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This supplementary material presents detailed numerical procedures for sim-
ulations of mathematical model of the cellular network model and analyses of
experimental and simulation data. It contains ten sections: (1) amplitude-phase
modeling of dispersed data, (2) network of coupled amplitude-phase models, (3)
quantification of slice data, (4) Hopf bifurcation of the single cell model, (5)
dependence of network dynamics on system parameters, (6) entrainment of net-
work dynamics to external stimuli, (7) simulation of actograms, (8) analysis of
slice culture data, (9) detailed parameter setting for the biochemical model, (10)
additional samples of bioluminescence signals.

1 Amplitude-phase modeling of dispersed data

Taking two examples of dispersed cell culture data (one from wild-type and the
other from knockout mouse), this section provides basic procedures of fitting
the amplitude equation model to the experimental data. First, bioluminescence
signal {z(¢) : t =1,2,...,T} recorded from dispersed cell of neonate SCN slice
was detrended using a least square fitting of a second-degree polynomial. The
polynomial was subtracted from the signal so that the signal was mean centered.
The detrended signal was the normalized in such a way that the signal has zero
mean and unit variance. Figs. S1, a and d, represent detrended and normalized
signals from the raw data of Fig. 1, a and d, respectively.

Second, with respect to the normalized signal x(¢), the autocorrelation C'(k)
(with the time lag of k sampling intervals) was computed as

O) = e S = 20) ik — 70) (s1)

where M is the number of samples in the time-series, and zg = ﬁzl]\ilm and
Ty = ﬁzgzkxwk represent the mean values. The autocorrelation function
detects periodicity in the signal z:(t), where the time lag that points to the first
peak roughly corresponds to the period length of the signal.



Third, parameters of the stochastic amplitude-phase model of Eq. 1 were
estimated by fitting the model to the experimental data. The single cell model
has five unknown parameters {A4,w, A, D,, D,} to be fitted to the dispersed cell
culture data. As described in the main text, the single cell model has an auto-
correlation function defined by Eq. 3. The five parameters were optimized so
that the autocorrelation function of the single cell model is fitted to that of the
bioluminescence signal. We used 1sqcurvefit subroutine of the MATLAB Sta-
tistical Toolbox to optimize the parameters. It should be noted that the fitting
of Eq. 3 may face the problem of local minima, since the function involves a
summation of two exponentials, which may create redundancy. To avoid miss-
fitting, initial guesses were used as described in detail in [1]. Figs. S1, ¢ and f,
compare autocorrelation function C'(k) of the experimental data and that of the
fitted model. The model captures basic feature of the experimental curve fairly
well. From the estimated parameters, the intrinsic period and the coefficient
of variation were obtained as T' = 27 /w and CV = o,/A = (y/D,/\)/A. For
the experimental data shown in Figs. 1, a and d (corresponding to Figs. S1, a
and d), they were estimated as T' = 22.5 h, CV = 1.3 for the wild-type cell and
T = 33.5 h, CV = 3.2 for the knockout cell.

The same procedure was repeated for dispersed culture data of wild-type
cells (N = 74) and Cry1=/=/Cry2=/~ cells (N = 48). N = 66 WT cells and
N = 14 knockout cells were fitted to the model reasonably well. The results are
summarized in Figs. 1, ¢ and f, where estimated C'V is plotted against estimated
period T = 27w/w. Compared to the wild-type, the period was distributed
more broadly in the knockoutm. As summarized in Table. 1, the mean and
the standard deviation were 24.3+1.1 h for the wild-type and 31.1£7.3 h for the
knockout. Of special note is that, if the C'V is greater than 1, probability density
of the state variables of the oscillator becomes qualitatively the same as that of
a damped oscillator. However, if the C'V is less than 1, it can be characetrized
as a self-sustained oscillator. Hence, CV = 1 provides a criterion to distinguish
self-sustained oscillators from damped oscillators. Among the wild-type cells,
36.4% of the neurons were characterized as self-sustained oscillators (textiti.e.,
CV < 1), whereas no cell were classified into self-sustained oscillators in the
knockout cells.

