forming AFM indentation experiments, we find on average
a Young’s modulus of E ¼ 170585 Pa (N ¼ 169). AFM
force curves were analyzed using Hertz theory, making
the comparable assumption of indentation into an incom-
pressible, isotropic elastic material (42). The smaller stiff-
ness value from AFM indentation experiments may be
accounted for by the much shorter timescales (z1 ms) in
RT-DC measurements (43). The error of the measured
Young’s modulus due to uncertainties in the Poisson ratio
is discussed in Section S10.

Anticipating instead that the stiffness of HL60 cells
is dominated by the cell boundary, i.e., the plasma mem-
brane and cell cortex, it is more appropriate to perform
cell-shape fitting using the model of a thin, incompressible
elastic shell. Performing this analysis, the same sample
yields an average cell-area expansion modulus of ðEhÞ ¼
23:758:4 nN/mm (Fig. 5 F).

Finally, including a surface tension, g, we find that
area expansion moduli, ðEhÞg, adopt reduced values as
a result of the additional contribution of surface tension
to the mechanical integrity of the cell. Setting g to be
2% of the area expansion modulus, we find on average
values that are approximately 20% smaller ððEhÞg ¼
19:256:8 nN=mmÞ than without additional surface ten-
sion. This value of ðEhÞg corresponds to a surface tension
of gz0:4 nN/mm, which is in the range of experimen-
tally measured cell-surface tensions (38,44).
Analysis of RT-DC experiments

As a typical output of RT-DC measurements, cell deforma-
tion, d, is plotted versus cell size (imaged cell area), and in
this representation, each cell population creates a cloud of
data points (17). For further analysis, it is desirable to iden-
tify regions of similar cell stiffness in such scatterplots. In
fact, cells with fixed elastic modulus but varying cell size
create data points falling on a line in the deformation-
versus-cell-area space. Using the equivalent channel radius
together with the stream-function approach and the model
of an elastic sphere or an elastic shell, we derived isoelastic-
ity lines for a square channel with L ¼ 20 mm (Fig. 6, A
and B).

Isoelasticity lines are universal, i.e., they only need to be
calculated once, and a subsequent change of experimental
conditions only leads to a rescaling of elastic moduli. Beads
and cells were measured at a flow rate of Q ¼ 0:012 mm/s
and the fluid viscosity was h ¼ 15 mPa$s, which yields
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FIGURE 5 Shape fitting of elastic agar beads

and HL60 cells. (A) Deformed bead in the micro-

fluidic channel (top left) overlaid with the contour

found by the automatic contour detection (bottom

left) (17). (B) Contour found by the tracking soft-

ware (dotted line) overlaid by shapes from the the-

ory for an elastic sphere for different elastic

moduli, E ¼ 1:05 kPa (yellow dash-dotted line),

E ¼ 1:95 kPa (red solid line, best fit, 95% confi-

dence interval: 0.3 kPa) and E ¼ 4:9 kPa (blue

dashed line). (C) Comparison of results from shape

fitting of measured contours ðN ¼ 229Þ with AFM

indentation on agar film of the same composition as

the beads (N ¼ 48 different spots indented).

(D) Deformed cell in the microfluidic channel.

In the outer contour, the cell boundary found by

the tracking software is shown (black dots) overlaid

by the shape of a solid elastic sphere of elastic

modulus E ¼ 1:6 kPa according to our theory

(red solid line). (E and F) Cell elastic moduli from

shape fitting using the cell mechanical model of

(E) a solid elastic sphere or (F) a thin elastic shell

without (left) and with a relative surface tension of

g ¼ 0:02� ðEhÞ (right). All measurements were taken with Q ¼ 0:012 mL/s, h ¼ 15 mPa$s. In (C), (E), and (F), box plots show the mean value (square),

first to third quartiles (horizontal lines), and 1.5� the interquartile region (whiskers). In (E) and (F), outliers are shown in addition (black circles).

Scale bars in (A) and (D) are 10 mm. To see this figure in color, go online.
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E0 ¼ 270 Pa or, alternatively, ðEhÞ0z3:4 nN/mm. Changing
to a different flow rate, Q0, viscosity, h0, and/or channel side
length, L0, according to our characteristic stress scale simply
leads to the conversion E0

0 ¼ Q0h0L3=ðQhL03Þ � E0 or
ðEhÞ00 ¼ Q0h0L2=ðQhL02Þ � ðEhÞ0 and a rescaling of the la-
bels written on the area axis by a factor of ðL0=LÞ2. Hence,
isoelasticity lines provide a general look-up graphic that can
easily be adapted to a given set of experimental parameters.
Plotting them together with data points from RT-DC exper-
iments allows identification of regions of similar cell stiff-
ness (17).

Furthermore, we indicate in this look-up graphic the
range of validity of our theory for RT-DC analysis by giving
an estimate of the strain magnitude. To this end, we plotted
curves where the magnitude of the maximal-strain eigen-
value averaged over the sphere surface adopts a certain
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(B) Isoelasticity lines of a thin elastic shell without surface tension with data poin

imental parameters, ðEhÞ0z3:4 nN/mm. To see this figure in color, go online.
value (Fig. 6, A and B, dashed lines). Generally, the inaccu-
racy of our analytical approximation grows for larger strains
and correspondingly for larger values of cell deformation.
For the case of an elastic sphere, allowing for average strain
values of up to 22% and thereby for errors on the order of
z5%, the validity of our theory is limited to deformations
of d(0:02 in the case of an elastic sphere (Fig. 6 A). For
an elastic shell, strain values are smaller and the validity
limit is set by the accuracy of the stress estimate on the
shell’s surface, which does not take into account changes
in hydrodynamic surface stresses due to the deformation
(see Section S8). Admitting average errors in stress up to
10%, our analysis is again limited to deformations of
(0:02.

