A Review of the Updated Pharmacophore for the Alpha 5 GABA(A) Benzodiazepine Receptor Model

Clayton, Terry^{1†}; Poe, Michael M.^{1†}; Rallapalli, Sundari¹; Biawat, Poonam¹; Savić, Miroslav M.²; Rowlett, James K.³, Gallos, George⁴; Emala, Charles W.⁴; Kaczorowski, Catherine C.⁵; Stafford, Douglas C.⁶; Arnold, Leggy A.^{1,6}; and Cook, James M.^{1,6}*

¹Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201; ²Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia; ³Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi, 39216; ⁴Department of Anesthesiology, Columbia University, New York, New York, 10032; ⁵Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, 38163; ⁶Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201.

[†] These authors contributed equally to this work.

^{*}Corresponding author, Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, <u>capncook@uwm.edu</u>

Supporting Information

With References and Appendices.

Comparative Model of the Benzodiazepine Binding Site

A crystal structure of the heteropentameric GABA(A) receptors has not been reported so far, however the structure determination of the similar acetylcholine binding protein (AChBP)¹ has been of great interest for the GABA(A) receptor researchers. A homopentamer of the GABA channel with the β 3 subunit has been solved by Miller et al. (*Nature* 2014). The AChBP protein shares less than 20% sequence homology with the extracellular domain of the GABA(A) receptor,² however the overall structural similarity is estimated to be around 60 - 75 %.² Comparative modeling studies have been carried out that used the structure of AChBP to develop models of the extracellular domain of GABA(A)R.^{1, 3, 4} In addition, electron cryomicroscopy (cryo-EM) structures that represent the extracellular and transmembrane portion of the nACh receptor were used the modeling of GABA(A) receptors.² However, the homology of the sequence is not very high, making the prediction of detailed features highly uncertain. Therefore, docking studies with Bz BS ligands⁵ have a more qualitative character and do not explain all differential interactions of GABA(A)R ligands with the existing subdomains. Different experimental structures of the nAChR^{1, 2, 6} demonstrated the structure variation of between members of the same family, ^{1, 2, 6} which can help us to extrapolate to which extent GABA(A) receptor subunits differ from each other.

The majority of Bz/GABA(A)R have 1γ , 2α and 2β subunits and each domain has a "plus" and a "minus" side (Figure 1). As a consequence, each subdomain interfaces with the plus and minus sides of neighboring subdomains. The Bz binding site can be found between the $\alpha^+\gamma^-$ subunits and is significantly bigger but similar to the two GABA binding pockets, which are positioned between the $\beta^+\alpha^-$ subunits.⁶⁻⁸ Overall, the coordination of the $\alpha 1\beta 2\gamma 2$ GABA(A) receptor can be described as $\gamma\beta\alpha\beta\alpha$ started counter clockwise from plus to minus (Figure 1).^{4, 5, 9, 10}

Figure 1. Absolute subunit arrangement of the $\alpha 1\beta 2\gamma 2$ GABA(A) receptor when viewed from the synaptic cleft.²⁵

The GABA(A) binding sites are located at the $\beta^+\alpha^-$ subunit interfaces and the modulatory benzodiazepine binding site is located at the $\alpha^+\gamma$ subunit interface.

The $\gamma 2$ subdomain is important for interacting the benzodiazepines in addition to many other molecules that act via the Bz BS.^{11, 12} Sequence variations that differ between α and γ subdomains are responsible for the subtype selectivity and efficacy of Bz BS ligands.¹¹⁻¹⁴ Three segments have been proposed to generate the Bz BS: 1) The α^+ side, 2) the loops A, B and C, and 3) three segments of the γ^- called loops D, E and F.^{11, 12} X-ray crystallography and EM-structures AChBP¹ and the nAChR¹⁵ confirmed these segments, which create a groove-like pocket between subdomains and that are conserved among the entire superfamily. Trudell and Hagen proposed a near planar cleft BzR binding sites in 1980.^{16, 17}

Figure 2. Alignment and homology model depiction of the so called "loops A-F" and flanking regions of the human sequences of the Bz recognition site in different subunits.^{1,11-15,25}

View of the homology model (Figure 2) with the channel in between units. The membrane can be pictured parallel to the top edge of the structure. Stick representation is used for key residues: Loop A His102, loop B Tyr 160 and loop D Phe77.

After the nAChR structure was available, newer reports of liganded AChBP crystal structures were published.¹⁸ Importantly, these structures showed that the local conformation of the BS is influenced by the ligand. This is particularly the case for the loop C. Thus, this highly mobile structure element responds towards ligand binding and induces smaller changes along its boundary.¹⁸ This phenomena has been observed for other receptors as well and it has been hypothesized that low energy conformers can be separately stabilized by different ligands. Unfortunately, *a priori* prediction of the appropriate conformer/ligand pair is not conclusive at this time. The models can predict changes in binding sites as large as 40% and distances of key residues can vary several Ångstroms.

Small changes of the protein conformation can severely change the efficacy of Bz BS ligands.¹⁹ In addition, GABA(A) receptor ligands have different efficacies towards particular GABA(A) receptor subtypes.^{20, 21} The stabilization of the active state can be as small as 1 kcal/mol underlining the fact that proteins are inherently dynamic and can adopt many

conformations.²² Therefore, the prediction of the absolute assignments of specific side chains to specific descriptors for any particular conformation is not possible at present. However, a "suggested" orientation of the pharmacophore in the receptor can be predicted implying conformational flexibility of residues that satisfy pharmacophoric descriptors. The combination of a pharmacophore model and a homology results in a model that assigns large lipophilic areas to specific regions and enables flexible assignment of for instance H-bond bridges or π - π stacking. Water molecules can significantly complicate prediction of binding. Therefore, our group favors the pharmacophore/receptor models for drug design based on the rigid planar ligands (K_i = 5nM–20nM) that have introduced by Trudell et al.¹⁷

Relative Orientation of the Pharmacophore within the Comparative Model

The Milwaukee group published a review prior to structure determination of the AChBP that included results of site-directed mutagenesis and gave valuable insights in respect to important side chains that formed the Bz BS and represent pharmacophoric descriptors.²³ The combination of that model and the recent homology models to lymnea AChBP,² aplysia AChBP and the nAChR²⁴ resulted in a novel model that is discussed here. Experimental evidence induces some degree of conformational flexibility of the model that hint towards variable assignments for H-bridge interactions. In addition, specific areas of lipophilic interactions create a binding site geometry flanked by particular amino acid residues (Figure 3).

Figure3. Ribbon illustration of the GABA(A) BzR binding pocket conceived by Clayton et al.²⁵

Combining Homology Model and Experimental Evidence

Docking of diazepam and flumazenil was performed to test our computational ligand docking to homology models as described by the two assignments above. Different models based on different templates were used^{1, 15, 18} and the top 100 ligand poses per model were retained. A query among these poses was conducted based on the following parameters: The ring conformation of diazepam or flumazenil (Figure 4) should be in the active state;²⁶ residues α 1H102/ α 1V203 and α 1Y210/ α 1V212 are new the substituent in the seven position (consistent with the covalent labeling data); the 3'-ester group of flumazenil is near residues γ 2A79 and γ 2T81. The resulting docking poses were consistent with all covalent labeling studies and the steric requirements of 3' substituted imidazobenzodiazepines²⁷ binding.

Figure 4. Structures of BZDs.

All poses were found in the database. Representatively, diazepam is shown in Figure 5.

