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Supplementary Figures 

 

 

Supplementary Figure S1. Determination of the middle plane of a circular microchannel by using a 
z-stack of CLSM images. (a) Selected fluorescence microscopy images obtained by depth scanning of 
the microchannel filled with a 0.01 mg/mL of aqueous solution of fluorescein isothiocyanate-dextran by 
CLSM. A 200 μm-depth scanning was performed at an increment of 5 μm. The respective labels on the 
images show the position of the imaged plane with respect to the middle plane (labeled as 0 μm). FRAP 
experiments were conducted for the plane at z = 0 μm. (b) Circular cross-section of the channel-at-large 
obtained by 3D reconstruction of 41 images. Scale bar is 200 μm and applies to all images. 
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Supplementary Figure S2. Data analysis of FRAP experimental results. (a) A series of CLSM images 
obtained at 10% power of laser beam. The labels on the images show respective time after photobleaching 
event. The top image is captured before the photobleaching event at the same location. x is the flow 
direction and r is the radial coordinate of the circular cross-section. Scale bar is 100 μm. The calculated 
value of M1/M0 with time from (b) is labeled as a vertical white line in each image, with the red line 
indicating the value of M1/M0 in the image of t = 0 s. (b) The variation of M1/M0, the normalized first 
moment of the fluorophore intensity distribution in the microchannel (see equation (1)), plotted as a 
function of time. The solid line is a fit of M1/M0 vs. t to the linear function M1/M0 = X0 + Ut; the average 
velocity of the liquid in this experiment is U = 0.35 μm/s. 
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Supplementary Figure S3. Effect of pressure difference on the volumetric flow rate of water 
through the microgel. (a) Variation of the flow rate with the pressure difference, plotted for the 
confinement D0/dc = 3.24 ± 0.03. (b-e) Optical microscopy images of the confined microgel under applied 
pressure difference of 808, 3258, 6610, and 9721 Pa, respectively. The red line in the images marks the 
front tip of the microgel. Scale bar is 100 μm. D0 = 104 μm, dc = 38 μm, E0 = 2.57 kPa, α = 30°. 
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Supplementary Figure S4. Schematics of the leaking gaps. (a-b) Front view of the yz-cross-section of 
the microchannel and (c) contact spots on the surface of the microchannel. (a) At ΔP = 0 the undeformed 
microgel barely touches the microchannel walls. Water can flow through the gaps of size g. (b) As ΔP 
increases, the microgel begins to conform to the microchannel surface, and (c) spots of contact areas grow 
on the microchannel surface. 
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Supplementary Fig. S5. Variation of Q vs. ΔP in the leakage-dominated and linear response regimes. 
Pressure difference dependence of Qgap, Qgel and their sum Q fitted to experimental data (circles) in the 
leakage-dominated regime and the following linear response regime with the best fitting parameters g = 
0.38 μm and ΔPc/E0 = 1.9. Contributions to the total flow rate (black) from the flow through the leaking 
gaps (blue) and the microgel (red) are shown separately. Note that the leakage flow is insignificant in the 
higher pressure difference regime ΔP > E0 shown in Fig. 3 (main text). 
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Supplementary Figure S6. Schematics of microgel confinement. Axial coordinates x0 and x are used 
for the undeformed and deformed states of the microgel; x0 = 0 corresponds to the center of the 
unperturbed microgel and x = 0 corresponds to the entrance of the constriction. We assume that a disk-
shaped thin slice in undeformed state at position x0 with respect to its center deforms homogeneously 
without bending into a disk-shaped thin slice at x(x0). Front and back microgel tip positions are xf and xb, 
respectively, while the front and back boundary positions of the deformed gel are x’f and x’b (axial 
boundaries of microgel portion in contact with the microchannel walls). We neglect the deformation of 
the back and front caps (dark shaded regions) assuming λ⊥ = λ|| = 1 inside the caps (xb ≤ x ≤ x’b and x’f ≤ x 
≤ xf). With these boundary conditions, we numerically solve the differential force balance equations (55) 
and (56). 
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Supplementary Figure S7. Numerical results for the deformation ratio profiles, normalized 
concentration profiles, volume change factor, normalized flow rate, and normalized front tip 
position of the microgel in the constriction. Geometrical parameters are α = 30°, dc = 38 μm, D0 = 103 
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μm in (a-d) and α = 15°, dc = 42 μm, D0 = 94 μm in (e). Qualitatively similar results are obtained for 
different sets of geometrical parameters. (a) Deformation ratios (ratios of deformed to undeformed 
lengths) in axial λ|| (upper solid curves) and radial λ⊥ (lower dotted curves) directions as functions of axial 
coordinate x along the deformed microgel normalized by the constriction diameter dc. Different colors 
correspond to different microgel locations: microgel completely localized in the tapered region (x’f < 0, 
red lines); microgel at the point of entry into the constriction (x’f = 0, green lines); partially constricted 
before translocation (x’f > 0, ΔP < ΔPmax, blue lines), and microgel at the translocation instability point 
(ΔP = ΔPmax, grey lines). The vertical lines at x = 0 mark the constriction entrance in (a) and (b). (b) 
Concentration profile along the confined microgels. Colors correspond to the same microgel locations 
along tapered and constriction zones as in (a). Note that for microgel partially in constriction (blue and 
grey lines) the maximum concentration is near the boundary between tapered zone and constriction. (c) 
Dependence of the relative change in volume λ⊥

2 λ||, on the radial deformation ratio λ⊥. Logarithmic axes. 
Colors correspond to the same microgel locations along tapered and constriction zones as in (a). Black 
dashed line representing the asymptotic dependence λ⊥

2 λ|| ~ λ⊥
4/3 (obtained from equation (63)) predicted 

for the case of no external axial stress is in reasonable agreement with the numerical solutions in the 
presence of external axial stress due to flow through the microgel (colored lines). (d) Dependence of the 
flux Q (normalized by E0/R0, see equation (73)) through the microgel on the pressure difference ΔP across 
it (normalized by E0). Solid black curve shows numerical calculation described in Section 4, including 
flow through the caps. Red line shows asymptotic linear dependence Q ~ ΔP for low pressure differences. 
Blue line shows asymptotic scaling Q ~ ΔP –2.0 for high pressure differences. Colored circles correspond 
to the same microgel locations as in (a)-(c). (e) Normalized front tip position of the microgel in the 
constriction xf/dc as a function of normalized pressure difference ΔP/E0. Black curve is the result of the 
numerical calculations for α = 15°, dc = 42 μm, D0 = 94 μm. Markers show the experimental results (see 
Fig. 4b of the main text) for these geometrical parameters. The red line with a slope 2.3 (see equation (59)) 
is in good agreement with numerical and experimental results over a wide range of ΔP/E0 for the strongly 
constricted microgel. This scaling relation (equations (2) and (6) in the main text) is used in the 
theoretical analysis of experiments (equations (3-5) in the main text). 
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Supplementary Figure S8. Translocation pressure difference and angle-dependent amplitude K(α). 
(a) Simulation results for the rescaled translocation pressure difference, ΔPmax/E0, as a function of degree 
of confinement, D0/dc, for different tapering angles, α = 15o (blue), 45o (red), 60o (green), and 90o (black). 
The power-law dependence, ΔPmax ≈ (D0/dc)14/3 (shown with the dotted line), is persistent for all angles. (b) 
Angle-dependent amplitude of this power-law, K(α), at degree of confinement D0/dc = 2 for the angles 
shown in (a). Same colors are used to indicate different angles as in (a). The amplitude K(α) saturates to a 
constant for large angles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11 

 

 
 

 

Supplementary Figure S9. Master curves for translocation pressure difference. (a) Experimental data 
shown in Fig. 5b plotted in the form (ΔPmax/E0)–3/14 (D0/dc) as a function of (tanα)–3/14. Data in this form is 
fit to the predicted function, [K(α)]–3/14 = k + (tanα) –3/14 (see equation (71)). The resulting best fitting 
parameter is k = 0.72 as shown with the black curve. (b) Experimental ΔPmax/E0 data rescaled with K(α) 
for k = 0.72, plotted versus D0/dc (in log-log axes). Data for all angles collapse on a single line with a 
slope 14/3 (shown in black). Both in (a) and (b), different colors indicate different tapering angles: α = 
15o (blue), 45o (red) and 60o (green), as in Fig. 5b and Supplementary Fig. S8. 
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Supplementary Figure S10. Weak indentation by δ of a spherical microgel of diameter D0 inside the 
tapered zone with the small angle 𝛂𝛂 ≪ 𝟏𝟏. The radius of the tapered microchannel in the contact zone is 
D0/2–δ. The axial length of the contact between microgel and microchannel is L(D0/2–δ)=2�δ(𝐷𝐷0 − δ) 
The resistance R is obtained by integration over cylindrical rings of radius r, thickness dr and length L(r). 
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Supplementary Notes 

Supplementary Note 1. Experimental details 

 

1. Chemicals 

Surfactant Span-80, mineral oil (viscosity of 30 cp), hexanes, and fluorescein isothiocyanate (FITC)-

dextran (70 kD) were purchased from Sigma Aldrich (Canada) and used without further purification. 