To confirm this validity limit, we verified the predicted
shapes of our analytic theory for the case of a solid elastic
[µm2]
0 150 200

FIGURE 6 Isoelasticity lines in the area-versus-

deformation space for L ¼ 20 mm with measure-

ment data. This representation is universal, i.e.,

different experimental parameters simply corre-

spond to different values of E0 and ðEhÞ0. Thereby,
it provides a general look-up graphic that can easily

be adapted to changes in flow rate, Q, and suspen-

sion viscosity, h. The conversion rules between

different experimental settings are explained in

the text. Dashed lines indicate paths where the

magnitude of the maximal eigenvalue of the strain

tensor averaged over the sphere surface has a

certain value (indicated). These lines represent an

f the theory. (A) Isoelasticity lines of a solid elastic sphere with data points

ents (red squares). For the applied experimental parameters, E0z270 Pa.

ts representing HL60 cell measurement (red squares). For the applied exper-
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sphere by fully coupled finite-element simulations that take
into account the coupling between flow field and elastic
deformation (see Section S12). For deformations up to
0.02, we find good agreement between shapes generated
with the numerical simulation and those produced by our
analytical framework. Furthermore, a fit of our theory to
simulated shapes reproduces the assumed Young’s modulus
within an accuracy of 4% at a deformation of 0.02 (see
Fig. S6).
DISCUSSION

We have presented a theoretical analysis that allows us to
relate elastic parameters directly to the deformation of entire
cells in RT-DC measurements on timescales of z1 ms. To
do so, we calculated the deformation of an elastic spherical
object advected by a steady Stokes flow in a cylindrical
channel using linear elasticity theory. The concept of the
equivalent channel radius allows us to map our analytical re-
sults onto the problem of a sphere in a square flow channel,
as is typically used in RT-DC experiments. In RT-DC, sus-
pended animal cells, which are initially close to spherical,
are advected and deformed by a steady shear flow. Our study
can be used to associate cell stiffness to cell deformation as
obtained from RT-DC measurements, employing simple
cell mechanical models. As our calculations rely on the ap-
proximations of linear elasticity theory, our analysis is
restricted to the case of small cell deformations ðd(0:02Þ
with strains [1.

The analytical study presented here enables us to calcu-
late the flow field and stresses on the surface of the spherical
object with minimal numerical effort ((0.5 s computation
time on a standard personal computer) (Figs. 1, 2, and 3).
Calculated surface stresses are directly proportional to the
peak flow velocity, u, and can therefore be tuned continu-
ously simply by changing the flow rate, Q.

We made the simplifying assumption of the cell being
composed of an isotropic elastic material, motivated by
the cell shape acquiring a steady state within the RT-DC mi-
crofluidic channel. The elastic deformation of the spherical
object immersed in the flow depends on its architecture and
its material properties. In detail, we considered the case of a
solid elastic sphere and a thin elastic shell with or without
surface tension (Fig. 4).

For the case of an elastic sphere and a thin elastic shell,
surface displacement fields scale with sc=E ðEfGÞ, where
sc is the characteristic stress and E the Young’s modulus
of the material. This means, in particular, that any change
in the elastic modulus, for example by a factor of f, can
equivalently be interpreted as an according change in the
flow rate by a factor of 1=f . Furthermore, it highlights the
need for a good experimental control of the flow rate to
extract cell stiffness quantitatively. For the case of the shell,
we find in addition that displacements are inversely propor-
tional to shell thickness, h. Contributions from a surface ten-
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sion, g, reduce the radial displacement in a shell and can
actually make a thin elastic shell look like an elastic sphere.
To examine cells independently of surface tension during
deformation experiments, cytoskeletal drugs such as bleb-
bistatin (45) that inhibit myosin motor activity can be em-
ployed, which results in a strong reduction of cortical
tension in cells (39,46).

We used two deformation measures, deformation, d, and
curvature ratio, x, to characterize the dependence of sphere
shape deformations on sphere architecture (Fig. 4, A and
C). The discriminative power of the measures d and x with
respect to sphere architecture increases the larger the defor-
mation. Pinpointing inherent differences between the case of
a solid elastic sphere and a thin elastic shell may help to
determine experimentally whether elastic deformations on
short timescales are dominated by elastic properties of the
cell bulk or of the membrane-cortex entity at the cell bound-
ary. A dominant cell bulk would correspond to the scenario
of an elastic sphere, whereas a dominant cell boundary
would be better captured by the model of an elastic shell.
Although the deformation measure d has been regularly
used in RT-DC experiments so far, a precise estimate of x,
a new cell-shape measure (to our knowledge) suggested
here, is not feasible with our current imaging techniques.
A distinction between the two cell mechanical scenarios ac-
cording to the interdependence between d and x (see Fig. 4
C) calls for an enhanced imaging technique together with
cell-shape predictions at large cell deformations.

Our analytical results are validated by RT-DC measure-
ments on agar beads with known stiffness, which were
independently determined by AFM measurements of films
of the same agar concentration. On average, the results are
in very good agreement (ERT-DC ¼ 2:1551:10 kPa and
EAFM ¼ 2:0850:08 kPa; see Fig. 5 C). First measurements
on cells (HL60) point to elastic moduli of z1.5 kPa
(Fig. 5 E). Quantification of whole-cell mechanical proper-
ties at such short timescales constitutes a largely uncharted
territory, with a first relevant publication earlier this year
(18). In fact, AFM indentation experiments of the same
cell line yield considerably lower average elastic moduli
of 0.17 kPa for HL60 cells. This discrepancy may be ac-
counted for by the timescale dependence of cell stiffness.
This effect is absent in simple materials such as agar (47).
Frequency dependence of cell stiffness has been reported
to scale typically with power laws of exponents 0:1� 0:5
(43), even down to timescales of relevance here (18). In
our AFM measurements, forces were applied on a timescale
of z1 s (see Section S9). Using a power-law extrapolation
to a timescale of 1 ms, which is a typical timescale of an RT-
DC measurement, the mean stiffness value from the AFM
measurements points to elastic moduli in the range
z0:34� 5:4 kPa, which is compatible with the value ob-
tained from RT-DC (z1.5 kPa). An additional contribution
to the discrepancy between elastic moduli from AFM and
RT-DC measurements could be that the underlying model
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of a homogeneous elastic sphere is not appropriate for an
HL60 cell. If this is the case, a localized indentation as in
AFM measurements and a bulk deformation as in flow cy-
tometry may give rise to different effective elastic moduli.

Interpreting our RT-DC measurements in an alternative
way, using a thin elastic shell as a cell mechanical model,
HL60 cells exhibit an average cell-area expansion modulus
of ðEhÞ ¼ 23:758:4 nN/mm (Fig. 5 F). Measurements on
MDCK II cells performed by Pietuch et al. (48) point to
comparable values of area expansion moduli in the range
10� 100 nN/mm.