Finally, the effect of detrending on the data was examined. In the studies of
circadian rhythms, the detrending has been widely utilized as a postprocessing
of the measurement data. Since our method focuses on existence of a limit cycle
oscillation around the origin, the signal detrending, which introduces changes
to oscillation amplitude, may influence the results. Fig. S2 summarizes the
results of single cell analysis without detrending of the data. Compared with
Figs. 1, ¢ and f, the overall structure remains the same. As anticipated, the CV
range is slightly increased, because the trend component, which exists in the raw
data and was not removed by the detrending, might have hidden the oscillatory
structure in the signal amplitude. The estimated period was 24.24+1.1 h for
the wild-type cells and 26.84+7.0 h for the knockout cells. Among the wild-type
cells, 7.2% of the cells were characterized as self-sustained oscillators, whereas no
cells were classified into self-sustained oscillators. Compared to the results with



detrended data, the period estimates remained almost the same. Concerning
the percentile of the self-sustained oscillators, it decreased in the non-detrended
WT data. This is becase large portion of the WT cells is located around the
critical line (CV = 1) and the slight shift in CV moved the cells to region of
noisy oscillators (textiti.e., CV > 1).

We consider that the effect of the detrending does not influence our conclu-
sion, since essentially the same features remained to distinguish Cry1—/— / Cry2=/~
cells from wild-type cells. Alternative criterion, which is less sensitive to a small
shift in CV, should be further developed to characterize self-sustained oscilla-
tors.
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Figure S1: Procedure for parameter estimation. a, d: Detrended and normal-
ized signals. b, e: Simulated signal by the stochastic amplitude model with
estimated parameters. ¢, f: Autocorrelation functions of the experimental data
(red solid line: WT, green solid line: knockout) and model (black dotted line).
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Figure S2: Single cell analyses of biolumninescence signals from dispersed cell
culture without detrending. Abscissa and ordinate represent estimated period
and coefficient of variation CV, respectively. (a): wild-type (N = 69). (b):
knockout (N = 10).



2 Network of coupled amplitude-phase models

In this section, we construct a network of amplitude-phase models, each of which
was fitted to dispersed cellular data in the previous section. By studying the net-
work dynamics, we examine whether macroscopic properties such as dynamical
characteristics of the slice data can be reproduced by the model. In particular,
we focuse on the synchronization property of the cellular network.

The single cell model of the stochastic amplitude-phase equations 1-2 can
be represented in Cartesian (x, y)-coordinates as

dx x
dr Y

where &, and &, are independent Gaussian noises and r = /22 +y2. By ap-
plying interneuronal connections though x and y variables, a network of SCN
cells was constructed as Eqgs. 4-5. The coupling is characterized by the strength
K and delay ¥. From the data fitting detained in the previous section, we ob-
tained N single cell models, whose parameters (\;, A;, w;) correspond to the
dispersed cellular data well. Such parameters were used to construct a network
composed of N = 66 and N = 14 neurons for the wild-type and knockout mice,
respectively.

Fig. 2 shows dependence of the network synchrony on the coupling strength
K and coupling delay 1. The level of synchrony was measured by the synchro-

nization index R = %Zif?zéiif:xz%) as defined by Eq. 6. < --- > denotes

average over time and X = %Z?;Xi is the average of z-variables among N
oscillators. For the network of amplitude oscillators, whose parameter values
were extracted from the WT cells (Fig. 2a), clear synchrony appears as the
coupling strength is increased. Interestingly, the synchronization depends upon
the coupling delay . Although a small delay enhances the synchronization,
a medium delay around @ = 12 h destroys the synchronization. It has been
known in coupled phase oscillators that the coupling force can be easily turned
repulsive by a shift of half of the intrinsic period. The observed desynchrony
can be understood as a result of such repulsive coupling. Similar structure can
be observed in the synchronization diagram of the network constructed from
knockout cells (Fig. 2b). Compared to the case of WT cells, the regime of syn-
chronization is smaller. Moreover, the level of synchrony is not so high even
with a strong coupling and a small coupling delay. This is due to the extended
heterogeneity of the knockout cells, which require stronger coupling to induce
global synchrony. Higher level of noise also disturbed the synchronized cellular
activities.