FITC-dextran was stored at 4oC before its use in the experiments. Sylgard 184 Silicone elastomer kit 

containing poly(dimethylsiloxane) (PDMS) prepolymer and a crosslinker was obtained from Dow 

Corning Corp. (USA). Silicon wafers were acquired from Wafer World, Inc. (West Palm Beach, FL). SU-

8 photoresist and SU-8 developer were supplied by MicroChem (USA). Ultralow gelling temperature 

agarose (SeaPrep) was obtained from Lonza (Switzerland).  

  

2.  Experimental setup 

The experimental setup for microgel studies is described elsewhere1. Briefly, a MF device was interfaced 

with upstream and downstream water reservoirs. Microgels were introduced into the MF device from a 

syringe attached to the upstream reservoir using a three-way valve. The pressure difference, ΔP, applied 

along the microchannel was controlled by varying the difference in heights of the two reservoirs. The 

motion of the microgel was recorded with a high-speed camera (Canon EX-F1) and analyzed by a code 

written in MATLAB. 

Supplementary Note 2. Determination of the flow rate of water through the microgel 
trapped at the entrance to the constriction 
 

We employed fluorescence recovery after photobleaching (FRAP) in combination with confocal laser 
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scanning microscopy (CLSM) to measure the rate, Q, of water flow through a microgel trapped at the 

entrance to the constriction, as a function of applied pressure difference ∆P. 

 Before introducing a microgel into the MF channel, a 200 μm depth scan was performed at 

increments of 5 μm in the direction perpendicular to the imaging plane of the microchannel (z-direction). 

By using 3D reconstruction of the z-stack of CLSM images, we ensured that the microchannel had a 

close-to-circular cross-section (Supplementary Fig. S1a and b). FRAP experiments were performed at 

constant position, z = 0 μm, that is in, the middle plane of the circular microchannel (see Supplementary 

Fig. S1a), in order to avoid the attenuation of intensity that occurs in CLSM experiments when z-

coordinate is varied. With the assumption of axisymmetry (explained in the derivation following the 

present section), the measurement of fluorescence intensity in the middle plane is sufficient to describe 

the fluorophore concentration throughout the geometry of the circular microchannel. 

 After introducing a microgel with an unperturbed diameter D0 = 104 μm into a microchannel (dc 

= 38 μm, α = 30°), a pressure difference not exceeding ΔPmax was applied to the MF system to confine the 

microgel in the tapered zone of the microchannel. An intense (100% power of 5.4 mW), 25 s laser pulse 

photobleached a rectangular (250 μm × 150 μm) region in the microchannel-at-large using the NIS 

Element software. To monitor the recovery of fluorescence, the program set the instrument to the 

attenuated beam (10% power) and a series of 20 images was recorded with 5 s intervals between image 

capturing. Photoemission intensity data, I(x,r), were collected  from the  images (selected images shown 

in Supplementary Fig. S2a), where x is the coordinate in the flow direction measured from the left edge of 

the image, and r is the radial coordinate measured from the axis of the channel. The reference 

photoemission intensity, I0(x,r), was obtained from the image taken with the attenuated beam prior to the 

photobleaching event. 

To determine the average velocity, U, of the fluid flowing through the microgel from the CLSM 

data, the normalized first axial moment M1/M0 of the cross-section-averaged fluorophore concentration, 

defined as 
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𝑀𝑀1
𝑀𝑀0

= ∫ ∫ 𝑥𝑥[𝐼𝐼(𝑥𝑥,𝑟𝑟)−𝐼𝐼0(𝑥𝑥,𝑟𝑟)]𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑑𝑑/2
0

𝑙𝑙
0

∫ ∫ [𝐼𝐼(𝑥𝑥,𝑟𝑟)−𝐼𝐼0(𝑥𝑥,𝑟𝑟)]𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥𝑑𝑑/2
0

𝑙𝑙
0

,                           (1) 

was calculated from the CLSM images taken at time intervals of 5 s. In equation (1), I(x,r) is the 

fluorescence intensity distribution; x and r are the axial and radial positions coordinates; and l and d are 

the length and diameter of the microchannel in the image (see Supplementary Fig. S2a). The double 

integrals in equation (1) were calculated in MATLAB using the trapezoidal rule2. As shown in the next 

section, when the fluorescence intensity profile after bleaching is nearly a square pulse (that is, the 2D 

projection of the bleached region is nearly a rectangle), and the fluorophore distribution is axisymmetric, 

M1/M0 can be approximated by the following function of time  

M1/M0 = X0 + Ut.                        (2) 

The derivation of the equation (2) is given below. In equation (2), X0 is the intercept of M1/M0 at t = 0. 

Since the radial dependence of fluorescence intensity can be measured either from the top half, or the 

bottom half of the CLSM image (the distribution is symmetric), the average value of M1/M0 (shown with 

black squares in Supplementary Fig. S2b) from the two halves was fit to equation (2); this is shown in 

Supplementary Fig. S2b. The average velocity, U, of the liquid flowing through the trapped microgel was 

obtained as the slope of the plot of M1/M0 vs. t, and found to be 0.35 ± 0.001 μm/s in the experiment 

shown in Supplementary Fig. S2. The flow rate, Q, of the liquid was determined as Q = π (d/2)2U = 4019 

± 14 μm3/s, where d/2 is the radius of the microchannel, measured from the CLSM images to be 60 μm.  

 The above procedure was implemented for a range of pressure differences varying from the value 

required to block the microchannel, up to ∆Pmax. For each pressure difference, the FRAP experiment was 

repeated three times. Between repetitive FRAP measurements, a 5 min time interval was allowed for the 

system to reach a steady state. The variation in the average flow rate of the liquid through the microgel 

as a function of pressure difference is shown in Supplementary Fig. S3. For pressure difference below 

2000 Pa, the flow rate of water was high, due to its leakage through the gaps between microchannel walls 

and the microgel. The estimation of this effect is given in Supplementary Note 4. 
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Supplementary Note 3.  Interpretation of photobleaching data 
 

In the derivation of equation (2), we followed the work of Aris3. Consider the pressure-driven flow of a 

Newtonian fluid through a circular tube. The flow occurs in the x direction, and r and θ  are the cross-

sectional coordinates in the polar form. The governing equation for any disturbance, Δρ, in the 

unbleached fluorophore concentration distribution is the time-dependent convective diffusion equation 

𝜕𝜕Δ𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝑢𝑢 𝜕𝜕Δ𝜌𝜌
𝜕𝜕𝑥𝑥

= 𝐷𝐷f∇22Δ𝜌𝜌 + 𝐷𝐷f
𝜕𝜕2Δ𝜌𝜌
𝜕𝜕𝑥𝑥2

.                    (3) 

Here, Df is the diffusion coefficient of the fluorophore, x is the direction of flow, and u is the velocity in 

the flow direction 

𝑢𝑢 = 𝑈𝑈 �1 − 𝑟𝑟2

(𝑟𝑟/2)2�,            (4) 

where U is the average velocity through the tube. The operator 2∇  in equation (3) is the gradient in the 

cross-sectional coordinates r and θ . Note that Δρ is a disturbance in the concentration of the fluorophore. 