Figure 5. Diazepam docking pose in $\alpha 1\gamma 2$. The beta subunit is not in the binding pocket.²⁵

In Figure 5, diazepam was shown as space filling structure (turquoise: carbon, white: hydrogen, green: halogen, red: oxygen, and blue: nitrogen). The receptor was presented at ribbon with key amino acids in stick representation. The insert figure represents the empty pocket in the

"upright" position. This orientation is different from the main figure, where the structure has been turned and tilted to bring diazepam into the orientation of the unified pharmacophore model. In this orientation, His102 and Thr207 satisfy H₂ and H₁, respectively, and His 102, Val 212 and Tyr 210 would represent L₂ a hydrophobic pocket. This orientation of the 7-substituted reactive compounds such as isothiocyanate (see Figure 4, third structure) is in position to react with His102, Tyr 210, Val 212, and Val 203. This orientation was developed in collaboration with Professor Werner Seighart.²⁵

Figure 6. High resolution image of diazepam docking pose in $\alpha 1\gamma 2$ binding pocket.²⁵

The docking pose in Figure 6 and similar predictions satisfy the two definitions for L_2 and A_2 that are discussed above and the following descriptors: H_1 is aligned with the side chains near the top of loop C, the L_{DI} region is close the subdomain interaction (the $\alpha 1$ loop B (Y160) and the $\gamma 2$ region are forming the sheet involving M130, T142 and F77); A_2 is represented by H-bond interaction near $\alpha 1Y160$, $\gamma 2A79$, $\gamma 2T81$, $\gamma 2M130$ and $\gamma 2T142$. If these proximity relations that are found in the docking poses are compared with the unified pharmacophore model we can predict the following orientation the residues.

Figure 7. Orthogonal views of the location of residues with respect to pharmacophore in the $\alpha1\beta3\gamma2$ BzR binding pocket. 25

The Figures 7 and 8 show the orientation of Bz BS residues relative to the pharmacophore model in two views that correspond to a 90° rotation representing the evaluation

of experimental data and the comparative model of the $\alpha 1\beta 2\gamma 2$ GABA(A). The ligand is diazepam. It is possible that more than one side chain could satisfy the same descriptor because inverse agonists stabilize protein conformations that vary from the conformations preferred by agonists,

In addition, there is still some degree of variation in structural details of the poses that represent this orientation. The factors of these structure variations: template and alignment choices, construction of the model and its refinement, and docking algorithms.

With the alignment of XLi-093 and docked Ro15-1788,²⁵ it is becomes clear that these compounds are able to orientate towards the extracellular domain instead of solvent accessible space through the subunit boundary. Orientations of the pharmacophore model inside the structural model of the GABA(A) receptor have been proposed in the past.²⁸⁻³⁰

Current refinements of the predicted protein-ligand complexes with the support of the unified pharmacophore model is a promising approach to create 3D structures that are more accurate and applicable for structure-guided drug design. New approaches that combine protein modeling and pharmacophore elucidation are currently investigated.

Figure 8. Unified model of the $\alpha 1\gamma 2$ subtype benzodiazepine receptor with diazepam docked in the binding site.

Construction of the Unified Pharmacophore/Receptor Model

The 150+ BZ ligands^{31, 32} that belong to fifteen different scaffolds were used to create a unified pharmacophore/receptor model. The relative affinities, efficacies and functional effects from ligands of the same structural class at the diazepam-sensitive and diazepam-insensitive benzodiazepine receptor binding sites applied. In addition, we took the approximate locations of descriptors (hydrogen bond donor sites, hydrogen bond acceptor sites, lipophilic regions, and regions of steric repulsion) that were based primarily on in vitro binding affinities in account. The compounds from different scaffolds were superimposed in order to satisfy the same descriptors, creating the unified pharmacophore model this included the rigid planar templates (Ki = 5nM-20nM) of Trudell.¹⁷

The model has two hydrogen bond donating groups (H₁ and H₂), one hydrogen bond accepting group (A₂) and one lipophilic site (L₁). There are also lipophilic regions of interaction (L₂, L₃, L₄, and L_{Di}) and regions of negative steric repulsion (S₁, S₂ and S₃). Important for positive allosteric modulation are occupation of L₂ and/or L₃, and L₄ as well as interactions at H₁, H₂, and L₁. Inverse agonists only require interactions with the H₁, L₁, and A₂ descriptors for good activity *in vivo*.³³⁻³⁷ The L₃ region is lipophilic of nature differentiating diazepam sensitive (DS) and the diazepam insensitive (DI) coordination. Figure 8 depicts the relative locations of the different descriptors and regions and classes of ligands for GABA(A) R are shown in Table 1.

Figure 8. The Milwaukee-based unified pharmacophore.²⁵

Table 1. Structures of ligands and their modulation at the α 1 subtype.²⁵

The alignments of several Bz BS ligands within this model are shown in Figure 9.

Ro 15-1788 rotated 90°

diazepam rotated 90°

DMCM

DMCM rotated 90°

Figure 9. Alignments of several Bz BS ligands within the pharmacophore model.²⁵

A unified pharmacophore model incorporating many substance classes that act at the DS and DI benzodiazepine binding sites of GABA(A) receptors has been updated to include new substance classes. Compound development guided by this pharmacophore model has led to new agents with interesting pharmacological profiles, particularly enhanced preference for $\alpha 2$ or $\alpha 5$ containing GABA(A) receptor subtypes. Based on the evaluation of experimental data and comparative models of the $\alpha 1\beta 2\gamma 2$ GABA(A) receptor, the location of several residues relative to the descriptors of the pharmacophore/receptor model has been proposed. Although no absolute assignments were made regarding which amino acids satisfy the pharmacophoric descriptors, experimental data strongly indicated definite trends with regard to how ligands of varying pharmacological activity are oriented within the receptor. Because unified the pharmacophore/receptor model accounts for the binding and activity profiles at the six GABA(A) receptor subtypes containing any one of the different alpha subunits, the proposed orientation should also be similar within the different models¹ of the various receptor subtypes. Information to be immediately gained from these proposed orientations can have far reaching benefits, not only for the rational design of selective ligands and the interpretation of ligand docking results, but also for the identification and evaluation of possible roles certain residues may have within the pocket. As structure determination of the GABA(A) receptor is eagerly awaited, it is hoped that these proposed orientations may be used by others to gain additional insight into the potential mechanisms underlying binding and modulation at the Bz site, all of

which will lead to a better understanding of the structure and function of GABA(A) receptors. In the next section the methods used to build the protein model will be explained.

Homology Models of the Benzodiazepine Receptor

The γ -aminobutyric-acid (GABA(A) and GABA_C) pentameric ligand gated ion channels are members of a superfamily of allosteric transmembrane proteins which includes the nicotinic acetylcholine (nAChR), serotonin 5-HT3, and glycine receptors. Electrophysiological data on GABA(A) is available but attempts at atomic resolution to acquire structural data have so far been unsuccessful. However, in 2001 Smit³⁸ discovered a homologue of the nACh receptor ligand-binding domain from the snail *Lymnaea stagnalis*. Acetylcholine-binding protein (AChBP) is produced in the glial cells of *Lymnaea stagnalis*. In the synaptic cleft, AChBP modulates synaptic transmission. Subunits of the snail glial cells form a stable homopentamer with conserved N terminal domains. Known agonists and antagonists of nAChRs bind to the homologue. For this reason, it is a valuable template for modeling the N-terminus domains of pentameric ligand gated ion channels.