For interpretation of RT-DC data on cell populations, we
have calculated a look-up graphic indicating regions of
similar cell stiffness in graphs of cell deformation versus
cell area (see Fig. 6). Therefore, our results facilitate the
comparison between cell mechanical properties of cell
populations with different average cell sizes, which is
impossible by measurement of cell deformation alone. RT-
DC, combined with our theoretical analysis, allows mea-
surement of cell stiffnesses of large cell populations in a
fast and efficient way and thereby opens up new possibilities
for cell mechanical approaches in medical diagnostics and
biology.
APPENDIX A: SOLUTION OF THE FLOW FIELD IN
TERMS OF A STREAM-FUNCTION APPROACH

The scalar stream function is defined by Jðr; zÞ ¼ qðr; zÞ=2p, where

qðr; zÞ is the volumetric flow rate across a circular disk of radius r centered

around the z axis, placed at position z (33). It can easily be transformed to

spherical coordinates by r ¼ rsinq and z ¼ rcosq. With this definition,

Eqs. 1 and 2 lead to a single, fourth-order PDE (33),"
v2

vr2
þ
�
sin q

r

�2
v2

vðcos qÞ2
#2

Jðr; qÞ ¼ 0: (17)

The operator in square brackets is separable (33) and the part of the so-

lution that obeys the required symmetries in q, Jðr; qÞ ¼ Jðr;�qÞ, is
given by

Jðr; qÞ ¼
X
n¼ 2

N

n even

Pn�2ðcos qÞ � Pnðcos qÞ
2n� 1

�ðAnr
n þ Bnr

�nþ1 þ Cnr
nþ2 þ Dnr

�nþ3
�
;

(18)

with Legendre polynomials, Pn, and constants An, Bn, Cn, and Dn to be

determined from the boundary conditions (Fig. 1 A). In the following, we

sketch a procedure developed in Haberman and Sayre (30) to find the solu-

tion that obeys the boundary conditions depicted in Fig. 1. Detailed expres-

sions can be found in the Supporting Material.
Calculating the stream-function expansion
coefficients

Using Eqs. 3 and 18, the no-slip boundary condition on the surface of the

sphere can be translated into two conditions on the set of constants
ðAn;Bn;Cn;DnÞ, which decouple for each n as a result of the orthogonality

of the Legendre polynomials. To derive the conditions that follow from the

boundary conditions on cylinder walls and channel inlet and outlet, a gen-

eral solution, ~Jðr; zÞ, to Eq. 17 is additionally derived in cylindrical coor-

dinates (30). By transforming the solution Jðr; qÞ into cylindrical

coordinates, Jðrðr; zÞ; qðr; zÞÞ, and comparing the coefficients of powers

in r and z between ~Jðr; zÞ and Jðrðr; zÞ; qðr; zÞÞ, a linear system of equa-

tions is derived that determines the constants ðAn;Bn;Cn;DnÞ such that all

boundary conditions are simultaneously satisfied ((30) and Section S2).

The resulting solution initially depends on the two dimensionless quan-

tities bu ¼ u=v and l ¼ r0=R, where v is the equilibrium velocity of the

sphere, u the peak velocity of the Poisseuille flow, r0 the sphere’s radius,

and R the channel radius. In general, the net force resulting from the hydro-

dynamic stresses acting on the sphere for an arbitrary choice of bu and l will

not vanish. However, we are only interested in a force-free steady-state mo-

tion of the sphere through the channel, which imposes the unique relationbuðlÞ shown in Fig. 2 A. To find buðlÞ, we need to derive the corresponding

constraint that force-free motion imposes on ðAn;Bn;Cn;DnÞ. Using Eqs. 3,
4, and 18, it can be shown that the expansion coefficients of the hydrody-

namic stress (Eq. 5, a and b) read (30)

fn ¼ 2

v

�
2nþ 3

n
rnþ1
0 Cnþ1 þ 2n� 1

nþ 1
r�n
0 Dnþ1

�
(19a)

1
�
n� 1 nþ 2
gn ¼ �
v n

rn�1
0 Anþ1 þ

nþ 1
r�n�2
0 Bnþ1

þ nþ 3

n
rnþ1
0 Cnþ1 þ n� 2

nþ 1
r�n
0 Dnþ1

�
: (19b)

Additionally, integrating the general expansion of the surface stress

(Eq. 5, a and 5) over the surface of the sphere and requiring the result to

vanish leads to the constraint relation f1 þ 2g1 ¼ 0. This constraint relation,

together with Eq. 19, a and b, can be used to derive a condition on

ðAn;Bn;Cn;DnÞ, such that the resulting solution, Jðr; qÞ corresponds to a

force-free motion of the sphere through the channel. Details of the solution

procedure are given in Section S2.
APPENDIX B: SOLID ELASTIC SPHERE

If we use the displacement as given in Eq. 8 to calculate the nonvanishing

components of s as given in Eq. 7, we find

srrðr; qÞ ¼ 2G
X
n¼ 1

N �
anðnþ 1Þ�n2 � n� 2� 2n

�
rn

þ bnnðn� 1Þrn�2
�
Pnðcos qÞ (20a)

XN � � �

srqðr; qÞ ¼ 2G

n¼ 1

an n2 þ 2n� 1þ 2n rn

þ bnðn� 1Þrn�2
� dPnðcos qÞ

dq
: (20b)

By comparing the elastic stress components (Eq. 20) at r ¼ r0 with the

hydrodynamic stress on the surface of the sphere given in Eq. 5, we find, for

nR2,

an ¼ sc

2Grn0

ngn � fn
n2 þ nþ 1þ 2nnþ n

(21a)
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sc ð2þ3n�n3þ2nnþ2nÞfnþðn2þ2n�1þ2nÞgn

bn¼

2Grn�2
0 ðn�1Þðn2 þ nþ 1þ 2nnþ nÞ :

(21b)

The constant b1 introduces merely a constant shift of the sphere in the

direction of the channel axis and does not contribute to the stress. There-
fore, we set b1 ¼ 0. Using the constraint f1 þ 2g1 ¼ 0 of zero net force,

we find consistently for a1

a1 ¼ � sc

Gr0

f1
4ð1þ nÞ: (22)

Now, we expand the displacement field of a solid elastic sphere on the

sphere’s surface in terms of
ur
��
r¼ r0

¼
X
n¼ 1

N

asp
n Pnðcos qÞ (23)

�� XN
spdPnðcos qÞ
uq r¼ r0
¼

n¼ 1

bn dq
: (24)

Using the derived expressions for an and bn, a
sp
n and bspn can be calcu-

lated as
asp
n ¼ scr0

2G

ðfnð2n� 2ðn� 1Þn2 þ nn� 1Þ þ gnnðnþ 1Þðð2n� 1Þn� nþ 2ÞÞ
ðn� 1Þðnþ n2 þ 2nnþ nþ 1Þ (25a)

bsp
n ¼ scr0

2G

ðfnð � nþ ð2n� 1Þnþ 2Þ þ gnðn� 2ðn� 1Þn2 þ ð3n� 1Þnþ 1ÞÞ
ðn� 1Þðnþ n2 þ 2nnþ nþ 1Þ : (25b)
APPENDIX C: THIN SHELL WITH SURFACE
TENSION