For example, if the initial concentration of the fluorophore is ρ0 and the concentration at a later time is ρ, 

then the disturbance, Δρ, in the concentration is defined as Δρ = ρ – ρ0. In the experiment, the disturbance 

is introduced in the form of a rectangular region by photobleaching, and is, therefore, non-zero only in 

that region. As shown in the derivation that begins in the next paragraph, the axial velocity of the center 

of mass of the concentration disturbance is equal to the average velocity of the fluid. This result is 

straightforward to understand, when diffusion is absent, but is valid even when there is diffusion-induced 

radial and axial smearing of the concentration, which can be explained as follows. Since the initial 

fluorescence intensity distribution produced by photobleaching is rectangular, it is symmetric about the 

center of mass at t = 0. As time proceeds, convection advances to the two edges of the rectangle to the 

right via the parabolic velocity profile, thereby establishing concentration gradients in the radial direction 
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(see Fig. S3a). At the left edge, there is radial diffusion of the fluorophore from the center towards the 

walls, along with axial diffusion in the flow direction. Conversely, at the right edge, the fluorophore 

diffuses radially from the walls to the center, and axially - in the direction opposite to the flow. The key is 

that the diffusional distortions produced at the two edges complement each other exactly, their axial 

moments sum to zero, and do not contribute to the overall axial motion of the center of mass of the 

distribution. This is demonstrated more rigorously in the derivation below. 

Multiplying equation (3) by xn, and integrating in x from 0 to l yields 

 ( )2
1 f 2 21 .n

n n n
C nuC D C n n C
t − −

∂  = + ∇ + − ∂
     (5) 

Here, Cn is the nth axial moment of Δρ, defined as 

𝐶𝐶𝑛𝑛 = ∫ Δρ 𝑥𝑥𝑛𝑛𝑑𝑑𝑥𝑥𝑙𝑙
0 .               (6) 

For example, C0, the zeroth axial moment of Δρ, is 

𝐶𝐶0 = ∫ Δρ 𝑑𝑑𝑥𝑥𝑙𝑙
0 .              (7) 

In deriving equation (5), we have assumed that the concentration disturbance at the two ends of the tube,       

x = 0 and x = l, is negligible. This is a valid assumption provided that the photobleached region far from 

the edges of the tube throughout the duration of the experiment. This condition was maintained in FRAP 

experiments. By integrating equation (5) over the cross-section of the conduit, we obtain 

 ( )1 f 21 ,n
n n

S

dM n uC dydz D n n M
dt − −= + −∫∫   (8) 

where Mn is the cross-section-integrated value of Cn, 

 ,n n
S

M C dA= ∫∫    (9) 

where dA is an elemental cross-sectional area. 

For n = 0, equation (8) becomes 
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 0 0,dM
dt

=    

implying that 

 0 0 constant, independent of time.
S

M C dA= =∫∫   (10) 

Examination of equation (5) for n = 0 gives the governing equation for C0 (equation (7)) 

 
20

f 2 0 ,C D C
t

∂
= ∇

∂
  (11) 

with the boundary condition 

2 0 0,
S

C⋅∇ =n              (12) 

the integral constraint from equation (10), 

0 0,
S

C dA M=∫∫            (13) 

and the initial condition 

𝐶𝐶0(𝑟𝑟,𝜃𝜃, 0) = ∫ Δρ(𝑥𝑥, 𝑟𝑟, 𝜃𝜃, 0)𝑑𝑑𝑥𝑥𝑙𝑙
0 = Γ(𝑟𝑟,𝜃𝜃).      (14) 

The function Γ(r, θ ) is obtained by axially integrating the initial concentration distribution Δρ(x, r, θ, 0). 

The above problem has the following eigenfunction expansion solution 

𝐶𝐶0(𝑟𝑟,𝜃𝜃, 𝑡𝑡) = 𝑀𝑀0
𝐴𝐴

+ 𝑀𝑀0
𝐴𝐴
∑ �𝐵𝐵𝑗𝑗exp �−𝜇𝜇𝑗𝑗

𝐷𝐷f 𝜕𝜕
(𝑟𝑟/2)2�𝜙𝜙𝑗𝑗(𝑟𝑟,𝜃𝜃)�∞

𝑗𝑗=0 .         (15) 

The functions φ j and µ j are the eigenfunctions and eigenvalues, respectively, of the following linear 

problem 

∇22𝜙𝜙𝑗𝑗 = −𝜇𝜇𝑖𝑖𝜙𝜙𝑗𝑗,            (16) 

with the boundary condition  

 2 0.j S
φ⋅∇ =n    (17) 

The constants Bj are derived from the initial condition for C0 in equation (14) using biorthogonality 
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condition, 

∬ 𝜙𝜙𝑗𝑗𝜙𝜙𝑖𝑖𝑑𝑑𝑑𝑑
 
𝑆𝑆 = �

0
∬ 𝜙𝜙𝑖𝑖2𝑑𝑑𝑑𝑑

 
𝑆𝑆

     , for 𝑖𝑖 ≠ 𝑗𝑗
     , for 𝑖𝑖 = 𝑗𝑗 ,                (18) 

as 

𝐵𝐵𝑗𝑗 = �

𝐴𝐴
𝑀𝑀0

∬ Γ𝜙𝜙𝑗𝑗𝑟𝑟𝐴𝐴
 
𝑆𝑆
∬ 𝜙𝜙𝑗𝑗

2𝑟𝑟𝐴𝐴 
𝑆𝑆

−1 + 1
𝑀𝑀0
∬ Γ𝑑𝑑𝑑𝑑 
𝑆𝑆

     , for 𝑗𝑗 ≠ 0
     , for 𝑗𝑗 = 0 .                (19) 

Note that Γ is the axial integral of the initial concentration distribution (see equation (14)). Since 

∬ Γ𝑑𝑑𝑑𝑑 
𝑆𝑆 = 𝑀𝑀0, the constant B0 = zero. In addition, for the special case of a square pulse in the initial 

concentration profile that is imposed in the experiment, Bj = 0 for all 0j ≠ , as well, implying that Bj = 0 

for all j. Note that for a square pulse, Γ is independent of the cross-sectional coordinates. The null eigen-

function of the operator in equation (16) (i.e. µ 0 = 0) is φ 0 = 1, and satisfies the following biorthogonality 

condition  

 1 0  for  0.j j
S S

dA dA jφ φ φ= = ≠∫∫ ∫∫      (20) 

Equation (20), combined with equation (19), gives Bj = 0 for 0j ≠ .  

Since Bj = 0 for j, the solution for C0 reduces from equation (15) to: 

 ( ) 0
0 , , MC r t

A
θ = .  (21) 

Expressing equation (8) for n = 1 yields 

 1
0 .

S

dM uC dA
dt

= ∫∫   (22) 

Substituting for C0 from equation (21) gives 

 1 0
0 0

1 .
S S

dM Mu dA M udA M U
dt A A

 
= = = 

 
∫∫ ∫∫   (23) 

Dividing the above equation by M0, we obtain 
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( )1 0/

.
d M M

U
dt

=  (24) 

Integration w.r.t. time results in the equation 

M1/M0 = X0 + Ut.            (25) 

Thus, by fitting the temporal variation in the ratio M1/M0 to the linear equation (15), we obtain U as the 

slope. For a square pulse at t = 0, the spatial distribution of the fluorophore concentration is axisymmetric 

at every instant, which enables the description of the cross-sectional variations of the fluorophore 

concentration with only the radial coordinate, r. The elemental area, dA, for the double integral is 2πr dr. 

With this simplification, the definition of M1/M0 given in equation (1) can be used. 

 In practice, the assumptions of axisymmetry and square pulse are not exact. To be more accurate, 

all the eigenmodes in the solution of C0 in equation (15) (except the j = 0 mode) have to be considered, 

which would result in the following expression for M1/M0: 

𝑀𝑀1
𝑀𝑀0

= 𝑋𝑋0 + 𝑈𝑈𝑡𝑡 + 𝑈𝑈(𝑟𝑟/2)2

𝐷𝐷f
∑ 𝑏𝑏𝑗𝑗 �1 − exp �−𝜇𝜇𝑗𝑗

𝐷𝐷f 𝜕𝜕
(𝑟𝑟/2)2��

∞
𝑗𝑗=1 .   (26) 

A linear regression of equation (26) will provide the value of U. However, the calculation of M1/M0 would 

require the fluorescence intensities throughout the cross-section to be measured as a function of r and θ, 

which is not possible in our experimental setup due to the time required for a complete cross-sectional 

confocal scan, and the dependence of the intensity on the z-position. 