For fixed coupling strength and delay, traces of the cellular activities cou-
pled were drawn in Fig. S3. The simulated models capture essential features
of the bioluminescence data of Fig. 5. Setting the coupling strength and delay
as K = 0.1 and ¥ = 0 h, default situation for neonate slice was established.




Under the default setting, networks of both WT and knockout cells generated
synchronized cellular activities. Introduction of the delay of ¢y = 5.5 h main-
tained the synchrony in the WT cells, whereas it destroyed the synchrony in the
knockout cells. Such features closely resemble the adult slices of Figs. 5, b and
e. To simulate the administration of tetrodotoxin (TTX), the coupling strength
was reduced from K = 0.1 to K = 0.04 at time t = 72 h in Figs. S3, ¢ and f.
Whereas the WT cells maintained the synchronized oscillations even after the
TTX, phases of the knockout cells started to get apart from each other, result-
ing in a desynchronized oscillations after the TTX. These reproduce qualitative
features of the TTX experiment of Figs. 5, ¢ and f, very well.

To summarize, the network of coupled amplitude equations simulated essen-
tial features of the experimental data. The coupling strength K and delay 1 may
play a key role in organizing the slice activities as well as in inducing a develop-
mental change from neonate to adult. This agrees with our results of network of
biochemical models (Eqgs. 7-18) composed of transcriptional/translational feed-
back loops of the core clock genes simulated in the main text. Our conclusion
that variation of the three parameters (i.e., individual oscillator characteristics,
strength of coupling, and timing of coupling) suffices to reproduce experimental
data is general, largely independent of the choice of the oscillator models.
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Figure S3: Simulation of coupled amplitude equation models corresponding to
Fig. 5. a,b,c: Network of amplitude models constructed from wild-type (WT)
SCN cells (K = 0.1). (a,c) and (b) represent neonates (1 = 0), and adults
(¢p = 5.5h), respectively. The dashed line in (c) indicates the time at which
the coupling was lowered from K = 0.1 to K = 0.04 simulating administra-
tion of tetrodotoxin. d,e,f: Network of amplitude models constructed from
Cry1~/=/Cry2~/~ mouse (K = 0.1). The neonate (¢ = 0) is shown in (d,f)
and adults (¢ = 5.5h) in (f).



3 Quantification of slice data

The cultured SCN slice data from neonate and adult mice (both wild-type and
knockout) were analyzed. First, cellular signals {z;(t) : i = 1,2,..., Nt =
1,2,..., M} were extracted from the regions of interest in the bioluminescence
image (Fig. 5). The number of the cells and the data length were (N., M) =
(126,155), (87,143), (97,136), (63,199) for neonate wild-type, adult wild-type,
neonate knockout, and adult knockout mice, respectively. The extracted signals
were then analyzed by the chi-square periodogram (significance level of 1 %)
[2]. Average and standard deviation of the estimated periods were summarized
in Table S1 (neonate wild-type: N = 126, adult wild-type: N = 78, neonate
knockout: N = 97, adult knockout: N = 22).