For a rotationally symmetric shape whose boundary is described by

rðq;fÞ ¼ ½r0 þ urðqÞ�er þ uqðqÞeq, surface area AðdÞ, and enclosed volume

VðdÞ of the deformed shape, read

AðdÞ ¼ 2p

Z p

0

����vrvq
���� ����vrvf

���� dq
2

Z p
" � 0 � � 0 �
¼ 4pr0 þ 2p

0

r0 2ur þ uqcot qþ uq þ ur þ uq

�ður þ uqcot qÞ þ
�
u0r � uq

�2
2

#
sin qdqþO�

u3
�

¼ A0 þ DAðuÞ þ O�
u3
�

(26)
Z p�

VðdÞ ¼ p

0

r0 � u0rcot qþ ur þ u0q

þ uqcot q
�ððr0 þ urÞsin qþ uqcos qÞ2sin qdq
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4
� Z p� �
¼

3
pr30 þ p

0

r0 � u0rcot qþ ur þ u0q þ uqcot q

�ððr0 þ urÞsin qþ uqcos qÞ2sin qdq� 4

3
pr30

�

¼ V0 þ DVðuÞ; (27)
where A0 and V0 are the surface area and volume of the undeformed

sphere. By the symmetry of the problem, one has DV ¼ Oðu2Þ. To see
this, assume a displacement solution, u, is given for a flow field in the z

direction. Changing the direction of the flow from z to �z, leaving all

other parameters unchanged, will produce the same displacement field,

but with a change in sign from u to �u. For a linear contribution to the

volume change, dVfui, this would imply dV/� dV. However, the value
of the volume cannot depend on the direction of the flow. Therefore,

DVðuÞ ¼ Oðu2Þ. This also follows explicitly from Eq. 27. using the facts

that urð�qÞ ¼ �urðqÞ and uqð�qÞ ¼ uqðqÞ. Because we only consider an

energy functional up to Oðu2Þ, P is given by the constant Laplace

pressure, P0 ¼ 2g=r0. Using Eqs. 14, 26, and 27, we find to linear order

in ui
dE

dur
¼ dEsh

dur
� r0

��
P� 2g

r0

��
r0 þ u0q þ uqcot q

�
þ 2

�
P� g

r0

�
ur þ g

r0

�
u0rcot qþ u00r

��
sin q

dE ¼ dEsh � r0

�
P� 2g

��
uq � u0

�
sin q: (28)
duq duq r0
r

Plugging in the Laplace pressure, P ¼ P0 ¼ 2g=r0, yields the Euler
equations as given in the main text (Eqs. 10 and 14).
SUPPORTING MATERIAL

Supporting Materials and Methods, seven figures, and two tables are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)
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S1. PERTURBATION APPROACH FOR THE CALCULATION OF THE

ELASTIC DEFORMATION OF AN ADVECTED SPHERE

We estimate surface stress and elastic strain of an advected, elastic sphere in terms of a

perturbation approach that is valid for small flow rates Q. To make this more precise, we

introduce a dimensionless flow rate Q̂ = ηQ
ER3 . Here, η is the viscosity of the carrier medium,

R is the channel radius and E is the sphere’s Young’s modulus. Our perturbation calculation

takes into account terms up to first order in Q̂. The hydrodynamic stress σH on the sphere’s

surface is a function of Q̂ and of the elastic deformation of the sphere captured by the strain

tensor ε. Accordingly, we make an expansion

σHij (Q̂, ε) = A0(ε) + A1(ε)Q̂+O(Q̂2)

As hydrodynamic stresses vanish if the flow rate is zero, A0(ε) equals zero. Further, ε is

also a function of Q̂ with

ε(Q̂) = O(Q̂).

Accordingly

A1(ε) = A1,0 +O(ε) = A1,0 +O(Q̂).

Therefore,

σHij (Q̂, ε(Q̂)) = A1,0Q̂+O(Q̂2).

We conclude, that for a perturbation approach up to first order in Q̂, we may estimate the

stress on the sphere’s surface using an undeformed sphere (ε = 0).

Although less intuitive, Q̂ may also be regarded as a function of ε with

Q̂(ε) = O(ε).

Therefore, a first order perturbation calculation in Q̂ is equivalent to a first order perturba-

tion calculation in elastic strain ε which is a common approach in elasticity theory.

S2. CALCULATION OF THE STRESS ACTING ON THE SURFACE OF AN

ADVECTED SPHERE

In the following, we explain in detail how to determine the expansion coefficients

(An, Bn, Cn, Dn) of the stream function Ψ introduced in Eq. (18) (main text).



3

Characteristic scales and dimensional reduction. To simplify the notation and to find the

minimal set of independent parameters, we define the characteristic scales composed of the

radius of the sphere r0, the velocity of the sphere v in the rest frame of the channel, and the

fluid viscosity η. With this, we find a characteristic force Fc ≡ r0ηv and a characteristic stress

σc ≡ ηv
r0

. The latter can be used to define a dimensionless elastic modulus by Ê ≡ E/σc, a

dimensionless shear modulus by Ĝ ≡ G/σc, as well as a dimensionless pressure by p̂ ≡ p/σc.

Further, we introduce a dimensionless stream function Ψ̂ given by Ψ̂ ≡ Ψ/(vr2
0). Accordingly,

we define dimensionless expansion coefficients (Ân, B̂n, Ĉn, D̂n) that relate to Eq. (18) (main

text) by An ≡ vr2−n
0 Ân, Bn ≡ vrn+1

0 B̂n, Cn ≡ vr−n0 Ĉn and Dn ≡ vrn−1
0 D̂n. In addition,

we introduce the notation Ân := (Ân, B̂n, Ĉn, D̂n), so that {Ân} denotes the set of all

dimensionless expansion coefficients.

Calculating the constants (Ân, B̂n, Ĉn, D̂n) for a force-free motion of the sphere

through the channel. The linear system of equations that is found by the procedure

outlined in Appendix A of the main text reads [2]

û+
∞∑
n=0
n even

(A(α0)
n an + B(α0)

n bn) = −1
∞∑
n=0
n even

(A(β0)
n an + B(β0)

n bn) = −2

5
λ2

∞∑
n=0
n even

(A(α1)
n an + B(α1)

n bn) =
2

5
λ2

∞∑
n=0
n even

(A(β1)
n an + B(β1)

n bn) = 0

∞∑
n=0
n even

(A(α2)
n an + B(α2)

n bn) = 0
∞∑
n=0
n even

(A(β2)
n an + B(β2)

n bn) = 0 (S1)

...
∞∑
n=0
n even

(A(αk)
n an + B(αk)

n bn) = 0
∞∑
n=0
n even

(A(βk)
n an + B(βk)

n bn) = 0

...
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with

A(αk)
n = δ2k,n

(4k + 5)(2k + 2)!