 

Supplementary Note 4. Estimation of the effect of leakage of water through the gaps 
between the microgel and microchannel walls 
 

At small pressure difference ∆P applied to the system, leakage of water may occur due to the non-

conformal contact between the microgel trapped at the entrance to the constriction and microchannel 

walls. If the hydraulic resistance to flow through these gaps is smaller than that for the flow through the 

gel, the total water flow will be dominated by the leakage through the gaps, thus biasing the results. In 
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this Supplementary Note, we estimate the effect of applied pressure difference, ∆P, on the leakage flow 

and show that significant leakage occurs only for ∆P < E0. 

Since the geometry of the non-conformal contact between the microgel and the wall is not known 

a priori, our estimation was based on the assumed gap geometry. First, we verified that a small mismatch 

between the spherical microgel shape and the elliptical channel cross-section cannot explain the 

experimentally observed pressure difference required to close the gaps. Thus we concluded that the 

mismatch between the channel geometry and the microgel shape should have different characteristics. 

We considered the gaps between the microgel and the channel wall to be due to surface roughness 

(Supplementary Fig. S4) and estimated the effective spacing g of surface irregularities on microchannel 

wall, as well as the pressure difference, ΔPc, required to close the gaps between the microgel and the 

channel surface. 

 From Hertzian theory of an elastic contact between two spheres4, we estimate the diameter, a, of 

the contact between the spheres and applied force, ℱ, as functions of strain (h): 

a ≈ (Dc h)1/2     and     ℱ ≈ E* (Dc h3)1/2.      (27) 

Here, Dc/2 is the effective radius at the contact surface, Dc = (1/g + 1/D0)–1, and E* is related to the 

Young’s modulus, E0, and Poisson’s ratio, σ, of the microgel as E* = 4E0/[3(1–σ2)], assuming rigid 

microchannel walls. Note that Dc ≈ g for g ≪ D0 and E* ≈ E0 for σ ≈ 1. 

 For the geometry shown in Supplementary Figure S4c, L is the axial length of region of contacts, 

and LD0 is proportional to the area of contact spots. Assuming the number of contacts n ≈ LD0/g2, the total 

force imposed on the microchannel wall is nℱ  ≈ LD0ℱ /g2. This force is supported by the pressure 

difference ΔP. Since the radial wall pressure is proportional to ΔP, the total contact force is nℱ ≈ LD0ℱ/g2 

≈ ΔP LD0, and thus, the force acting on a single contact surface is ℱ ≈ ΔP g2. Substitution of the force ℱ 

from equation (27) with Dc ≈ g and E* ≈ E0, gives 

ΔP/E0 ≈ ℱ/(E*g2) ≈ (h/g)3/2.                                                    (28) 

The gaps are closed when h ≈ a ≈ g. Thus, from equation (28), the pressure difference ΔPc required to 
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close the leaking gaps is 

ΔPc ≈ E0,                                                                  (29), 

which agrees with experimental results (see Supplementary Fig. S3a). For ΔP > ΔPc, water flows only 

through the microgel without leakage. 

 The flow rate of water through the gaps is predicted as Qgap = ΔP/Rgap, where 

Rgap ≈ [g/D0] η L (g – h)–3 (g – a)–1                                              (30) 

is the hydraulic resistance of the gaps5. The prefactor in square brackets is due to water leakage occurring 

simultaneously through D0/g gaps. The axial length of the contact region can be determined from the 

Hertzian theory for an elastic contact between two cylinders as4 L ≈ (E*ℱ)1/2, where the force on walls is, 

ℱ ≈ D0
2ΔP. Hence, 

L ≈ D0 (ΔP/ΔPc)1/2.                                                          (31) 

Combining equations (27-31), we obtain 

𝑄𝑄gap
𝐸𝐸0/η

≈ 𝑔𝑔3 �Δ𝑃𝑃
Δ𝑃𝑃c
�
1/2

�1 − �Δ𝑃𝑃
Δ𝑃𝑃c
�
2/3
�
3
�1 − �Δ𝑃𝑃

Δ𝑃𝑃c
�
1/3
� ,                               (32) 

which is plotted in Supplementary Fig. S5, as blue curve. 

 Equation (32) predicts an increase of water flux, 𝑄𝑄gap ~ Δ𝑃𝑃1/2 , for a very small pressure 

difference, ΔP ≪ ΔPc. This regime is followed by the shrinkage of gaps and decrease in Qgap, as observed 

in experiments (see left-most three data points in Supplementary Fig. S3a, which correspond to the 

leakage-dominated regime). At ΔP = ΔPc, gaps close and Qgap vanishes (see equation (32)). At ΔP > ΔPc, 

water flows only through the microgel without leakage. In the last section of Supplementary Note 5, for 

low ΔP, we estimated this flow through the microgel to be Qgel = ΔP/R0, with constant hydraulic 

resistance R0 = 1 Pa⋅s/μm3 (see equation (75) and red lines in Fig. 3b and Supplementary Fig. S5). Hence, 

the total flow rate is given by Q = Qgap + Qgel. 

 We estimated the size, g, of gaps and the pressure, ΔPc, required to close the gaps by fitting the 

theoretical prediction for Q(ΔP) to the experimental Q-ΔP data in the leakage dominated regime and the 
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following linear response regime. Such a fit resulted in the best fitting parameters g = 0.38 ± 0.02 μm and 

ΔPc/E0 = 1.9 ± 0.2, which agreed with experimental data (Supplementary Fig. S5). We note that the 

reported surface roughness of PDMS surface is in the submicrometer range6. 

We therefore conclude that at pressure differences ΔP < E0, a large number of small-roughness 

elements with submicrometer size can provide leakage of water comparable to the flow within the gel. 

The size of imperfections (on the order g ≈ 0.1 μm), the value of ΔP required for closing the gaps (on the 

order ΔPc ≈ E0), and the decrease in flow rate Q with increasing ΔP in the leakage-dominated regime 

(equation (32) and Supplementary Fig. S5), all agree with the experimental results. Furthermore, we 

estimate the hydraulic resistance of gaps as Rgap ≈ 0.1 - 1 Pa⋅s/μm3 from the left-most three data points in 

Supplementary Fig. S3a, while the hydraulic resistance of microgel R0 = 1 Pa·s /μm3 is observed for ΔP > 

E0 in the linear response regime (equation (75) and red lines in Fig. 3b and Supplementary Fig. S5). 

Hence, by comparing the two flow resistances, we conclude that for ΔP > E0 the flow of water occurs 

primarily through the microgel. We should also note that with a cubic (g – h)3 scaling, the leakage flow is 

highly sensitive to the height of the gaps. Thus, once the gaps are smaller than a critical height 

(corresponding to equal leakage and microgel flow rates), the leakage flow rapidly diminishes. 

 

Supplementary Note 5.  Theoretical predictions of the behavior of microgels in confinement 

1. Deformation free energy density 

Consider a microgel prepared in a good solvent at the monomer number density ci that is swollen to an 

equilibrium concentration c0 and volume V0. The equilibrium swelling corresponds to the deformation 

factors λ0 = (ci /c0)1/3 in all three dimensions of the microgel. In the microchannel, the microgel is locally 

deformed by additional factors λx = λ|| in the axial direction and λy = λz = λ⊥ in the transverse directions 

to a new number density c of monomers  
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𝑐𝑐 = 𝑐𝑐0/�λ|| λ⊥
2�.                                                              (33) 

The free energy of the microgel is the sum of elastic and osmotic components7. We use the predictions of 

scaling theory for these two contributions to the microgel free energy. The osmotic pressure π of the 

microgel in a good solvent increases proportionally to the 9/4 power of its concentration8,9 

π ≈  (𝑘𝑘𝑘𝑘/𝑏𝑏3)(𝑐𝑐𝑏𝑏3)9/4,                                             (34) 

where b is the size of the monomer. The osmotic part fos of the free energy per polymer chain between 

network junctions is proportional to the free energy density (~ π) divided by the number of chains per unit 

volume (c/N), where N is the chain degree of polymerization. The osmotic contribution to the free energy 

per chain scales with polymer concentration c as   

                                                                 𝑓𝑓os ≈  𝑘𝑘𝑘𝑘𝑘𝑘(𝑐𝑐𝑏𝑏3)5/4.                                                     (35) 