Brejc *et al.* successfully solved the crystal structure of AChBP by X-ray crystallography using weak Pb multiple wavelength anomalous diffraction (MAD) data in two crystal forms.¹ The crystals were grown at room temperature using the hanging-drop vapour diffusion technique. The crystal structure revealed a radially symmetric homopentamer with extracellular dimensions of the nicotinic acetylcholine receptor (nAChR) which correlated with measurements taken using electron microscopy.¹

Figure 10. Orthogonal views of the homopentameric acetycholine binding protein crystallized from *Lymnaea* stagnalis. The subunits have been assigned different colors for clarity.²

Subunits are homologous and have been colored by chain to distinguish them. In space filling models, HEPES (N-2-hydroxyethylpeperazine-N'-2-ethanesulphonic acid (present during the crystallization process) can be seen bound in the ligand binding site (Figure 10) between each subunit interface.²

The N terminus is located at the "mouth" of the ion channel in the synaptic cleft. A molecule of HEPES was present in the acetylcholine binding pocket. This was verified as the residues implicated with agonist binding in nAChR and AChBP were conserved in the receptor. The residues lie in four regions identified as loops A, B, C, and D. Loops A, B, and C are located on what is referred to as the 'plus' face while loops D, E, and F lie on the 'minus' face (see Figures 11 and 12). In the heteromeric nAChR, agonist binding takes place between the 'plus' face of a subunit and the 'minus' face of an α or γ subunit. Site directed mutagenesis and radioligand binding assays have established that residues of the GABA(A) receptor involved in ligand binding align with residues in loops A, B, and C of the α subunit and loops D and E of the γ subunit.^{2, 23, 25}

Figure 11. Single subunit of acetycholine binding protein crystallized from Lymnaea stagnalis (side view).^{2,23}

Since the AChBP is a member of the Cys-loop LGIC superfamily it offers a template for building models of the the ligand binding domains of the Cys-loop superfamily. The AChBP was used to build homology models of the subtypes of the GABA(A) receptors. The ligand binding domains of human GABA(A) receptors ($\alpha 1$, $\alpha 2$, $\alpha 3$, $\alpha 5$, $\beta 2$, and $\gamma 2$) were obtained from the Research Collaboratory for Structural Bioinformatics (RCSB). Originated in 1971 at

Brookhaven National Laboratories, this is the home of the Protein Data Bank. The PDB archive is the repository of information about the 3D structures of large biological molecules such as proteins and nucleic acids. With the protein sequences in hand, a critical first step in building a homology model is to align the raw protein sequence with the protein sequence of a target protein or template structure. Alignments are prepared using multiple sequence alignment software for DNA and proteins.³⁹

After calculating the best match for the selected sequences, they are lined up so identities, similarities, and differences can be seen. Programs which perform this include MAFFT, Muscle, Multalin, ClustalW, and BlastAlign (http://pbil.univ-lyon1.fr/alignment.html). Templates can also be found by performing a query of the raw protein sequence against the Protein databank. This is performed using the protein database search program, Gapped Blast.^{39, 40} The report will contain a list of sequences producing significant alignments, PDB code, protein description, a normalized alignment score and an Expect (E) value. In general, a lower E score describes the background noise that exists between sequences. A lower E value correlates to a more significant score. Once a proper alignment of protein sequences was performed, the raw protein sequence was threaded onto the AChBP using Deep View. The crystal structure of the AChBP was downloaded from the Swiss Protein Databank Viewer. Deep View is a Swiss Protein Databank Viewer (http://ca.expasy.org/spdby). Threading is performed after the alignment is complete. Amino acids which have been identified as equivalent between the proteins are "fit". This is similar, but more precise than the "3 corresponding atoms" technique. Deep View includes a tool, *Magic Fit*,³⁹ which performs the threading procedure for all residues across a raw sequence and a reference protein. Once the preliminary model has been built, a manual inspection can be performed. Considerations during manual inspection include, identifying areas of low homology, and manually aligning gap regions with loops in the reference protein.^{39, 40} Loop regions which correspond to gaps were in the alignment can be modeled by fitting structures from a loop database. In the current model, loop regions were mapped to a loop database by Cromer et al.^{2, 15}

Upon completion of the preliminary model, the following properties can be studied using Deep View and Sybyl²⁵:

- 1. Surface hydrophobicity
- 2. Solvent accessibility of N-glycosylation sites after pentamer assembly
- 3. Acidic, basic, and non polar maps
- 4. Sybyl X minimizations
- 5. Steric clashes
- 6. RMSD of alpha carbons
- 7. Location of disulfide bonds

In order to improve the prediction of areas of low homology PHD was utilized by Cromer et al.^{2, 39, 40} PHD or more commonly referred to as PredictProtein is a sequence analysis tool and the prediction of protein structure and function. Protein sequences or alignments are submitted to Columbia University; PredictProtein returns multiple sequence alignments, PROSITE sequence motifs, low-complexity regions (SEG), nuclear localisation signals, regions lacking regular structure (NORS) and predictions of secondary structure, solvent accessibility, globular regions, transmembrane helices, coiled-coil regions, structural switch regions, disulfide-

bonds, sub-cellular localization, and functional annotations. Upon request the Rost group will perform fold recognition by prediction-based threading, CHOP domain assignments, predictions of transmembrane strands and inter-residue contacts are also available. PredictProtein is run by Burkhard Rost at Columbia University in New York (<u>www.rostlab.org</u>).⁴⁰ As an alternative, Swiss Model can be used to model subunit loop regions by searching structures from loop databases.

Once subunits were completed, a pentamer was constructed taking into consideration residues determined experimentally to be present in the allosteric and GABA binding site. On the α subunit, this includes α Tyr160, α Tyr210, γ Phe77, and α Ser205.^{23, 25} After manually assembling the subunits and comparing an overlay with AChBP, the structure was energy minimized.^{25, 39}

With protein receptor models for $\alpha 1\beta 3\gamma 2$, $\alpha 2\beta 3\gamma 2$, $\alpha 3\beta 3\gamma 2$, and $\alpha 5\beta 3\gamma 2$ completed a truly *unified* pharmacophore model was assembled for each receptor subtype. Using the Tripos Biopolymer software, the pharmacophore was manually aligned into each protein. With mutagenesis data on residue interaction on key ligands, the pharmacophore was carefully adjusted so as to recreate the protein-ligand interactions discussed previously. The protein models below represent the cumulative results of over 20 years of research. The proteins are oriented with the $\gamma 2$ on the left and the α subunit on the right with loop C reaching over the middle to $\gamma 2$. Diazepam has been docked in each receptor and the pharmacophore is visible.

Protein Models of the $\alpha 1\beta 3\gamma 2$, $\alpha 2\beta 3\gamma 2$, $\alpha 3\beta 3\gamma 2$ and $\alpha 5\beta 3\gamma 2$ Subtypes

Presented here are the complete unified protein-pharmacophore models. The Milwaukeebased pharmacophore has been inserted into each of the homology models for the receptor subtypes of the benzodiazepine receptor. The models show the similarities we expected. The two oxygens of serine 206 represent the hydrogen bond acceptor A₂. The hydrogen bond donor, H₁, is due to the hydroxyl group oxygens of Threonine 231 and Tyrosine 234. Threonine 193 is responsible for the H₂ hydrogen bond donor as its hydroxyl group coordinates with lone pairs of ligands. The imidazole ring of histidine 102 coordinates with phenyl rings of ligands through π - π stacking interactions.