4
π +

(
I

(2k+n+1)
1

(2k − 2)!(4k + 1)
− I

(2k+n+2)
2

(2k)!

)
λn+2k+3

A(βk)
n = δ2k,n

(4k + 3)(2k + 2)!

4
π − I

(2k+n)
1

(2k!)(4k + 5)
λn+2k+5

B(αk)
n =

(
δ2k,n

(4k + 3)(2k + 2)!

4(4k + 1)
+ δ2k,n−2

(2k + 2)(2k + 1)(2k + 2)!

4

)
π

+

(
I

(2k+n+1)
3

(2k)!
+

(2k + 2)(2k + 1)

(2k)!(4k + 1)
I

(2k+n)
2

)
λn+2k+1

B(βk)
n =

(
δ2k,n

(2k + 2)!

4
+ δ2k,n−2

(2k + 2)(4k + 3)(2k + 1)(2k + 2)!

4(4k + 5)

)
π

− I
(2k+n−1)
2

(2k)!(4k + 5)
λn+2k+3,

where I
(s)
1 , I

(s)
2 , I

(s)
3 are integrals that are given explicitly in [2] (p. 17 therein) and that

need to be evaluated numerically. δi,j is the usual Kronecker symbol. In Eq. (S1), we

have introduced the dimensionless quantities λ = r0/R with the radius of the advected

sphere r0 and the channel radius R, as well as û = u/v with the velocity of the sphere v

and the maximum flow velocity u of the Poiseuille flow at infinity. The above system of

equations (S1) is solved in terms of (a0, a2, ..., b0, b2, ...).

The expansion coefficients (Ân, B̂n, Ĉn, D̂n) can then be obtained from [2]

B̂n = (−1)
n
2

+1π

(
n!

2
an−2 +

n(n− 1)n!

2(2n+ 1)
bn

)
(S2a)

D̂n = (−1)
n
2

+1 πn!

2(2n− 3)
bn−2 (S2b)

Ân = −2n+ 1

2
B̂n +

1− 2n

2
D̂n (S2c)

Ĉn =
2n− 1

2
B̂n +

2n− 3

2
D̂n. (S2d)

An additional constraint on the system of equations (S1) emerges from the condition of a

force free steady-state motion of the sphere. As an expansion of the stress of the surface of
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the sphere, we introduced in the main text

σHrr
∣∣
r=r0

= σc

∞∑
n=1
n odd

fnPn(cos θ)

σHrθ
∣∣
r=r0

= σc

∞∑
n=1
n odd

gn
dPn(cos θ)

dθ
,

with

fn(Ân+1) = 2

(
2n+ 3

n
Ĉn+1 +

2n− 1

n+ 1
D̂n+1

)
(S3a)

gn(Ân+1) = −
(
n− 1

n
Ân+1 +

n+ 2

n+ 1
B̂n+1 +

n+ 3

n
Ĉn+1 +

n− 2

n+ 1
D̂n+1

)
. (S3b)

Integrating the general expansion of surface stress over the surface of the sphere and im-

posing a vanishing net force leads to the constraint relation f1 + 2g1
!

= 0. Plugging

Eqns. (S3a) and (S3b) into this relation and using 2Ĉ2 − 3B̂2 = 0 (this can be seen by

evaluating vr(r0) = 0 and vθ(r0) = 0) it follows that D̂2
!

= 0. It can be seen from Eq. (S2b)

that this is equivalent to b0 = 0. Hence, for a given λ, we simply solve Eqns. (S1) by setting

b0 = 0 and treating û = u/v as an additional unknown instead, whose value depend on the

particular choice of λ.

The described method provides a fast and numerically exact method to simultaneously de-

termine û(λ) (i.e. the size dependent steady-state velocity) and the expansion coefficients

{Ân} for the case where no net force acts on the sphere. Truncating the summations in

Eqns. (S1) at some even n = nmax and taking into account the first nmax + 2 equations up to

kmax = (nmax + 2)/2 − 1 yields a closed system that determines the nmax + 2 unknowns

(û, a0, a2, ..., anmax , b2, b4, ..., bnmax), which directly yield {Ân}n=2,4,...,nmax via Eqns. (S2a)-

(S2d). The physical steady state velocity of the advected sphere for a particular peak

flow velocity u in the channel is then determined by v(λ) = u/û(λ). We have checked that

the coefficients converge when nmax is increased. As shown in the following, the absolute

values of (Ân, B̂n, Ĉn, D̂n) additionally decrease for larger n, which justifies the suggested

truncation scheme.

Evaluation of expansion coefficients and hydrodynamic stresses for different λ.

Fig. S1 shows the amplitudes of the coefficient vector |Ân| =
√
Â2
n + B̂2

n + Ĉ2
n + D̂2

n, normal-

ized by its maximum at n = 2. The expansion coefficients decay slower with n for larger λ.
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This represents the increasingly complex interaction with the wall for larger spheres. De-

pending on the application, one can then choose an appropriate threshold to truncate the

series. In this work we have chosen to neglect terms with |Ân|/|Â2| < 10−4. This thresh-

old leads to a numerical precision of the derived hydrodynamic surface stresses σHij /σc of

approximately 10−3, which suffices for experimental purposes.

1

4 8 12 16 20 24 28 32 36 40
1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

FIG. S1: Normalized absolute value of the coefficient vectors Ân used in the stream function for

different λ. For the shown data we neglected all coefficients with |Ân|/|Â2| < 10−4. This threshold

is depicted by the dashed line, which shows that more and more terms have to be included for the

same numerical precision, when λ is increased. Ân = 0 for odd n.

Figure S2 depicts the values of the expansion coefficients fn and gn as given by

Eqns. S3a and S3b for different λ. As mentioned before, fn = gn = 0 for even n, which is

a consequence of the symmetry of the flow solution. Their amplitudes increase for greater

values of λ, which represents an increase in stress, if the object’s size is increased and all

other experimental parameters are left constant.

Fig. S3 shows the stress amplitudes for λ = 0.9. All other parameters are as for Figure 3A

in the main text. Despite the overall increase of stress amplitudes, the vicinity of the

channel walls now leads to much more pronounced effects on surface regions around θ = π/2

compared to λ = 0.7. Again those results are verified by the Finite-Element method.
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FIG. S2: Expansion coefficients of the hydrodynamic stresses on the surface of the sphere for

different λ. fn relates to pressure, gn relates to shear stresses. Decay properties are very similar

to those of the stream function coefficients Fig. S1. Increasing λ leads to an overall increase of

coefficient amplitudes and hence stress, when experimental conditions (Flow rate Q and viscosity η)

are kept constant. fn = gn = 0 for for even n.
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FIG. S3: Hydrodynamic pressure (left) and shear stress (right) for λ = 0.9. Solid line shows results

from the stream function approach for Q = 0.012µl/s and η = 0.015 mPa · s (typical experimental

parameters, as used in Fig. 3B (main text)) and channel radius R = 10µm. While the essential

characteristics are still given by the 1st and 3rd Legendre polynomials and their derivatives, normal

and tangential stress amplitudes increase by a factor of 2 and 4, respectively, compared to λ = 0.7.