We assume that individual network chains between crosslinks deform affinely, that is, proportionally to 

the dimensions of the entire microgel. In this case, the dimensions of the chain in the deformed microgel 

is 𝑅𝑅�∥ = λ∥𝑅𝑅�0 = λ∥λ0𝑅𝑅�i in the axial direction and 𝑅𝑅�⊥ = λ⊥𝑅𝑅�0 = λ⊥λ0𝑅𝑅�i in the transverse direction, where 

𝑅𝑅�0 and 𝑅𝑅�i are the chain sizes in the fully swollen state (at c = c0) and in the state at which the gel was 

formed (at c = ci), respectively. The elastic free energy per chain scales as  

          𝑓𝑓el  ≈  𝑘𝑘𝑘𝑘∑ �𝑅𝑅
�𝑗𝑗
𝑅𝑅�f
�
2

𝑗𝑗 ≈ 𝑘𝑘𝑘𝑘∑ �λ𝑗𝑗λ0
𝑅𝑅�i
𝑅𝑅�f
�
2

𝑗𝑗 ,                                    (36) 

where 𝑅𝑅�f is the amplitude of fluctuations of the chain in the deformed microgel state, and the sum is over 

independent j = {x,y,z} directions. Since the mean-square amplitude of chain fluctuations is proportional 

to the mean-square polymer size at semi-dilute good solvent conditions and scales as8,9 𝑅𝑅�f2 ∼ 𝑐𝑐−1/4, while 

the mean-square chain size in the preparation conditions scales as 𝑅𝑅�i2 ∼ 𝑐𝑐i
−1/4, the elastic free energy per 

chain is 

         𝑓𝑓el  ≈  𝑘𝑘𝑘𝑘 �𝑐𝑐
𝑐𝑐i
�
1/4

λ02 ∑𝑗𝑗λ𝑗𝑗2 ≈  𝑘𝑘𝑘𝑘 � 𝑐𝑐
𝑐𝑐0
�
1/4

�𝑐𝑐i
𝑐𝑐0
�
5/12

 ∑𝑗𝑗λ𝑗𝑗2.                                      (37) 

 At the equilibrium swelling (c = c0) in the absence of additional deformations, ∑𝑗𝑗λ𝑗𝑗2 = 3, the total 
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free energy of the microgel (see equations (35) and (37)) 

 𝑓𝑓 = 𝑓𝑓os + 𝑓𝑓el ≈  𝑘𝑘𝑘𝑘�𝑘𝑘(𝑐𝑐0𝑏𝑏3)5/4 + (𝑐𝑐i/𝑐𝑐0)5/12�            at 𝑐𝑐 = 𝑐𝑐0                    (38) 

is minimized (∂f / ∂c0 = 0) at the concentration9 

                                                           𝑐𝑐0 ≈
�𝑐𝑐i𝑏𝑏3�

1/4

𝑏𝑏3𝑁𝑁3/5 .                                                         (39) 

 Using this relation between the concentrations at the preparation conditions and the swelling 

equilibrium (ci / c0)5/12 = N (cb3)5/4, as well as the fact that the ratio of polymer concentrations is 

c/c0=(λ||λ⊥
2)-1 (see equation (33)), one can write the total free energy per chain in the deformed state 

within the scaling approximation (equations (35) and (37)) as10 

   𝑓𝑓 ≈  𝑘𝑘𝑘𝑘𝑘𝑘(𝑐𝑐0𝑏𝑏3)5/4 ��λ∥ λ⊥
2�

−5/4
 + �λ∥ λ⊥

2�
−1/4

 � 2λ⊥
2 + λ∥2��,      (40) 

where the sum of squares of the deformation factors in equation (37) is ∑𝑗𝑗λ𝑗𝑗2 = 2λ⊥
2 + λ∥2. Note that the 

free energy per unit volume of the fully swollen microgel fc0/N normalized by the modulus of the fully 

swollen gel,  

     𝐸𝐸0 ≈  𝑘𝑘𝑘𝑘
𝑏𝑏3

(𝑐𝑐0𝑏𝑏3)9/4,          (41) 

is universal and depends only on the dimensionless deformation factors  

     𝑓𝑓̅

𝐸𝐸0
= 𝑓𝑓𝑐𝑐0

𝑁𝑁𝐸𝐸0
=  11

50
��λ∥ λ⊥

2�
−5/4

 + �λ∥ λ⊥
2�

−1/4
 � 2λ⊥

2 + λ∥2��.   (42) 

This is the reason why normalizing pressure difference ∆P by the modulus E0 of the swollen microgels 

generated universal dependences in Figs. 4b and 5b. Note that we have chosen the numerical coefficient 

in equation (42) to be 11/50, to assure that E0 is the Young’s modulus. 

Below we present the scaling relations between (i) the position of the microgel and the applied 

pressure difference, (ii) the reduction in microgel volume and the degree of microgel confinement, and (iii) 

the translocation pressure difference and the degree of confinement. 
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2. Deformation of a spherical microgel 

In the steady state the size and shape of the spherical microgel under compression are determined by the 

condition of force balance, and below we calculate forces acting on the microgel. The walls of the 

microchannel impose a non-uniform deformation on the spherical microgel. Below, we describe the 

calculation of the deformation of a spherical microgel, neglecting the bending effects and the deformation 

of the caps (Supplementary Fig. S6). Such an approach is more applicable for the microgel confinement 

in a microchannel with small entrance angles α. 

 The total free energy of deformation, F, is an integral over the whole volume of the undeformed 

microgel 

𝐹𝐹 = ∫ 𝑓𝑓̅[λ∥(𝑥𝑥0), λ⊥(𝑥𝑥0)]𝑑𝑑0(𝑥𝑥0)𝐷𝐷0/2
−𝐷𝐷0/2 𝑑𝑑𝑥𝑥0,   (43) 

where x0 denotes the axial coordinate in the undeformed microgel state (with the origin at the center of the 

microgel) and 𝑑𝑑0(𝑥𝑥0) = 𝜋𝜋
4 (𝐷𝐷02 − 4𝑥𝑥02) is the circular cross-sectional area of the undeformed microgel at 

x0 (Supplementary Fig. S6). 

 Consider infinitesimal disk-shaped slices of the undeformed microgel. We assume that when the 

microgel is confined in the microchannel, each disk of diameter �𝐷𝐷02 − 4𝑥𝑥02 and thickness dx0 at the axial 

position x0 in the undeformed microgel state uniformly transforms into another disk of diameter D[x(x0)] 

and thickness dx at the axial position x(x0). Thus we neglect the bending of the disks upon deformation. 

The shape of the microchannel (Supplementary Fig. S6) is the cylindrical constriction with constant 

diameter D(x ≥ 0) = dc for the positive coordinate x, and the tapered truncated cone region D(x ≤ 0) = dc – 

2x tanα, for the negative coordinate x. The radial and axial deformation ratios are thus  

 λ⊥(𝑥𝑥0) = 𝐷𝐷[𝑥𝑥(𝑥𝑥0)]

�𝐷𝐷02−4𝑥𝑥02
       and        λ∥(𝑥𝑥0) = 𝑟𝑟𝑥𝑥

𝑟𝑟𝑥𝑥0
.                       (44) 

 We minimize the total free energy via standard variational method4. In addition to the large 

deformation described in equation (44), we define an infinitesimal deformation by x → xu = x + u(x). This 



27 

 

variation in the axial coordinates of the disks, δx = xu – x = u(x), yields the variations of the deformation 

factors 

𝜆𝜆⊥(𝑥𝑥0) → 𝜆𝜆⊥𝑢𝑢(𝑥𝑥0) = 𝜆𝜆⊥(𝑥𝑥0) + 𝐷𝐷′(𝑥𝑥)
𝐷𝐷(𝑥𝑥)  𝜆𝜆⊥(𝑥𝑥0) 𝑢𝑢(𝑥𝑥0)    ⟹    𝛿𝛿𝜆𝜆⊥ = 𝐷𝐷′(𝑥𝑥)

𝐷𝐷(𝑥𝑥)  𝜆𝜆⊥(𝑥𝑥0) 𝑢𝑢(𝑥𝑥0) 