Figure 13. The $\alpha 1\beta 3\gamma 2$ subtype receptor with key residues shown

Figure 14. The benzodiazepine binding site of the $\alpha 1\beta 3\gamma 2$ receptor

Figure 15. The benzodiazepine binding site of the $\alpha1\beta3\gamma2~$ receptor rotated 90°

Figure 16. The $\alpha 2\beta 3\gamma 2~$ subtype receptor with key residues shown

Figure 17. The benzodiazepine binding site of the $\alpha 2\beta 3\gamma 2$ receptor

Figure 18. The benzodiazepine binding site of the $\alpha 2\beta 3\gamma 2\,$ receptor rotated 90°

Figure 19. The $\alpha 3\beta 3\gamma 2$ subtype receptor with key residues shown

Figure 20. The benzodiazepine binding site of the $\alpha 3\beta 3\gamma 2$ receptor within the active site

Figure 21. The benzodiazepine binding site of the $\alpha 3\beta 3\gamma 2\,$ receptor rotated 90°

Figure 22. The benzodiazepine binding site of the $\alpha 1\beta 3\gamma 2$ receptor with diazepam in the binding pocket.

THR207 Figure 23. The benzodiazepine binding site of the $\alpha1\beta3\gamma2$ receptor rotated 90° with diazepam in the binding site

Figure 24. The benzodiazepine binding site of the $\alpha 1\beta 3\gamma 2$ receptor rotated 90° (reverse direction) with diazepam in the binding site

Figure 25. The $\alpha 5\beta 3\gamma 2$ subtype receptor with key residues shown with diazepam in the binding site

Figure 26. The benzodiazepine binding site of the $\alpha 5\beta 3\gamma 2$ receptor with diazepam in the binding site

Figure 27. The benzodiazepine binding site of the $\alpha5\beta3\gamma2~$ receptor rotated 90° with diazepam in the binding site

From this unified model which was constructed on binding data from hundreds of compounds, included volume analysis, site directed mutagenesis, manual as well as Sybyl Flexidock and AutoDock algorithms, one can now see how any compound will dock in the benzodiazepine binding site of GABA(A). Presented below is a compound for further research on drug abuse, WYS8.

Figure 28. Flexidock fit of WYS8

Refinement of WYS8 in the unified pharmacophore receptor was completed using FlexiDock. The protein with the pharmacophore set inside the benzodiazepine receptor is displayed with a ligand docked to the pharmacophore. From the compute function, Flexidock is executed. The pocket needs to be defined for Sybyl if it has not already. Pick atoms which are located near the binding site. All atoms within 4 Angstroms will be automatically selected by Sybyl to assist. For Flexidock to work with rigid proteins the following steps must be taken:

- 1. Water must be removed
- 2. Select atoms around the binding pocket
- 3. Add hydrogens
- 4. Pick 4Å radius to display around binding pocket
- 5. Have Sybyl add charges if necessary
- 6. Set rotatable bonds

From these models, the individual pharmacophores, and the compound database the medicinal chemist has a powerful set of tools to determine future ligands to synthesize in order to deliver subtype selective drugs with reduced side effects. For example, knowing how to dock ligands into the pharmacophore, one can begin taking measurements of ligands and residues and analyzing interactions. In the $\alpha 2\beta 2\gamma 2$ Bz receptor His 102 and the phenyl ring of diazepam have a π stacking distance of 4.1 Angstroms. Next we will discuss how one can properly dock ligands into the binding site.

Docking Studies Using AutoDock 4.2

Docking of ligands into the new binding sites of the homology models was also executed using the suite of *Autodock Tools* developed at Scripps Institute.^{41, 42} The general procedure entails preparing *pdb* file formats of the receptor (protein) as well as the ligand. Once these docking grids and docking parameters are set, the docking run will produce multiple potential docking reports. Prior knowledge from SAR studies and mutagenesis studies is then used to select those for a parallel run (clusters) and a final docking prediction is developed.

Preparing the Ligand for Autodock

The ligand is loaded into Autodock as a pdb file. Once in *Autodock*, Gasteiger partial charges are determined along with aromatic carbons, rotatable bonds and torsional degrees of freedom. A new "pdgqt" file is created which has this information attached to it. Preparation of the receptor begins with loading it too as a pdb file into Autodock. Water molecules must be removed from the protein if present for *Autodock* processing. If any residues are flexible, these need to be identified in the receptor. Once identified, torsion angles can be assigned. Bonds in side chains can be manually or automatically selected as rotatable, unrotatable, or non-rotatable. *Autodock* needs two files when docking ligands in proteins with flexible residues, a flexible PDBQT file and a Rigid PDBQT file. Before docking can begin the receptor is checked for Gasteiger charges. A map is created which identifies possible hydrogen bonding interactions. Clayton *et al.* Alpha 5 Supporting Information - 27

Next, a grid box (Figure 29) is constructed around the general vicinity of the receptor if this is known.

Figure 29. Setting the autogrid in Autodock for the Bz BS protein

With all the appropriate information stored in a parameter file, the docking program will know which map file to use, details about the ligand rules, the potential presence of flexible residues and which docking algorithm to use. Four different docking algorithms are currently available in AutoDock. Monte Carlo simulated annealing (SA) was used. Briefly, the ligand makes random moves in the receptor and the energy of the new position is compared to the old one. Moves in which the energy is lowered are accepted.

Figure 30. WYS8 Docking WYS8

WYS8 was drawn in ChemDraw Ultra 8.0 (Figure 30). Lone pairs were added and the molecule was minimized in ChemDraw 3D using MM2 to a minimum RMS gradient of 0.100. This was converted to a PDB file to be loaded into AutoDock 4. Upon loading into Autodock,

Gasteiger charges were added, 14 non-polar hydrogens were merged, 10 aromatic carbons were identified, 3 rotatable bonds were detected, and TORSDOF was set to 3.

Figure 31. Rotatable bonds are identified along with root atom in ligand WYS8

The root atom with the smallest largest sub-tree (in this case an acetylenic hydrogen) is marked with a green sphere and the root portion (red) is identified. The rotatable bonds are colored green. The receptor was rigid for this analysis.

Figure 32. AutoDock result rendering was performed using Tripos Benchware.

Using Tripos Benchware 3D Explorer 2.6, one of the results was modeled (Figure 32). Key residues were identified and the protein surface five angstroms from the ligand was mapped showing its lipophilic potential. The results using AutoDock and a rigid protein will be much improved when flexible residues are allowed in the binding pocket along with rotatable bonds. The docking in Figure 28 is preferred when considering the orientation in the Milwaukee-based pharmacophore.

Homology models which have the pharmacophore aligned in the binding pocket have been presented for the $\alpha 1\beta 2\gamma 2$, $\alpha 2\beta 2\gamma 2$, $\alpha 3\beta 2\gamma 2$, and $\alpha 5\beta 2\gamma 2$ GABA(A) receptors. The binding site was constructed in light of years of work including structure-activity-relationships (SAR), site directed mutagenesis, and docking studies of monomer and dimers alike. The

 $\alpha 4\beta 2\gamma 2$ and $\alpha 6\beta 2\gamma 2$ receptors have not been made as these "diazepam-insensitive" binding sites are not a focus of our research to date. An updated included volume analysis has been presented using ligands from 15 different structural families. The new included volume analyses and the unified pharmacophore protein models will continue to drive the design of novel and selective benzodiazepine receptor ligands. From these new ligands, scientists will increase their understanding of the physiological responses of the specific receptors, the design of pharmaceuticals with reduced side effects, and treatments for schizophrenia, drug addiction and Alzheimer's disease. The $\alpha 5\beta 2\gamma 2$ receptors are of particular interest because of their concentration in the hippocampus. The discovery of a larger L₃ pocket in the $\alpha 5\beta 2\gamma 2$ receptor versus the other subtypes will provide medicinal chemists with a structural advantage in designing more subtype selective ligands. From the unified pharmacophore protein models presented here, the design of new compounds for the GABA(A) will be more productive than ever.