The strong stress gradients around π/2 (near the channel walls) lead to the bulge and groove for

deformed shapes shown in Fig. 4A (main text).
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S3. EQUIVALENT CHANNEL RADIUS

To map the situation of a steady flow in a channel with square cross-section of side length

L onto the problem of a steady flow in a cylindrical channel with radius Req, we take the

following approach: we derive a factor C with 2Req = C ·L such that the pressure drop is

the same in the circular channel as in the square channel. Textbook results for the fluid flow

through channels with circular and square cross-section [3] can be used to derive

C = 2
4

√
2K1

3π
≈ 1.094

with

K1 = 1− 6
∞∑
n=1

tanh(ωn)

ω5
n

with ωn = (2n− 1)
π

2
.

This defines λeq = r0/Req and we can identify the different geometries by λ = λeq.

S4. LEGENDRE POLYNOMIALS

We solve the stream function, stress components and displacements fields of the advected

elastic spherical object in terms of an expansion of Legendre polynomials. The defining

differential equation of Legendre polynomials Pn(x), x ∈ [−1, 1] reads

d

dx

[
(1− x2)

dPn(x)

dx

]
+ n(n+ 1)Pn(x) = 0. (S4)

To derive most of the equations related to displacement calculations in all models, we have

to make use of an identity that follows directly from (S4) by substituting x → cos θ and

reads
d2Pn(cos θ)

dθ2
= −

(
cot θ

dPn(cos θ)

dθ
+ n(n+ 1)Pn(cos θ)

)
.

S5. EQUILIBRIUM EQUATIONS OF LINEAR ELASTICITY IN SPHERICAL

COORDINATES

For the sake of completeness, we state the equilibrium equation of linear elasticity in spherical

coordinates, i.e. the components of

∇ ·σ = 0 (S5)
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where ∇ represents the covariant derivative the stress tensor σ. The components of Eq. (S5)

in spherical coordinates read [4]

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r sin θ

∂σrϕ
∂ϕ

+
2σrr − σθθ − σϕϕ + σrθ cot θ

r
=0

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
1

r sin θ

∂σθϕ
∂ϕ

+
3σrθ + (σθθ − σϕϕ) cot θ

r
=0

∂σrϕ
∂r

+
1

r

∂σθϕ
∂θ

+
1

r sin θ

∂σϕϕ
∂ϕ

+
3σrϕ + 2σθϕ cot θ

r
=0.

Stress-strain relations for an isotropic, linearly elastic material read in all coordinates [6]

σij = 2G

(
εij +

ν

1− 2ν
δijεkk

)
. (S6)

The components of the strain tensor relevant for the calculations of surface stresses relate

to the displacement fields by

εrr =
∂ur
∂r

εθθ =
1

r

∂uθ
∂θ

+
ur
r

εrθ = εθr =
1

2

(
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

)
. (S7)

S6. THE PAPKOVICH-NEUBER ANSATZ

Solutions to the force balance equation (S5) can in general be given by a Papkovich-Neuber

ansatz [7]

u = 4(1− ν)B−∇(r ·B +B0), (S8)

where B and B0 are a harmonic vector and a harmonic scalar potential, i.e. ∇2B and ∇2B0

vanish. A harmonic scalar B0 in spherical coordinates with azimuthal symmetry can be

written as [4]

B0 =
∞∑
n=0

[
ānr

n +
b̄n
rn+1

]
Pn(cos θ).

Harmonic vectors in spherical coordinates with azimuthal symmetric components can be

derived by making the ansatz

Br =
∞∑
n=0
k=−∞

ankr
kPn(cos θ) and Bθ =

∞∑
n=1
l=−∞

bnlr
ldPn(cos θ)

dθ

in the vector Laplace equation ∇2B = 0. Taking into account the orthogonality of the

Legendre polynomials, we find a biquadratic equation in l = k, which yields expansions of
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the components of B of the form

Br =
∞∑
n=0

[
nc̄nr

n−1 − (n+ 1)
d̄n
rn+2

]
Pn(cos θ) (S9)

Bθ =
∞∑
n=1

[
c̄nr

n−1 +
d̄n
rn+2

]
dPn(cos θ)

dθ
(S10)

and

Br =
∞∑
n=0

[
−ēn(n+ 1)rn+1 + n

f̄n
rn

]
Pn(cos θ)

Bθ =
∞∑
n=1

[
ēnr

n+1 +
f̄n
rn

]
dPn(cos θ)

dθ
.

Note that Eqns. (S9) and (S10) are directly proportional to the respective components of

∇B0 and therefore they do not yield a new independent solution in the Papkovich-Neuber

ansatz. The coefficients of the displacement fields used in Eqns. (8a) and (8b) (main text),

an and bn, relate to the potentials discussed here by an = ēn and bn = ān, as those are the

only independent terms that converge for r → 0. The terms associated with b̄n and f̄n can

be used in the Papkovich-Neuber ansatz to calculate elastic deformations of thick shells, as

for example in [5].

S7. POLAR REPRESENTATION

Figure S4 sketches the geometry we have to consider to derive a polar representation of the

deformed shape. We have

%(θ) =
√

[r0 + ur(θ′)]2 + uθ(θ′)2 = r0 + ur(θ
′) +O(u2/r0). (S11)

Additionally we have to include the shift in the angle θ = θ′ + ∆θ′, that results from

tangential displacements:

tan(∆θ′) =
uθ(θ

′)

r0 + ur(θ′)
⇒ θ′ = θ − uθ(θ

′)

r0

+O(u2/r0). (S12)

Plugging Eq. (S12) into Eq. (S11) we find %(θ) and it takes the form

%(θ) = r0 + ur(θ) +O(u2/r0), i.e. other than the radial displacements ur, tangential

displacements uθ only contribute to second order to a polar representation of the shape.
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FIG. S4: Conversion between polar shape representation %(θ) and deformation in terms of displace-

ment fields ur(θ
′) and uθ(θ

′). %(θ) relates to the displacement fields ur and uθ given at θ′ = θ−∆θ′

in a non-trivial way.