          𝜆𝜆∥(𝑥𝑥0) → 𝜆𝜆∥𝑢𝑢(𝑥𝑥0) = 𝜆𝜆∥(𝑥𝑥0) + 𝑢𝑢′(𝑥𝑥0)    ⟹    𝛿𝛿𝜆𝜆∥ = 𝑢𝑢′(𝑥𝑥0)            (45) 

and the variation in total free energy 

              𝛿𝛿𝐹𝐹 = ∫𝑓𝑓̅[𝜆𝜆⊥𝑢𝑢(𝑥𝑥0),𝜆𝜆∥𝑢𝑢(𝑥𝑥0)]𝑑𝑑0(𝑥𝑥0)𝑑𝑑𝑥𝑥0 − ∫𝑓𝑓̅[𝜆𝜆⊥(𝑥𝑥0),𝜆𝜆∥(𝑥𝑥0)]𝑑𝑑0(𝑥𝑥0)𝑑𝑑x0 .           (46) 

Substituting λ⊥u and λ||u from equation (45) into this δF, expanding it in series up to first order in u and u’, 

and using integration by parts, we obtain 

𝛿𝛿𝐹𝐹 = �𝜕𝜕𝑓𝑓��𝜆𝜆⊥,𝜆𝜆∥�
𝜕𝜕𝜆𝜆∥

 𝑑𝑑0(𝑥𝑥0) 𝑢𝑢(𝑥𝑥0)��
𝑥𝑥0b
′

𝑥𝑥0f
′

 

−∫ � 𝑟𝑟
𝑟𝑟𝑥𝑥0

�𝜕𝜕𝑓𝑓��𝜆𝜆⊥,𝜆𝜆∥�
𝜕𝜕𝜆𝜆∥

 𝑑𝑑0(𝑥𝑥0)� − 𝐷𝐷′(𝑥𝑥)
𝐷𝐷(𝑥𝑥)  𝜆𝜆⊥(𝑥𝑥0) 𝜕𝜕𝑓𝑓��𝜆𝜆⊥,𝜆𝜆∥�

𝜕𝜕𝜆𝜆⊥
 𝑑𝑑0(𝑥𝑥0)� 𝑢𝑢(𝑥𝑥0)𝑑𝑑𝑥𝑥0 .      (47) 

Using λ|| = dx/dx0, λ⊥
2  = A(x)/A0[x(x0)], and defining local stress in j-direction 

σjj = [λj /(λ⊥
2  λ||)] (∂𝑓𝑓/̅∂ λj),                 (48) 

we simplify equation (47) as 

𝛿𝛿𝐹𝐹 = [𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥) 𝑑𝑑(𝑥𝑥) 𝑢𝑢(𝑥𝑥)]|
𝑥𝑥b
′
𝑥𝑥f
′
− ∫ �𝜎𝜎𝑥𝑥𝑥𝑥′ (𝑥𝑥) + 𝐷𝐷′(𝑥𝑥)

𝐷𝐷(𝑥𝑥)
(2𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥) − 𝜎𝜎𝑟𝑟𝑟𝑟(𝑥𝑥))�  𝑑𝑑(𝑥𝑥) 𝑢𝑢(𝑥𝑥)𝑥𝑥f

′

𝑥𝑥b
′ 𝑑𝑑𝑥𝑥.   (49) 

This extra free energy is stored in the microgel due to the conversion of the work δW  

𝛿𝛿𝛿𝛿 =  −∫ ℱ𝑥𝑥int(𝑥𝑥) 𝑑𝑑(𝑥𝑥) 𝑢𝑢(𝑥𝑥)𝑥𝑥f
′

𝑥𝑥b
′  𝑑𝑑𝑥𝑥    (50) 

performed on it. Here, ℱ𝑥𝑥int(𝑥𝑥) is the body force (force in x-direction per unit volume) acting on disks. 

Assumptions of the “undeformed caps” and “no bending of disks” imply zero stress at the back and front 

boundaries of the deformed part of the microgel 

𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥b′ ) = 𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥f′) = 0.    (51) 

Note that σxx(x’b\f) = 0 requires λ⊥(x’b\f) = λ||(x’b\f) = 1 at the front and back boundaries of the deformed 

section of the microgel. Inside the deformed part of the microgel ℱ𝑥𝑥int(𝑥𝑥) = −𝑃𝑃′(𝑥𝑥) results in 
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  𝜎𝜎𝑥𝑥𝑥𝑥′ (𝑥𝑥) + 𝐷𝐷′(𝑥𝑥)
𝐷𝐷(𝑥𝑥)

(2𝜎𝜎𝑥𝑥𝑥𝑥(𝑥𝑥)− 𝜎𝜎𝑟𝑟𝑟𝑟(𝑥𝑥)) + 𝑃𝑃′(𝑥𝑥) = 0 ,           (52) 

where 𝑃𝑃′(𝑥𝑥) is the water pressure gradient. For a steady state, these conditions correspond to the force 

balance at the back and front boundaries of the deformed part of the microgel (equation (51)) and inside 

the deformed section of the microgel (equation (52)), respectively. 

 

3. Pressure gradient along the microgel 

In order to relate the water pressure gradient P ’(x) = dP/dx to the deformation along the microgel, we 

modeled each elementary vertical slice of a microgel (a disk of diameter D(x) and thickness dx) at the 

axial position x by a densely packed set of parallel “pipes” with a diameter ξ(x) (the correlation length), 

which scales with polymer concentration as ξ = ξ0 (c/c0)–3/4; thus, ξ = ξ0 (λ⊥
2 λ||)3/4 (see equation (33)). The 

pressure difference dP across the pipe is dP = q dRξ, where dRξ is the hydraulic resistance of each pipe 

and q is the volumetric flow rate of water through the pipe (e.g., in units of μm3/s). Each disk of diameter 

D(x) and length dx accommodates m ≈ (D/ξ)2 pipes, and the total resistivity of a disk containing m-pipes 

acting in parallel is dR = dRξ/m. The flow rate through the disk is Q = mq.  

 The flow of liquid inside the pipes is assumed to be laminar and described by the Poiseuille law, 

which gives the resistance of a pipe dRξ = (128η dx)/(π ξ4), where η is the viscosity of the liquid5. Thus 

the resistivity of a disk at position x is 

                                   𝑑𝑑𝑅𝑅 =  (128η 𝑑𝑑𝑥𝑥)/[π𝐷𝐷2(𝑥𝑥) ξ2(𝑥𝑥)]                                            (53) 

and the pressure gradient at position x is dP/dx = (128 η Q)/(π D2(x) ξ2(x)). Note that Eq. (53) can be 

treated as Darcy's law for the flow through a porous medium with non-uniform permeability along the 

microgel as κ = ξ²/32, since Darcy’s law predicts5 dR = (4ηdx)/(πD2κ). By substituting the correlation 

length ξ = ξ0 (λ⊥
2 λ||)3/4 for good solvent conditions, we obtain  

𝑑𝑑𝑃𝑃/𝑑𝑑𝑥𝑥 =  [(128 η 𝑄𝑄)/(π ξ02)]𝐷𝐷–2(𝑥𝑥) [λ⊥
2(𝑥𝑥) λ||(𝑥𝑥)]–3/2,                       (54), 
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which must be balanced by the body force inside the deformed microgel, as was given in equation (52). 

By using the geometry of the setup and the free energy density of the microgel (given in equation (42)) in 

the calculation of the stress components σjj, we obtain 

𝜆𝜆∥
′ (𝑥𝑥)
𝜆𝜆∥(𝑥𝑥) = −2

𝐷𝐷(𝑥𝑥) �
𝐷𝐷′(𝑥𝑥)�45−30𝜆𝜆⊥4 (𝑥𝑥)𝜆𝜆∥(𝑥𝑥)−3𝜆𝜆⊥2 (𝑥𝑥)𝜆𝜆∥

3(𝑥𝑥)�+𝐺𝐺(𝑥𝑥)�45+2𝜆𝜆⊥4 (𝑥𝑥)𝜆𝜆∥(𝑥𝑥)−35𝜆𝜆⊥2 (𝑥𝑥)𝜆𝜆∥
3(𝑥𝑥)�− ℓ0

𝐷𝐷(𝑥𝑥)�𝜆𝜆⊥
2 (𝑥𝑥)𝜆𝜆∥(𝑥𝑥)�3/4

45+10𝜆𝜆⊥4 (𝑥𝑥)𝜆𝜆∥(𝑥𝑥)+21𝜆𝜆⊥2 (𝑥𝑥)𝜆𝜆∥
3(𝑥𝑥)

� ,  

(55) 

where λ||’ = d λ||/dx, and we have used an abbreviation for the characteristic flow rate (in units of length), 