Future Work

Screening and modeling of more subtype selective ligands will further our current understanding of the benzodiazepine receptor and its function. Continued work on the molecular spreadsheet which will include all the compounds designed in the Milwaukee laboratory as well as other organizations will create a powerful QSAR algorithm for answering the age old question, "What compound should we make next?" This study will need to include all binding and non-binding compounds in order to create a predictive program with a high degree of accuracy (r^2, q^2) in predicting activity.

Site directed mutagenesis needs to be continued in which receptors of all subtypes are tested to determine how a residues substitution affects each of the subtypes. Such experimentation will shed further light on how ligands are positioned in the binding pocket and what residues they are interacting with. Adding to the new pharmacophore protein alignments which can now be executed, docking runs using *Autodock* in which the residues in the receptor are set to flexible may give further information as to docking preferences of ligands helping to better understand key interactions in each of the different subtypes.

All of these activities have allowed us to develop the current ligands as well as propose next generation ligands. The new pharmacophores will aid in furthering our understanding of GABA and in designing better drugs for the CNS until a complete GABA(A) protein receptor ion channel is captured in high resolution.

References

- 1. Brejc, K.; van Dijk, W.; Klassen, R.; Schuurmans, M.; van Der Oost, J.; Smit, A. B.; Sixma, T., Crystal structure of ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. *Nature* **2001**, 411, 269-276.
- 2. Cromer, B.; Morton, C.; Parker, M. W., Cromer's model, Anxiety of GABA(A) receptor structure relieved by AChBP. *Trends Biochem. Sci.* **2002**, *27*, 280-287.
- 3. Grutter, T.; de Carvalho, L. P.; Dufresne, V.; Taly, A.; Fischer, M.; Changeux, J. P., A chimera encoding the fusion of an acetylcholine-binding protein to an ion channel is stabilized in a state close to the desensitized form of ligand-gated ion channels. *Comptes Rendus Biologies* **2005**, 328, (3), 223-234.
- 4. Trudell, J. R., Unique assignment of inter-subunit association in GABA(Alpha) alpha 1 beta 3 gamma 2 receptors determined by molecular modeling. *Biochim. Biophys. Acta* **2002**, 1565, (1), 91-96.
- 5. Ernst, M.; Brauchart, D.; Boresch, S.; Sieghart, W., Comparative modeling of GABAA receptors: Limits, insights, future developments. *Neuroscience* **2003**, 119, (4), 933-943.
- 6. Sigel, E., Mapping of the benzodiazepine recognition site on GABA_A receptors. *Curr. Top. Med. Chem.* **2002**, *2*, 833-840.
- 7. Sigel, E.; Buhr, A., The benzodiazepine binding site of GABA(A) receptors. *Trends Pharmacol. Sci.* **1997**, 18, (11), 425-429.
- 8. Baumann, S. W.; Baur, R.; Sigel, E., Forced subunit assembly in α1β2γ2 GABA_A receptors. *J. Biol. Chem.* **2002**, 277, (48), 46020-46025.
- 9. Neish, C. S.; Martin, I. L.; Davies, M.; Henderson, R. M.; Edwardson, J. M., Atomic force microscopy of ionotropic receptors bearing subunit-specific tags provides a method for determining receptor architecture. *Nanotechnol.* **2003**, 14, (8), 864-872.
- 10. Chou, K. C., Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. *Biochem. Biophys. Res. Commun.* **2004**, 316, (3), 636-642.
- 11. Buhr, A.; Baur, R.; Malherbe, P.; Sigel, E., Point mutations of the alpha 1 beta 2 gamma 2 gamma-aminobutyric acid(A) receptor affecting modulation of the channel by ligands of the benzodiazepine binding site. *Mol. Pharmacol.* **1996**, 49, (6), 1080-1084.
- 12. Sigel, E.; Baur, R.; Trube, G.; Möhler, H.; Malherbe, P., The effect of subunit composition of rat-brain GABA-A receptors on channel function. *Neuron* **1990**, *5*, 703-711.
- 13. Sieghart, W., Structure and pharmacology of gamma-aminobutyric Acid_A receptor subtypes. *Pharmacol. Rev.* **1995**, 47, (2), 181-234.

- 14. Khom, S.; Baburin, I.; Timin, E. N.; Hohaus, A.; Sieghart, W.; Hering, S., Pharmacological properties of GABA(A) receptors containing gamma 1 subunits. *Mol. Pharmacol.* **2006**, 69, (2), 640-649.
- 15. Unwin, N., Refined structure of the nicotinic acetylcholine receptor at 4A resolution. *J. Mol. Biol.* **2005**, 346, (4), 967-89.
- 16. Hagen, T. J. PhD Thesis. University of Wisconsin, Milwaukee, Milwaukee, 1988.
- 17. Trudell, M. L. PhD Thesis. University of Wisconsin Milwaukee, Milwaukee, 1989.
- Hansen, S. B.; Sulzenbacher, G.; Huxford, T.; Marchot, P.; Taylor, P.; Bourne, Y., Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. *Embo J* 2005, 24, (20), 3635-46.
- 19. Mihic, S. J.; Whiting, P.; Klein, R. L.; Wafford, K.; Harris, R. A., A single amino acid of the human γ-aminobutyric acid type A receptor γ2 subunit determines benzodiazepine efficacy. *J. Biol. Chem.* **1994**, 269, 32768-32773.
- 20. Minier, F.; Sigel, E., Positioning of the α-subunit isoforms confers a functional signature to γ-aminobutyric acid type A receptors. *Proc. Natl. Acad. Sci. U.S.A.* **2004**, 101, (20), 7769-7774.
- 21. Atack, J. R., The benzodiazepine binding site of GABA_A receptors as a target for the development of novel anxiolytics. *Expert Opin. Invest. Drugs* **2005**, 14, (5), 601-618.
- 22. Downing, S.; Lee, Y. F.; Farb, D. H.; Gibbs, T. T., Benzodiazepine modulation of partial agonist efficacy and spontaneously active GABA_A receptors supports an allosteric model of modulation. *Br. J. Pharmacol.* **2005**, 145, 894-906.
- 23. He, X. H.; Zhang, C. C.; Cook, J. M., Model of the BzR binding site: Correlation of data from site-directed mutagenesis and the pharmacophore/receptor model. *Med. Chem. Res.* **2001**, 10, (5), 269-308.
- 24. Ernst, M.; Bruckner, S.; Boresch, S.; Sieghart, W., Comparative models of GABA(A) receptor extracellular and transmembrane domains: Important insights in pharmacology and function. *Mol. Pharmacol.* **2005**, 68, (5), 1291-1300.
- 25. Clayton, T.; Chen, J. L.; Ernst, M.; Richter, L.; Cromer, B. A.; Morton, H. N.; Kaczorowski, C. C.; Helmstetter, F. J.; Furtmuller, R.; Ecker, G.; Parker, M. W.; Sieghart, W.; Cook, J. M., Analysis of the Benzodiazepine Binding Site on γ-Aminobutyric acidA Receptors: Correlation of Experimental Data with Pharmacophore and Comparative Models. *Curr. Med. Chem.* **2007**, 14, (26), 2755-2775.
- 26. Haefely, W., Kyburz, E., Gerecke, M., and Mohler, H. , Recent Advances in the Molecular Pharmacology of Benzodiazepine Receptors and in the Structure-Activity Relationships of their Agonists and Antagonists. Academic Press: New York, 1985; Vol. 99, p 165-322.