S8. ERROR ESTIMATE OF HYDRODYNAMIC SURFACE STRESS AND

ESTIMATED YOUNG’S MODULUS

Here, we estimate the error in the surface stress of an advected sphere that stems from

neglecting the feedback of elastic deformation on the surrounding fluid flow. For this pur-

pose, we placed shapes of a deformed solid elastic sphere and a deformed shell depicted in

Figure 4A (main text) (λ = 0.7, d = 0.006) as rigid bodies into a cylindrical channel imple-

menting a finite-element simulation using COMSOL Multiphysics [11]. The velocity of the

deformed shape was chosen such that the net force vanishes within numerical precision. The

resulting stress profile σd on the surface of the deformed shapes rd(θ) = r0er(θ) + u(θ) was

compared to the stress σu on the undeformed sphere r0(θ) = r0er(θ) at equal values of θ for

normal stresses σdn and shear stresses σds , respectively. Note, that this mapping between r0

and rd is unique. The resulting profiles are shown in Figure S5A and B. We estimate the

relative stress errors as δi = |σdi − σui |/(σui,max − σui,min) (i = n, s), where σui,max and σui,min

denote the maximal and minimal value of stress on the surface of the undeformed, advected

sphere (see Fig. S5C). For the deformed solid elastic sphere, we find that the stress deviates

nowhere on the surface more than 9 % and on average only about 3.5 %. For the deformed

shell the deviations are slightly larger, with δs reaching up to 16 %. However, the surface
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regions where those values occur (close to the channel walls) represent a rather small fraction

of the whole surface, such that the average deviations are less than 7 %.

FIG. S5: Comparison of surface stresses σu and σd on undeformed (solid lines) and deformed

shapes (dashed and dot-dashed lines). Objects were advected at steady state in a Poiseuille flow

at low Reynold’s number. The deformed shapes were generated as a first order deformation of a

solid elastic sphere and a thin elastic shell with λ = 0.7 (see Fig. 4, main text) and dimensional

parameters were as Figure 3 (main text): sphere radius r0 = 7µm, channel radius R = 20µm, flow

rate Q = 0.012µl/s, viscosity η = 0.015 Pa. (A) Normal hydrodynamic stress. (B) Hydrodynamic

shear stress. (C) Deviations δi = |σdi − σui |/(σui,max − σui,min) for normal stress i = n (left) and shear

stresses i = s (right).

We performed the same analysis for shapes with deformations d = {0.01, 0.02, 0.025} and find

that the relative error increases with increased deformation (Table S1). Maximal deviations

are generally larger on a deformed shell, as compared to a deformed solid elastic sphere of

equal deformation and they are localized to surface regions that are close to the channel

walls. Due to this localisation the average error across the surface on an elastic shell shape

stays small ( < 12 %) within the regime of deformations considered in this work.

To confirm that small errors in surface stresses correspond to small errors in estimated

elastic moduli when fitting our analytic theory to experimental shapes, we employed a
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d = 0.006 d = 0.01 d = 0.02 d = 0.025

δmax
n , δmax

s (sphere) 7 %, 9 % 9 %, 12 % 12 %, 18 % 14 %, 21 %

δmax
n , δmax

s (shell) 8 %, 16 % 12 %, 21 % 19 %, 30.5 % 20 %, 33 %

δ̄n, δ̄s (sphere) 3 %, 3.5 % 3 %, 4.5 % 4 %, 6.5 % 4.5 %, 7.5 %

δ̄n, δ̄s (shell) 4 %, 6.5 % 4 %, 8 % 5 %, 11.5 % 7 %, 11.5 %

TABLE S1: Relative errors of hydrodynamic stresses on surfaces of deformed shapes as calculated

with the model of a solid elastic sphere (sphere) and a thin elastic shell (shell) for different values of

deformation d. δmax
i depicts maximal deviation that occur on surface regions close to the cylinder

walls δ̄i depict deviations averaged over the surface.

fully coupled finite element simulations of a linearly elastic sphere advected in a cylindrical

channel (see Sec. S12). This simulation takes into account the coupling between deformation

and changes in the surrounding flow field. We used it to generate steady-state shapes for

typical experimental parameters, which then were fitted using our analytical theory of an

elastic sphere (Fig. S6). For increasing deformations one can identify shape features in the

finite-element model that can not completely be captured by the analytical theory, as the

changes in the hydrodynamic stresses due to the deformation becomes more relevant (see

Table S1). However, when fitting our analytical theory to those shapes the elastic moduli

put in the phase field model are quantitatively still very well reproduced with relative errors

of less then 4 %.

FIG. S6: Fitting of shapes from a fully coupled finite element simulation (see Sec. S12). Steady-

state shapes with different deformations were generated using a numerical phase field model (see

Sec. S12) (gray dots). The contours were fitted using our analytical theory (solid lines) resulting in a

predicted elastic modulus Efit. For all three shapes we have λ ≈ 0.7, Q = 0.012µl/s, η = 15 mPa · s

and a channel radius R = 10µm.
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S9. AFM INDENTATION EXPERIMENTS.

Agar films were prepared using the same agar solution as for the beads. 600µl of agar

solution were cast into a petri dish (34 mm Ø, TPP Switzerland). Agarose films were then

covered with PBS (1 ml) for at least 2 hours before starting the measurement. For the

AFM indentation experiments a nanowizard I (JPK Instruments, Berlin) equipped with

Cellhesion Module was used. Arrow-T1 cantilevers (Nanoworld, Neuchatel) that had been

modified with a polystyrene bead of 10µm diameter (microparticles GmbH, Berlin) were

calibrated prior measurements using the thermal noise method. To determine the stiffness

of the agarose films, the cantilever was lowered with a speed of 5µm/s onto the agarose

surface until a relative setpoint of 2.5 nN was reached. The resulting force distance curves

were analysed using the JPK image processing software (JPK instruments). Force distance

data were corrected for the tip sample separation [10] and fitted with a Hertz model fit for

a spherical indenter [8]. A Poisson ratio of 0.5 was assumed (See Sec. S10). Experiments

were carried out in PBS and at room temperature. Similar methodical settings were used

for indentation experiments on HL60 cells. Arrow -T1 cantilevers were modified with a

polystyrene bead of 5µm diameter and lowered with a speed of 5µm/s onto the cell surface

until a relative setpoint of 2 nN was reached. Force distance data were analyzed as mentioned

above. Experiments were carried out at 37◦C in CO2 independent medium (life technologies,

Darmstadt) within 1.5 hours.

S10. INFLUENCE OF POISSON RATIO ON FITTED ELASTIC MODULI

In AFM indentation measurements, the Hertz model is used to fit the elastic modulus

E∗ = E/(1− ν2), where E is the Young’s modulus and ν is the Poisson ratio [8]. Therefore,

assuming a different Poisson ratio ν ′ leads to a different estimate of the Young’s Modulus

E ′ = E(1− ν ′2)/(1− ν2) .