ℓ0 = (51200 η Q)/(11π ξ0
2 E0). Note that  ℓ0 ~ Q appears in λ||’/λ|| in the above equation since flow 

deforms the microgel in the axial direction. In addition to equation (55), the definition of λ⊥ given in 

equation (44), leads to 

     𝜆𝜆 ⊥
′ (𝑥𝑥)

   𝜆𝜆⊥(𝑥𝑥) = 𝐷𝐷′(𝑥𝑥)+𝐺𝐺(𝑥𝑥)
𝐷𝐷(𝑥𝑥)  ,                                                    (56) 

where λ⊥’ = d λ⊥/dx. In equations (55) and (56), we used a function 

 𝐺𝐺(𝑥𝑥) = ∓ 2𝜆𝜆⊥
2 (𝑥𝑥)

𝜆𝜆∥(𝑥𝑥)
� �� 𝐷𝐷0

𝐷𝐷(𝑥𝑥)�
2
− 1

𝜆𝜆⊥
2 (𝑥𝑥)

�.                        (57) 

Here, the positive and negative signs are for the two sides of the unperturbed microgel, x0 < 0 and x0 >  0 

respectively, as the unperturbed diameter of a disk increases or decreases with x0 , depending on which 

side of the gel it is. 

 

4. Results of numerical simulations 

The coupled differential equations (55) and (56), corresponding to the force balance inside the microgel 

and the shape of the microgel imposed by the confinement are numerically integrated via 4th order Runge-

Kutta algorithm2 for the geometrical parameters relevant to the geometry of the microchannel. The 

assumption of the undeformed microgel caps corresponds to the boundary conditions of λ⊥(x’b\f) = λ||(x’b\f) 
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= 1 at the back and front boundaries of the microgel portion in contact with the microchannel walls. Note 

that the definition of λ|| in equation (44) implies dx0 = dx/λ||, which can be used to transform the integrals 

over x0 in the undeformed state into integrals over x in the deformed state. Thus we obtained the 

deformation ratios λ⊥(x|x’f), λ||(x|x’f) and the normalized axial stress σxx(x|x’f)/E0 inside the microgel at the 

axial position x for a particular front boundary position x’f. The flow rate Q was adjusted by a bisection 

algorithm to obtain the undeformed back boundary. 

In order to determine the position xc, where the function G(x) (introduced in equations (55) and 

(56)) changes its sign, we also performed an axial length integration 

𝑆𝑆(𝑥𝑥) = ∫ 𝑑𝑑𝑥𝑥�0
𝑥𝑥0f
′

 𝑥𝑥0
= ∫ λ∥−1(𝑥𝑥�)𝑑𝑑𝑥𝑥�𝑥𝑥f

′

𝑥𝑥 .                                              (58) 

From the geometry defined in Supplementary Fig. S6, the center of the undeformed microgel (x0 = 0) 

corresponds to 𝑆𝑆(𝑥𝑥c) =  12 �𝐷𝐷0
2 − 𝐷𝐷f2. 

 In Supplementary Fig. S7, we illustrate the numerical results of our theoretical approach 

described above. Supplementary Figs. S7a and b show the numerical results for profiles of deformation 

ratios (λ⊥, λ||) and normalized concentration (c/c0) along the deformed microgels at different positions 

inside the microchannel. At translocation instability point (at ΔP = ΔPmax, grey lines), the largest microgel 

compression is at the constriction entrance (x = 0). Based on Supplementary Figure S7b, the respective 

increase in polymer concentration is in the range 1 ≤ c/c0 ≤ 3.3. Recalling that κ/κ0 = (ξ/ξ0)2 = (c/c0)–3/2, 

we conclude that the ratio of permeabilities κ/κ0 varies in the range 1 ≥ κ/κ0 ≥ 0.2. Here κ0 is the 

permeability of the undeformed microgel, which was estimated to be approximately 7 nm² from Eq. (75). 

For the highest increase in polymer concentration of c/c₀ ≈ 3.3, the largest reduction in permeability by 

the factor of 5 (or the smallest ratio κ/κ0 ≈ 0.2) was obtained.  In Supplementary Fig. S7c, we plot the 

local volume change factor (λ⊥
2 λ||) as a function of local radial deformation factor (λ⊥) using the data in 

Supplementary Fig. S7a. The relation λ⊥
2 λ|| ~ λ⊥

4/3 (obtained for no external axial stress from equation 

(63), dashed line) is in good agreement with the numerical data. In Supplementary Fig. S7d, we plot the 
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calculated flow rate as a function of pressure difference and compare the numerical data with scaling 

predictions. 

 Finally, Supplementary Fig. S7e shows the numerical result for the normalized front tip position 

of the microgel in the constriction, xf/dc > 0, as a function of normalized pressure difference, ΔP/E0, 

compared to experimental data. Fitting a function in the power-law form, xf/dc ≈ (ΔP/E0) 
a, to the 

numerical data leads to a = 2.3 ± 0.1 for a broad range of pressure differences. The universal scaling 

relation 

𝑥𝑥f/𝑑𝑑c  ≈  (Δ𝑃𝑃/𝐸𝐸0)2.3                    for   𝑥𝑥f > 0,       (59) 

is also in agreement with the experimental results for the strongly constricted microgels. In the next 

section, we discuss scaling relations for volume reduction, V/V0, and rescaled translocation pressure 

difference ΔPmax/E0. 

 

5. Scaling predictions for a deformed microgel 

In the Sections 2-4 above, we considered spherical microgels. Here, in order to obtain universal scaling 

predictions, we consider a microgel with a cylindrical undeformed shape and an equilibrium swollen 

diameter D0 with its symmetry axis oriented in x-direction. 

a. Volume reduction of a microgel in the constriction 

If a microgel is completely inside the constriction at zero pressure difference ΔP = 0 and no fluid flows 

through it (Q = 0), the microgel is unconstrained in the axial direction. The radial size of the microgel is 

equal to the diameter dc of the constriction. Thus the radial deformation factor is constant λ⊥ = dc/D0. The 

longitudinal deformation factor λ||  of the microgel can be obtained by the minimization of the free energy 

per chain (equation (40)) or the free energy per unit volume of the fully swollen microgel (equation (42)) 

with respect to λ|| at constant λ⊥ = dc/D0. This minimization, ∂𝑓𝑓/̅∂λ|| = 0, corresponds to the balance of 
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elastic and osmotic stresses in the unconstrained axial direction 

        ∂𝑓𝑓
̅

∂λ∥
≈ 11

50
𝐸𝐸0 �−

5
4
λ∥
−9/4λ⊥

−5/2  − 1
2
λ∥
−5/4λ⊥

3/2  + 7
4
λ∥
3/4λ⊥

−1/2� 

≈ −11𝐸𝐸0
200

λ∥
−9/4λ⊥

−5/2�5 + 2λ∥λ⊥
4 − 7λ∥3λ⊥

2� = 0.                                (60) 

The solution of this cubic equation with λ⊥ = dc /D0 is10 

         λ|| = (5/7)1/3(𝐷𝐷0/𝑑𝑑c)2/3�(½ + 𝑣𝑣)1/3 + (½ –  𝑣𝑣)1/3�,                              (61) 

where  

  𝑣𝑣 =  [1/4 – (8/4725) (𝐷𝐷0/𝑑𝑑c)–10]1/2.    (62) 

Note that for large radial compressions λ⊥ ≪ 1, the parameter 𝑣𝑣 ≈ ½ and  

λ|| ~ λ⊥
−2/3        for  λ⊥ ≪ 1.                 (63) 

The relative change of volume upon microgel confinement in the constriction is  

𝑉𝑉/𝑉𝑉0 =  λ⊥
2  λ|| = (5/7)1/3(𝐷𝐷0/𝑑𝑑c)−4/3�(½ + 𝑣𝑣)1/3 + (½ –  𝑣𝑣)1/3�,           (64) 

which is equation (8) in the main text. 