- 27. Kucken, A. M.; Teissere, J. A.; Seffinga-Clark, J.; Wagner, D. A.; Czajkowski, C., Structural requirements for imidazobenzodiazepines binding to GABA_A receptors. *Mol. Pharmacol.* **2003**, 63, 289-296.
- Kucken, A. M.; Wagner, D. A.; Ward, P. R.; Teissere, J. A.; Boileau, A. J.; Czajkowski, C., Identification of benzodiazepine binding site residues in the gamma 2 subunit of the gamma-aminobutyric acid(A) receptor. *Mol. Pharmacol.* 2000, 57, (5), 932-939.
- 29. Sawyer, G. W.; Chiara, D. C.; Olsen, R. W.; Cohen, J. B., Identification of the bovine gamma-aminobutyric acid type A receptor alpha subunit residues photolabeled by the imidazobenzodiazepine [³H] Ro15-4513. *J. Biol. Chem.* **2002**, 277, (51), 50036-50045.
- 30. Sancar, F.; Ericksen, S. S.; Kucken, A. M.; Teissere, J. A.; Czajkowski, C., Structural Determinants for High-Affinity Zolpidem Binding to GABA-A receptors. *Mol. Pharmacol.* **2007**, *7*1, (1), 38-46.
- 31. Zhang, P. W.; Zhang, W. J.; Liu, R. Y.; Harris, B.; Skolnick, P.; Cook, J. M., Synthesis and SAR study of novel imidazobenzodiazepines at 'diazepam-insensitive' benzodiazepine receptors. *J. Med. Chem.* **1995**, 38, (10), 1679-1688.
- 32. Zhang, W.; Diaz-Arauzo, H.; Allen, M. S.; Koehler, K. F.; Cook, J. M., Chemical and computer assisted development of the inclusive pharmacophore of benzodiazepine receptors, in Studies in Medicinal Chemistry, M.I., Choudhary, Editor. Harwood Academic Publishers: 1996; p 303.
- Zhang, W.; Koehler, K. F.; Zhang, P.; Cook, J. M., Development of a comprehensive pharmacophore model for the benzodiazepine receptor. *Drug Des. Discov.* 1995, 12, (3), 193-248.
- 34. Allen, M. S.; Tan, Y. C.; Trudell, M. L.; Narayanan, K.; Schindler, L.; Martin, M. J.; Schultz, C. A.; Hagen, T. J.; Koehler, K. F.; Codding, P.; Skolnick, P.; Cook, J., Synthetic and computer-assisted analyses of the pharmacophore for the benzodiazepine receptor inverse agonist site. *J. Med. Chem.* **1990**, 33, 2343-2357.
- 35. Zhang, P. W., Synthesis of Novel Imidazobenzodiazepines as Probes of the Pharmacophore for "Diazepam-Insensitive" GABA_A Receptors. *J. Med. Chem.* **1995**, 38, 1679-1688.
- 36. Allen, M. S.; Laloggia, A. J.; Dorn, L. J.; Martin, M. J.; Constantino, G.; Hagen, T. J.; Koehler, K. F.; Skolnick, P.; Cook, J. M., Predictive binding of β-carboline inverse agonists and antagonists via the CoMFA/GOLPF approach. *J. Med. Chem.* **1992**, 35, 4001-4010.
- 37. Wong, G.; Koehler, K. F.; Skolnick, P.; Gu, Z. Q.; Ananthan, S.; Schönholzer, P.; Hunkeler, W.; Zhang, W. J.; Cook, J. M., Synthetic and computer-assisted analysis of the structural requirements for selective, high-affinity ligand-binding to diazepaminsensitive benzodiazepine receptors. *J. Med. Chem.* **1993**, 36, (13), 1820-1830.

- 38. Smit, A. B., A glia-derived acetylcholine-binding protein that modulates synaptic transmission. *Nature* **2001**, 411, (261-268).
- 39. Guex, N.; Peitsch, M. C., SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. *Electrophoresis* **1997**, 18, 2714-2723.
- 40. Rost, B.; Yachdav, G.; Liu, L., The PredictProtein server. *Nucleic Acids Research* **2004**, 32 (suppl 2), W321-W326.
- 41. Goodsell, D. S.; Olson, A. J., Automated docking of substrates to proteins by simulated annealing. *Proteins: Structure, Function, and Genetics* **1990**, *8*, 195-202.
- 42. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated docking using Lamarckian genetic algorithm and an empirical binding free energy function. *J. Comp. Chem* **1998**, 19, 1639-1662.

Appendix I. Key Amino Acid Sequences

Data Table 1. Amino acid sequence of the alpha subunit of the acetylcholine receptor in the *lvmnaea stagnalis* (Great Pond Snail)

>sp|P58154|ACHP_LYMST Acetylcholine-binding protein OS=Lymnaea stagnalis PE=1 SV=1 MRRNIFCLACLWIVQACLSLDRADILYNIRQTSRPDVIPTQRDRPVAVSVSLKFINILEV NEITNEVDVVFWQQTTWSDRTLAWNSSHSPDQVSVPISSLWVPDLAAYNAISKPEVLTPQ LARVVSDGEVLYMPSIRQRFSCDVSGVDTESGATCRIKIGSWTHHSREISVDPTTENSDD SEYFSQYSRFEILDVTQKKNSVTYSCCPEAYEDVEVSLNFRKKGRSEIL

Data Table 2. Amino acid sequence of the alpha subunit of the acetylcholine receptor in the *Torpedo californica* (Pacific Electric Ray)

>sp|P02710|ACHA_TORCA Acetylcholine receptor subunit alpha OS=Torpedo californica GN=CHRNA1 PE=1 SV=1 MILCSYWHVGLVLLLFSCCGLVLGSEHETRLVANLLENYNKVIRPVEHHTHFVDITVGLQ LIQLISVDEVNQIVETNVRLRQQWIDVRLRWNPADYGGIKKIRLPSDDVWLPDLVLYNNA DGDFAIVHMTKLLLDYTGKIMWTPPAIFKSYCEIIVTHFPFDQQNCTMKLGIWTYDGTKV SISPESDRPDLSTFMESGEWVMKDYRGWKHWVYYTCCPDTPYLDITYHFIMQRIPLYFVV NVIIPCLLFSFLTGLVFYLPTDSGEKMTLSISVLLSLTVFLLVIVELIPSTSSAVPLIGK YMLFTMIFVISSIIITVVVINTHHRSPSTHTMPQWVRKIFIDTIPNVMFFSTMKRASKEK QENKIFADDIDISDISGKQVTGEVIFQTPLIKNPDVKSAIEGVKYIAEHMKSDEESSNAA EEWKYVAMVIDHILLCVFMLICIIGTVSVFAGRLIELSQEG

Data Table 3. Amino acid sequence of the alpha 1 subunit of the rat GABA(A) receptor