To quantify the level of synchrony among cellular signals of the slice, the
cellular phases were estimated by the Cosinor’s method [3]. The phase ¢; of
the i-th cell was determined by fitting a cosine function a * cos(27(t + ¢;)/7)
to the cellular signal {x;(t) : t = 40,41,...,60}, where a is an oscillation am-
plitude and 7 is the average period previously estimated. The phase estimate
¢; with the coefficient of determination larger than 0.5 was considered reliable.
Standard deviation of the phases of individual cells, which measures the co-
herence structure, was summarized in Table S1 (neonate wild-type: N = 126,
adult wild-type: N = 66, neonate knockout: N = 97, adult knockout: N = 5).
Extended variations of the phase distributions in adult slices are observed in
both experiment and model. The averaged periods are also in good agreement
except those of the neonate knockout slice. Although the period is shortened in
the experiment, it is elongated in the model. The elongated period of the model
might be due to the coupling delay, which lengthened the feedback loops of in-
dividual cells. The cause of the shortened period observed in the experiment is
not well understood.

4 Hopf bifurcation of the single cell model

To identify the transition from damped oscillations to self-sustained oscillations,
a bifurcation diagram was drawn. In the single cell model of Egs. 7-18, the
parameter values P; generate self-sustained oscillations [4], whereas P, give rise
to damped oscillations [5]. By changing the oscillator strength a (0<a<1),
which interpolates the two parameter sets as Eq. 19, local maximum of the
Y7 value was plotted in Fig. S4a. The onset of self-sustained oscillations was
observed around « = 0.5. To see the bifurcation type, the largest eigenvalue of
the Jacobian matrix of the model was simultaneously computed and plotted in
Fig. S4b. At the onset point, the real part of the eigenvalue, which is negative
before the onset, touches the zero line, while the imaginary part exists, implying
the Hopf bifurcation.



Q

(o
o
D

0.5 T T T T

[

04 (_3“
g Z02 —Real-part 4
2 03F [N — Imaginary part

a [}

£ oo} 7
< 02 N

<

©

01 -

0.2 L L
0 1 1 =

0 ) 1 0 0.2 0.8 1

Osoéﬁlator s(t)fgngth 0? ° Osoc"illlator s?f?ength o«
Figure S4: a: Dependence of the oscillation amplitude of the single cell model
on oscillator strength . b: Largest eigenvalue computed simultaneously with a
from Jacobian matrix of the single cell model (red: real part, green: imaginary
part). At oscillation onset around « = 0.5, real part of the complex eigenvalue
crosses the zero-line, implying Hopf bifurcation.

5 Dependence of network dynamics on system
parameters

To study dependence of the network dynamics on system parameters, we system-
atically varied the single cell oscillator strength a€]0, 1], the coupling strength
Ke[0,1.5], and its delay ¥€[0,24]. The degree of synchrony was quantified by
the synchronization index R defined by Eq. 6. In Fig. 6a, the delay was fixed
to ¥ = 0, while the other two parameters were varied. In Fig. 6b, the cou-
pling strength was fixed to K = 1, while the other two parameters were varied.
In Figs. S5, a and b, period length of the simulated network was drawn in
2-dimensional diagrams corresponding to Figs. 6, a and b. For each cell, the in-
dividual period was computed by the chi-square periodogram (significance level
of 1 %) [2] and their periods were averaged to represent the network period.

As seen in the blue regions of Fig. S5, small oscillator strength (o < 0.5)
dampens rhythmicity and sets the network period to zero. The coupling strength
K recovers the rhythmicity even in the region, where individual cells are damped
oscillators (Fig. S5a). In this region, a clear synchronization among the neurons
is observed (Fig. 6a). This agrees quite well with the earlier study that damped
single cells are easy to synchronize with each other and that the synchronization
recovers rhythmicity of the damped cells [6, 5]. Large coupling strength K
increases the synchronization index further.

The timing of coupling described by ¥ also has a very strong effect on syn-
chronization. As indicated in Figs. 6b and S5b, a small change in 1 can easily
destroy synchronization. Of particular note is the blue region of Fig. S5b, where
the synchronization-induced rhythmicity was broken and consequently the in-
dividual cells became damped oscillators again.