 The above equation (64) (equation (8) of the main text) is obtained for a cylindrical shape of the 

undeformed microgel. The relations show a universal power-law dependence with an exponent –4/3 for 

geometry confinement, and are represented by the black curves in Fig. 6a and b of the main text. The 

experimental and theoretical results were in excellent agreement without any fitting parameters. 

b.  Dependence of the translocation pressure on the degree of microgel confinement 

The dependence of ΔPmax on D0/dc can be obtained by integrating equation (52) along the microgel: 

Δ𝑃𝑃 = −∫ d𝑃𝑃𝑥𝑥f
′

𝑥𝑥b
′ = ∫ dσ𝑥𝑥𝑥𝑥

𝑥𝑥f
′

𝑥𝑥b
′ + ∫ d𝑥𝑥

λ∥
�λ∥
𝐷𝐷
𝑟𝑟𝐷𝐷
𝑟𝑟𝑥𝑥

(2σ𝑥𝑥𝑥𝑥 − σ𝑟𝑟𝑟𝑟)�𝑥𝑥f
′

𝑥𝑥b
′ .    (65) 

The first integral vanishes due to vanishing surface forces (equation (51)), and using ∫ d𝑥𝑥
λ∥

𝑥𝑥f
′

𝑥𝑥b
′ ≈ 𝐷𝐷0, we 

estimate the second integral in equation (65) as 
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Δ𝑃𝑃max ≈ �−𝐷𝐷0
λ∥
𝐷𝐷
𝑟𝑟𝐷𝐷
𝑟𝑟𝑥𝑥

(2σ𝑥𝑥𝑥𝑥 − σ𝑟𝑟𝑟𝑟)��
𝑥𝑥m

.               (66) 

Here, the right-hand-side is taken at a certain point x = xm = – γ(α) dc, near the maximum of the expression 

in square brackets in equation (65) inside the integration interval (𝑥𝑥b′ ≤ 𝑥𝑥 ≤ 𝑥𝑥f′) at the translocation 

instability point (ΔP = ΔPmax). For strong deformation (λ∥ ≈ λ⊥
−2/3 ≫ λ⊥), from equations (42) and (48), 

we have   2σxx – σrr ≈ E0 λ⊥−3, and substituting it into equation (66) along with the slope of the tapered 

zone, i.e., dD/dx = – 2 tanα, we write 

Δ𝑃𝑃max
𝐸𝐸0

≈ tanα �𝐷𝐷0
𝐷𝐷
λ⊥
−11/3��

𝑥𝑥m
.         (67) 

Here, making use of the cylindrical undeformed gel approximation, i.e., λ⊥ ≈ D/D0, we obtain 

Δ𝑃𝑃max
𝐸𝐸0

≈ tanα [𝜆𝜆⊥(𝑥𝑥m)]−14/3.         (68) 

The radial deformation ratio at x = xm is λ⊥(xm) = D(xm)/D0 = (dc – 2 tanα xm)/D0 = (1 + 2 γ(α) tanα) (dc/D0). 

Therefore, we have 

Δ𝑃𝑃max
𝐸𝐸0

= 𝐾𝐾(𝛼𝛼) �𝐷𝐷0
𝑟𝑟c
�
14/3

,     (69) 

where we defined the angle-dependent prefactor 

K(α) ≈ tanα (1 + 2 γ(α) tanα)–14/3.           (70) 

 The size dependence of translocation pressure difference, i.e., the power-law ΔPmax ≈ (D0/dc)14/3, 

is universal with an exponent 14/3, independent of the shape of the tapering zone. However, the prefactor 

(amplitude) of this power-law, K(α), is not universal and depends on the geometry of the microchannel 

and the microgel. To this end, we consider simulation results to obtain the amplitude K(α) and compare 

them with experimental data. 

 In Supplementary Fig. S8a, we plot the simulation results for rescaled translocation pressure 

difference, ΔPmax/E0, as a function of degree of confinement, D0/dc, for different tapering angles, α. We 

observe (i) persistent power-law behavior ΔPmax ≈ (D0/dc)14/3, and (ii) saturation of the angle-dependent 

amplitude for large angles. This saturation is evident in Supplementary Fig. S8b, in which we plot the 
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amplitude, K(α). We should again note that, in these numerical simulations, we neglected the bending 

effects, which are more pronounced at large tapering angles and large degrees of confinements. In order to 

capture the saturation of K(α) to a finite value for large angles and to reproduce K(α) ≈ tanα for small 

angles, we choose γ(α) ≈ (tanα)–11/14, which yields 

K(α) ≈ [k + (tanα) –3/14] 
–14/3,        (71) 

where k is a numerical constant that can be obtained by the fit to experimental data. 

 

 In Supplementary Fig. S9a, we verify the above approximation by plotting the experimental data 

(see Fig. 5b) in the form (ΔPmax/E0) –3/14 (D0/dc) as a function of (tanα)–3/14. Fit of the function [K(α)]–3/14 

by a linear dependence (predicted as in equation (71)) yields a best fitting parameter k = 0.72 ± 0.02. In 

Supplementary Fig. S9b, we present the log-log plot of the experimental ΔPmax/E0 data rescaled with K(α) 

for k = 0.72, and observe that data for all angles collapse on a single line with a slope 14/3 as predicted by 

equation (69). 

 

6. Flow resistance in the weak deformation regime 

Consider a microgel weakly deformed in the tapered zone under a small pressure difference, Δ𝑃𝑃 ≪ 𝐸𝐸0, 

where E0 is the modulus of the microgel. To calculate the flow resistance of the weakly deformed 

spherical gel, we integrate the reciprocal resistance of “pipes” of diameter ξ0, over the concentric rings 

(see Supplementary Fig. S10) of length L(r) = 2 [(D0/2)2 – r2]1/2 and cross-sectional area dA = 2π r dr (in 

the range 0 < r < D0/2 – δ), i.e.,  

                      1
𝑅𝑅

= π
128

ξ02

η ∫
d𝐴𝐴
𝐿𝐿(𝑟𝑟) = π

128
ξ02

η ∫
2π 𝑟𝑟 d𝑟𝑟

2�(𝐷𝐷0/2)2−𝑟𝑟2
𝐷𝐷0/2−δ
0 . 

= π2

256
ξ02

η
�𝐷𝐷0 − 2�δ(𝐷𝐷0 − δ)� = � π

16
�
2 ξ02

η
 �𝐷𝐷0 − 𝐿𝐿 �𝐷𝐷0

2
− δ��,             (72) 

where 𝐿𝐿(𝐷𝐷0/2− δ) is the length of the contact zone 𝐿𝐿(𝐷𝐷0/2− δ) = 2�δ(𝐷𝐷0 − δ). The resistance R 
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calculated in equation (72) is inversely proportional to the thickness of the caps 𝐷𝐷0 − 𝐿𝐿(𝐷𝐷0/2− δ). At 

small deformations (δ ≪ 𝐷𝐷0) the flow resistance is equal to that of the unperturbed microgel 

R ≈ R0 = (16/π)2 η/(ξ0
2D0)         for  δ ≪ 𝐷𝐷0     (73) 

and is therefore constant independent of compression δ and pressure difference ΔP. This implies that most 

of the fluid flows through the whole microgel rather than through the small volume in the vicinity of the 

compressed microgel section of size 𝐿𝐿(𝐷𝐷0/2− δ). The high resistance of longer pores (with length ~ 

𝐷𝐷0 ≫ 𝐿𝐿(𝐷𝐷0/2− δ)) that pass through the central section of the microgel is compensated by the smaller 

number of such pipes. Thus we conclude that at small pressure difference, Δ𝑃𝑃 ≪ 𝐸𝐸0, the flux Q of water 

through the microgel is linearly proportional to the pressure difference 

Q ≈ ΔP/R0 ,                   (74) 

in good agreement with numerical calculations (red line with unit slope in Supplementary Fig. S7d) and 

experiments (red line with unit slope in Fig. 3b). 

 Balance of elastic and osmotic stresses at undeformed equilibrium state leads to9 E0 ≈ 2kT/ξ0
3. For 

the Young’s modulus E0 = 2570 Pa of the microgel used in the flow experiments, and kT ≈ 4.11·10–3 

Pa·μm3 at room temperature, we estimate the pore size in undeformed microgel to be ξ0 ≈ 15 nm. 

Substituting this value into the equation (73) for the resistance R0 of the undeformed gel of diameter D0 ≈ 

100 μm with viscosity η ≈ 0.9·10–3 Pa·s for water at room temperature, we obtain R0 ≈ 1 Pa·s/ μm3. This 

estimate is in excellent agreement with the experimental results – the best linear fit to the data (red line in 

Fig. 3b) gives  

R0 = 1 Pa·s/μm3.                     (75) 
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