>sp|P62813|GBRA1_RAT Gamma-aminobutyric acid receptor subunit alpha-1 OS=Rattus norvegicus GN=Gabra1 PE=1 SV=1

MKKSRGLSDYLWAWTLILSTLSGRSYGQPSQDELKDNTTVFTRILDRLLDGYDNRLRPGL GERVTEVKTDIFVTSFGPVSDHDMEYTIDVFFRQSWKDERLKFKGPMTVLRLNNLMASKI WTPDTFFHNGKKSVAHNMTMPNKLLRITEDGTLLYTMRLTVRAECPMHLEDFPMDAHACP LKFGSYAYTRAEVVYEWTREPARSVVVAEDGSRLNQYDLLGQTVDSGIVQSSTGEYVVMT THFHLKRKIGYFVIQTYLPCIMTVILSQVSFWLNRESVPARTVFGVTTVLTMTTLSISAR NSLPKVAYATAMDWFIAVCYAFVFSALIEFATVNYFTKRGYAWDGKSVVPEKPKKVKDPL IKKNNTYAPTATSYTPNLARGDPGLATIAKSATIEPKEVKPETKPPEPKKTFNSVSKIDR LSRIAFPLLFGIFNLVYWATYLNREPQLKAPTPHQ

Data Table 4. Amino acid sequence of the gamma 2 subunit of the rat GABA(A)

receptor

>sp|P18508|GBRG2_RAT Gamma-aminobutyric acid receptor subunit gamma-2 OS=Rattus norvegicus GN=Gabrg2 PE=1 SV=1

MSSPNTWSTGSTVYSPVFSQKMTLWILLLLSLYPGFTSQKSDDDYEDYASNKTWVLTPKV PEGDVTVILNNLLEGYDNKLRPDIGVKPTLIHTDMYVNSIGPVNAINMEYTIDIFFAQTW YDRRLKFNSTIKVLRLNSNMVGKIWIPDTFFRNSKKADAHWITTPNRMLRIWNDGRVLYT LRLTIDAECQLQLHNFPMDEHSCPLEFSSYGYPREEIVYQWKRSSVEVGDTRSWRLYQFS FVGLRNTTEVVKTTSGDYVVMSVYFDLSRRMGYFTIQTYIPCTLIVVLSWVSFWINKDAV PARTSLGITTVLTMTTLSTIARKSLPKVSYVTAMDLFVSVCFIFVFSALVEYGTLHYFVS NRKPSKDKDKKKKNPAPTIDIRPRSATIQMNNATHLQERDEEYGYECLDGKDCASFFCCF EDCRTGAWRHGRIHIRIAKMDSYARIFFPTAFCLFNLVYWVSYLYL

Data Table 5. Amino acid sequence of the alpha 1 subunit of the human GABA(A) receptor

>sp|P14867|GBRA1_HUMAN Gamma-aminobutyric acid receptor subunit alpha-1 OS=Homo sapiens GN=GABRA1 PE=1 SV=3

MRKSPGLSDCLWAWILLLSTLTGRSYGQPSLQDELKDNTTVFTRILDRLLDGYDNRLRPG LGERVTEVKTDIFVTSFGPVSDHDMEYTIDVFFRQSWKDERLKFKGPMTVLRLNNLMASK IWTPDTFFHNGKKSVAHNMTMPNKLLRITEDGTLLYTMRLTVRAECPMHLEDFPMDAHAC PLKFGSYAYTRAEVVYEWTREPARSVVVAEDGSRLNQYDLLGQTVDSGIVQSSTGEYVVM TTHFHLKRKIGYFVIQTYLPCIMTVILSQVSFWLNRESVPARTVFGVTTVLTMTTLSISA RNSLPKVAYATAMDWFIAVCYAFVFSALIEFATVNYFTKRGYAWDGKSVVPEKPKKVKDP LIKKNNTYAPTATSYTPNLARGDPGLATIAKSATIEPKEVKPETKPPEPKKTFNSVSKID RLSRIAFPLLFGIFNLVYWATYLNREPQLKAPTPHQ

Data Table 6. Amino scid sequence of the gamma 2 subunit of the human GABA(A) receptor

>sp|P18507|GBRG2_HUMAN Gamma-aminobutyric acid receptor subunit gamma-2 OS=Homo sapiens GN=GABRG2 PE=1 SV=2

MSSPNIWSTGSSVYSTPVFSQKMTVWILLLLSLYPGFTSQKSDDDYEDYASNKTWVLTPK VPEGDVTVILNNLLEGYDNKLRPDIGVKPTLIHTDMYVNSIGPVNAINMEYTIDIFFAQT WYDRRLKFNSTIKVLRLNSNMVGKIWIPDTFFRNSKKADAHWITTPNRMLRIWNDGRVLY TLRLTIDAECQLQLHNFPMDEHSCPLEFSSYGYPREEIVYQWKRSSVEVGDTRSWRLYQF SFVGLRNTTEVVKTTSGDYVVMSVYFDLSRRMGYFTIQTYIPCTLIVVLSWVSFWINKDA VPARTSLGITTVLTMTTLSTIARKSLPKVSYVTAMDLFVSVCFIFVFSALVEYGTLHYFV SNRKPSKDKDKKKKNPAPTIDIRPRSATIQMNNATHLQERDEEYGYECLDGKDCASFFCC FEDCRTGAWRHGRIHIRIAKMDSYARIFFPTAFCLFNLVYWVSYLYL

Data Table 7. Amino acid sequence of the Beta 2 Subunit of the Human GABA(A) Receptor

>sp|P47870|GBRB2_HUMAN Gamma-aminobutyric acid receptor subunit beta-2 OS=Homo sapiens GN=GABRB2 PE=1 SV=1

MWRVRKRGYFGIWSFPLIIAAVCAQSVNDPSNMSLVKETVDRLLKGYDIRLRPDFGGPPV AVGMNIDIASIDMVSEVNMDYTLTMYFQQAWRDKRLSYNVIPLNLTLDNRVADQLWVPDT YFLNDKKSFVHGVTVKNRMIRLHPDGTVLYGLRITTTAACMMDLRRYPLDEQNCTLEIES YGYTTDDIEFYWRGDDNAVTGVTKIELPQFSIVDYKLITKKVVFSTGSYPRLSLSFKLKR NIGYFILQTYMPSILITILSWVSFWINYDASAARVALGITTVLTMTTINTHLRETLPKIP YVKAIDMYLMGCFVFVFMALLEYALVNYIFFGRGPQRQKKAAEKAASANNEKMRLDVNKM DPHENILLSTLEIKNEMATSEAVMGLGDPRSTMLAYDASSIQYRKAGLPRHSFGRNALER HVAQKKSRLRRRASQLKITIPDLTDVNAIDRWSRIFFPVVFSFFNIVYWLYYVN

Appendix II.