We mark in Figs. 6 and S5 the parameter settings used to reproduce exper-
imental data (see Fig. 7). Oscillator strength of & = 0.3 and a = 0 correspond



to wild-type and knockout mice, respectively. Coupling strength of K = 1
describes slice culture data well, whereas small coupling strength of K = 0.2
represents dispersed culture data. Since an increase of ¥ from zero to 12 h
deteriorates synchronization, the timing of coupling was changed from neonate
(¢ = 0) to adult (¢ = 1) during the development.
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Figure S5: Oscillator network period in the simulated SCN for different choices
of system parameters. a: Dependence of the period of the cellular network model
on oscillator strength « and coupling K. The white and black points indicate
conditions for simulating double knockout and wild-type mice, respectively. b:
Dependence of the period of the cellular network model on oscillator strength
a and coupling delay ¢ (coupling strength was set to K = 1).

6 Entrainment of network dynamics to external
stimuli

The entrainment region of Fig. 9 was drawn by varying the Zeitgeber inten-
sity Lo and Zeitgeber period T. For each combination of (Lg, T'), the network
(Egs. 7-18) with external stimuli (Eq. 20) was simulated. By analyzing time
series data of Yi-variable averaged over all cells by the chi-square periodogram
(significance level of 1 %) [2], period length of the cellular network was quan-
tified. If the network period is the same as the Zeitgeber period T (difference
less than 0.15 h), the network is judged to be entrained to the Zeitgeber.

7 Simulation of actograms

The actogram was drawn by simulating the network dynamics of Eqs. 7-18. At
each time, the activity was evaluated by counting the number of cells, Y;-value
of which was above 70 % of its maximum. In the first 15 days of Figs. 8, ¢ and
d, the activity was plotted by applying the external stimuli of Eq. 20, which



represents the LD condition. In the following 15 days, the external stimuli were
switched off to simulated the activity under DD condition. Then, to quantify the
periodicity of the actogram, 5 days length of the activity data (LD data staring
from the first day and DD data starting from the 16th day) was analyzed by
the periodogram in Fig. S7.

To compare the network model with the experiments, behavioral rhythms in
mice from both genotypes are drawn in Figs. 8, a and b, and their periods were
analyzed under the same condition as those of the model in Fig. S6.
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Figure S6: Analysis of behavioral period of mice across both genotypes under
different lighting conditions. a,b: Chi-square periodogram for wild-type mouse
under LD (a) and DD (b). ¢,d: Chi-square periodogram for Cry1=/=/Cry2~/~
knockout mouse under LD (c) and DD (d).
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ferent lighting conditions. a,b: Chi-square periodogram for simulated wild-type
mouse under LD (a) and DD (b). c,d: Chi-square periodogram for simulated
knockout mouse under LD (c¢) and DD (d).

8 Analysis results of slice culture data

Table S1: Results of the periodicity and phase analysis for slice culture data of
neonate and adult mice (both wild-type and knockout). Average and standard
deviation of the period estimated by the chi-square periodogram (significance
level of 1 %) [2] are indicated. Standard deviation of the phase of individual cells
is represented as a quantity to measure the coherence structure. The estimated
values are compared with those of the simulated network.

] \ Mouse | Age Period | Phase |
Experiment Wild-type Neonate || 24.4+0.5h | 0.13 h
Adult 25.842.8 h | 0.64 h
Cry1=/—/Cry2=/~ | Neonate || 19.0£0.2 h | 0.26 h
Adult 30.846.2h | 1.1 h
Model Wild-type Neonate || 23.0+0.2 h | 0.38 h
Adult 23.942.7h | 040 h
Cry1=/=—/Cry2=/~— | Neonate || 26.2+0.4 h | 0.10 h
Adult 26.247.3h | 1.2 h
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9 Parameter settings for the biochemical model

Detailed parameter settings for the biochemical model (Egs. 7-18) simulated in
the main text are summarized in the following tables.

Table S2: Two parameter settings for the biochemical model (Egs. 7-18): (i)
self-sustained oscillator (Becker-Weimann et al., 2004), (ii) damped oscillator

(Bernard et al., 2007).