For the fitting of data acquired using RT-DC, we assumed incompressibility of beads and

cells (ν = 0.5). This is motivated by their large water content together with the very short

measurement times of RT-DC (≈ 1 ms) which render it unlikely that water fluxes into and

out of the cell play a major role. In order to examine the influence of different choices of ν on

our estimate of Young’s moduli E, we have performed the same data analysis using ν = 0.3
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and ν = 0.4. The results are shown in Table S2. We conclude that changing values of the

ν = 0.3 ν = 0.4 ν=0.5

Agarose film (AFM, bulk) 2.5± 0.1 2.31± 0.09 2.06±0.08 kPa

Agarose beads (RT-DC, bulk) 1.71±0.92 1.89±1.02 2.15±1.10 kPa

HL60 cells (AFM, bulk) 206± 103 190± 95 170±85 Pa

HL60 cells (RT-DC, bulk) 1.11±0.44 1.24±0.50 1.48±0.51 kPa

HL60 cells (RT-DC, shell) 21.47±7.88 22.64±8.16 23.69±8.42 nN/µm

TABLE S2: Estimated Young’s moduli for beads and cells under the assumption of different Poisson

ratios ν (mean ± standard deviation). (legend: AFM, bulk - measured with AFM indentation using

the Hertz model, RT-DC, bulk - RT-DC measurement fitted using the model of an isotropic elastic

sphere, RT-DC, shell - RT-DC measurement fitted using the model of an isotropic elastic thin

shell)

Poisson ratio ν within the interval [0.3, 0.5] does not change the Young’s modulus estimate

by orders of magnitude but only up to 25%. Therefore, it cannot explain the difference in

Young’s moduli obtained from AFM and RT-DC measurements on cells. However, a change

of Poisson ratios gives rise to opposing trends for AFM and RT-DC measurements. While

assuming lower values for the Poisson ratio increases the extracted Young’s modulus in AFM

measurements, it decreases Young’s moduli extracted from RT-DC measurements.

S11. DISTRIBUTION OF STIFFNESS VALUE IN AFM INDENTATION AND

RT-DC MEASUREMENTS

We measured cells of a human promyelocytic cell line (HL60) in an RT-DC setup and an-

alyzed deformed cell shapes just as in the case of deformed agar beads described above

(see Fig. 5, main text). Employing the cell mechanical model of an isotropic elastic sphere,

we obtain on average a cell elastic modulus of E = 1.47 ± 0.51 kPa (N=281, mean±SD).

Performing AFM indentation experiments on the cells, we find on average a Young’s mod-

ulus of E = 170± 85 Pa (N=169). Associated distributions of measured cell elastic moduli

are shown in Fig. S7. While the means of AFM and RT-DC measurements are different,

the distributions of measurement points show similar characteristics. In particular, distri-
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butions exhibit a long tail towards higher elastic moduli. This similarity of distributions

may indicate that elastic moduli are simply scaled by a constant factor when changing from

one measurement technique to the other, something that might be accounted for by the

time-scale dependence of cell mechanics [12].

0

200

400

600

800

AFM RT-DC

E
la

st
ic

5m
o

du
lu

s5
[P

a]

E
la

st
ic

5m
o

du
lu

s5
[k

P
a]

0

1

2

3

4

5

A B

FIG. S7: Distribution of elastic moduli measured with AFM and RT-DC. (A) AFM indentation

experiments (N = 169, E = 170±85 Pa). (B) RT-DC experiment (N = 281, E = 1.47±0.51 kPa).

S12. FULLY COUPLED FINITE ELEMENT SIMULATIONS

To verify the predicted shapes of our analytic theory, we finally conduct finite element

simulations that take into account the coupling between flow field and elastic deformation.

Our simulations rely on the Stokes equation for the fluid phase (carrier medium) and linear

elasticity theory for an incompressible elastic solid.

The computational method employed is based on a phase field approach, first described in

[13]. The elastic sphere and the surrounding fluid are discretized on a common grid and a

phase field φ is used to distinguish between the phases, i.e. φ = 1 in the fluid, φ = 0 in the

cell. Thereby the stationary Stokes equation (1)-(2) can be extended over the full domain,

including the elastic stress tensor σ in the region where φ = 0.

∇p− η∇2v = ∇ · ((1− φ)σ)

∇ ·v = 0

In the fluid phase (φ = 1) we recover the original Stokes equation (1)-(2). In the cell region

(φ = 0) in the stationary limit (v = 0) we recover the equation of linear elasicity of an
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incompressible material. The use of a common grid here offers several advantages: no re-

gridding is needed and the implicit inclusion of the stress balance between viscous fluid and

elastic solid, stabilizes the coupling. Further, the elastic stress evolves according to

∂tσ + (v − vc) · ∇σ −∇v ·σ − σ · ∇vT =
E0

6

(
∇v +∇vT

)
− kφσ.

where E0 = 1 kPa is a reference Young’s modulus and we added a penalty constant

k = 106 s−1 to enforce vanishing stress in the fluid region. Note, that we have subtracted

the cell velocity vc (computed from the last respective time step) in the advection terms to

keep the cell in the middle of our computational domain.

Finally, the phase field is moved with the flow by an advected Cahn-Hilliard equation.

∂tφ+ (v − vc) · ∇φ = M∇2µ,

µ = ε−1(4φ3 − 6φ2 + 2φ)− ε∇2φ

The included 4th order diffusion with mobility constant M = 10mm3/s ensures that the

phase field keeps the distinct values of 0 and 1 in the two phases with a smooth but rapid

transition at the interface. The thickness of the transition region is controlled by the pa-

rameter ε = 0.05µm [14].

As initial condition we use a spherical bubble (for φ), poisseuille flow (for v) and zero elastic

stress (σ = 0). We prescribe a pressure difference between in- and outflow as boundary

condition. This pressure difference is iteratively adapted such as to obtain a prescribed

value for E (see Fig. S6) according to the rescaling introduced on page 13, main text.

Consistently with the analytical calculations we consider an axisymmetric setting here which

reduces the problem to a two-dimensional computational domain Ω = [0, 40]µm× [0, 10]µm.

Axisymmetric versions of the above evolution equations can be found in [15, 16].

We solve the time-dependent problem with a time step of 1µs until the bubble shape has

reached an (almost) stationary state. The compuational grid is adaptively controlled such

that the grid size is 0.1µm close to the cell boundary and 0.8µm further away from it.

More details on the numerical discretization with the Finite-Element toolbox AMDiS can

be found in [14].
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