Description Parameter Value Value
(Becker-Weimann, 2004) (Bernard, 2007)

Hill coefficient of inhibition P 8 3
of Per/Cry transcription

Nuclear import rate of kor 0.24 h! 0.36 h~!
PER/CRY complex

Maximal rate of Vap 3.6 nM 1.0 nM
Bmall transcription

Degradation rate of k14 0.12h! 0.18 h~!
Per/Cry mRNA

Degradation rate of kaa 0.05 h—! 0.1 h!
cytoplasmatic PER/CRY

Degradation rate of k3q 0.12 h~! 0.18 h—!
nuclear PER/CRY complex

Degradation rate of kaq 0.75 h~! 1.1 Lt
Bmall mRNA

Degradation rate of ks 0.06 h—! 0.09 h—!
cytoplasmatic BMAL1

Degradation rate of keq 0.12h! 0.18 h—!
nuclear BMAL1

Degradation rate of kra 0.09 h—! 0.13h~!

nuclear BMAL1*
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Table S3: Parameter setting of the biochemical model.

Description Parameter Value

Hill coefficient of activation of Per/Cry transcription h 2

No. of PER/CRY complex forming subunits q 2

Hill coefficient of activation of Bmall transcription r 3

Maximal rate of Per/Cry transcription V1p 9.0 nM h~!
Michaelis constant of Per/Cry transcription k1p 1.0 nM
Inhibition constant of Per/Cry transcription ki; 0.56 nM
Complex formation rate of PER/CRY ko 0.3 h—inM~(e=D
Nuclear export rate of the PER/CRY complex ks¢ 0.02 h~!
Michaelis constant of Bmall transcription Ky 2.16 h—!
Degradation rate of Bmall mRNA kaq 1.1 ht
Translation rate of BMALIL ksp 0.24 h™!
Nuclear import rate of BMAL1L ksy 0.45 h~!
Nuclear export rate of BMAL1 ket 0.06 h—!
Activation rate of nuclear BMALI1 ks 0.09 h—!
Deactivation rate of nuclear BMAL1* k7q 0.003 h—!
Production constant of transmitter ks 1.0 h~!
Degradation rate of transmitter ksq 4.0h™!
Activation rate of coupling ka1 3.0 h~InM~!
Total concentration of PKA X7 15.0 nM
Degradation rate of PKA Kdz1 4.0h™!
Activation rate of PKA ko 0.25 h—InM~1!
Total concentration of CREB Xorp 15.0 nM
Degradation rate of CREB kdzo 10.0 h—!

10 Additional samples of bioluminescence sig-
nals

In addition to bioluminescence signals shown in Fig. 1, a, b, d, and e, six
more samples are provided here for dispersed SCN cell culture of wild-type
and Cry1=/ —/ Cry2~/~ mice. Also from simultaneous plot of the cellular sig-
nals in Fig. 5, six indivdual traces are extracted and presented for SCN slice
culture of wild-type and Cry1=/~/Cry2~/~ mice (both neonate and adult).
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Figure S8: Six samples of bioluminescence signals recorded from dispersed SCN
cell culture of wild-type mice.
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Figure S9: Six samples of bioluminescence signals recorded from dispersed SCN
cell culture of Cry1=/=/Cry2~/~ mice.
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Figure S10: Six samples of bioluminescence signals recorded from SCN slice
culture of WT neonate mice. From simultaneous plot of the cellular signals in
Fig. 5a, indivdual traces are extracted in each figure.
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Figure S11: Six samples of bioluminescence signals recorded from SCN slice
culture of Cry1=/=/Cry2=/~ neonate mice. From simultaneous plot of the
cellular signals in Fig. 5d, indivdual traces are extracted in each figure.
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culture of WT adult mice. From simultaneous plot of the cellular signals in
Fig. 5c¢, indivdual traces are extracted in each figure.
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culture of Cry1=/~/Cry2~/~ adult mice. From simultaneous plot of the cellular
signals in Fig. 5e, indivdual traces are extracted in each figure.
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