Data Table 8. Coordinates of the Pharmacophore

REMARK	File generated b	y Swiss-PdbViewer 4	.00b0
REMARK	http://www.expa	sy.org/spdbv/	
HETATM	1 * hip 0	2.246 2.113 1.413 ().00100.00
HETATM	2 O hip 0	-5.691 -0.267 -4.151	0.00100.00
HETATM	3 H1 hip 0	0.742 3.154 -3.474	0.00100.00
HETATM	4 H2 hip 0	-2.472 -1.062 0.681	0.00100.00
SPDBVT	1.0000000000	0.0000000000	0.000000000
SPDBVT	0.0000000000	1.0000000000	0.000000000
SPDBVT	0.0000000000	0.0000000000	1.000000000
SPDBVT	0.0000000000	0.0000000000	0.000000000
SPDBVT	0.0000000000	0.0000000000	0.000000000
SPDBVV d	efault;		
SPDBVV	15.426431672954	1678.699418606842	20.000000000000
SPDBVV	0.4758893755	0.5102135228	-0.7163877885
SPDBVV	0.3084772896	0.6659613576	0.6792181034
SPDBVV 0.8236328455 -0.5442220423 0.1595346499 SPDBVV -1.7224999666 1.046000038 -1.3689999580 SPDBVV 0.0000000000 0.0000000000 0.0000000000 SPDBVf 27 SPDBVI 1.00 1.00 1.00 SPDBVb 0.00 0.00 0.20 SPDBVg 64 SPDBVi $1\,1\,1\,0\,1\,1\,1\,1\,0\,1\,0\,0\,1\,0\,0$ SPDBVp 0 END

Appendix III.

Structures of compounds, as reported in Clayton.²¹

STRUCTURE	COOK CODE	a1	a2	a3	a4	a5	a6
	3 FBC	6.43	25.1	28.2		826	1000
	3 200	0.40	20.1	20.2		020	1000
\rangle							
N H							
C ₁₄ H ₁₄ N ₂ O	3 PBC	5.3	52.3	68.8		591	1000
0/							
N H							
C ₁₈ H ₁₄ N ₂ O	3-BENZOXY bC	830	3000	3000		10000	10000
L L L L L L L L L L L L L L L L L L L							
C ₁₅ H ₁₆ N ₂ O	3-isobutoxy bC	24.9	123.6	139.2		1000	10000
		0.50.5		0000			10000
C ₁₆ H ₁₈ N ₂ O	3-isopentoxy bC	350.2	3000	3000		3000	10000
C ₁₂ H ₁₀ N ₂ O	3MBC						
С ₁₈ Н ₂₀ N ₂ O ₄	6-PBC	0.49	1.21	2.2		2.39	1343

$C_{16}H_{16}N_2O_2$	BCCt	0.72	15	18.9		110.8	5000
$C_{19}H_{20}BrN_3O_3$	BRETAZENIL	0.35	0.64	0.2		0.5	12.7
C ₁₈ H ₁₉ CIN ₂ O	C-383	1000		1000	1000	1000	1000
	CD 214	16 /	19.2	42.5		0.9	169
$U_{16}\Pi_{14}UN_{3}U_{3}$	00-214	10.4	40.Z	42.0		ງ.0	100

	01.040.070	57	1001	1101		504	40000
C ₁₃ H ₉ F ₃ N ₄	CL 218,872	5/	1964	1161		561	10000
$C_{16}H_{15}IN_2O_2$	CM-A100	14.49	44.91	123.8	1000	65.31	1000
				10			1000
$C_{16}H_{16}N_2O_2$	CM-A49(R)	7.7	32.5	43		69	1000

0 7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.							
H $C_{16}H_{16}N_2O_2$	CM-A50(S)	17	59	88		144	1000
C ₁₅ H ₁₃ FN ₂ O	CM-A57	3.7	27	40		254	1000
н С ₁₅ H ₁₅ FN ₂	CM-A58	16	120	184		1000	1012.2Nm
C ₁₆ H ₁₆ N ₂ O ₂	CM-A64	18	60	116		216	1000
$C_{16}H_{13}F_{3}N_{2}O_{2}$	CM-A69	1000	1000	1000		1000	1000
$C_{20}H_{16}N_2O_2$	CM-A71	333.57	1000	1000	1000	1000	3000

H C ₁₇ H ₁₈ N ₂ O	CM-A77	11.51	51.9	105.16	1000	42.62	1000
HON							
C ₂₂ H ₃₀ N ₂ O	CM-A77a	27.4	111.5	301.3	1000	61.61	1000
C ₂₀ H ₂₄ N ₂ O ₂	CM-A82a	2.78	8.93	24.51	1000	7.49	1000
	CM-487	1.62	1 51	14 73	1000	4 61	1000
Br N H O							
C ₁₉ H ₂₀ BrN ₃ O ₃	CM-A95(ss)	141.5	225	59.45	30.36	146.3	107.1
		70.91	80.49	20.64	40.72	67.01	20 12

	CM-B01	48	31	34	1000	286	1000
						200	
C ₁₉ H ₂₀ CIN ₃ O ₃	CM-B31c(ss)	118	319	173	37	15	137
C ₁₉ H ₂₀ IN ₃ O ₃	CM-B31i(ss)	90	184	78	18	4.9	121
O C ₁₉ H ₁₇ BrF ₃ N ₃ O ₃	CM-B34	472	451	223	114	17	175
H H H H H H H H H H H H H H H H H H H							
C ₁₉ H ₂₀ FN ₃ O ₃	CM-B44(ss)	32	43	12	379	4.3	485
	CM-B45	230	557	336	265	15	230
$[C_{19}H_{17}CIF_3N_3O_3]$	UNI-R42	230	55/	330	∠05	15	Z3U

С ₁₉ H ₁₇ F ₄ N ₃ O ₃	CM-B47	32	63	34	2007	4.4	717
C ₁₉ H ₁₇ BrF ₃ N ₃ O ₃	CM-C28(SR)	176	752	244	290	14	141
$C_{15}H_{11}F_{3}N_{2}O_{2}$	CM-D30(R)	27	343.3	453	3000	1847	2000
	CM-D30(S)	90	031	172	3000	1000	3000
$C_{15}H_{11}F_{3}N_{2}O_{2}$	CM-D30(3)	90	931	172	3000	1000	3000
	CM D44	24.2	56.2	20.7	0.22	0.57	0.02
		J4.J	50.5	20.7	0.33	0.37	0.82
$C_{19}H_{21}N_3O_4$	CM-D45 C19H21N3O4	90.5	65.5	30.3	0.15	1.65	0.23
	CM-F092	176	102	122	400	0.2	718

$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & &$	CM-E09b	20	22	19	55	0.45	69
C. H. N.O.	CM-E10	23	26	14	215	0.51	96
		20	20	17	210	0.01	
C ₂₀ H ₂₃ N ₃ O ₄	CM-E11	333	308	161	394	14	750
C ₁₆ H ₁₃ CIN ₂ O	diazepam	14	20	15		11	
$C_{21}H_{26}N_4O_3$	DM-139	5.8		169		9.25	325
		6 44		140		4 00	0.47
C ₂₂ H ₂₈ N ₄ O ₃	DIM-146	6.44		148		4.23	247
	DM-173	13.1		38.1		0.78	118

	1						
	DM-215	6.74		7.42		0.293	8.28
		0.14		1.72		0.200	0.20
Cu-HuNcO	DM-239	15		0.53		0 14	6 89
	DIVI-239	1.5		0.55		0.14	0.09
C ₁₇ H ₁₈ N ₂ O ₄	DMCM	5.69	8.29	4		1.04	134
$C_{49}H_{46}N_6O_4Si_2$	DMH-D-048 (C49H46N6O4Si2)	5000	5000	5000		5000	5000
$C_{43}H_{30}N_6O_4$	DMH-D-053 (C43H30N6O4)	236	7.4	272	5000	194.2	5000
B^{r} $C_{39}H_{28}Br_{2}N_{6}O_{4}$	DMH-D-070 (C39H28N6O4Br2)	5000	1901			5000	5000
		460	5000			5000	5000
$C_{44}H_{32}N_6O_5$	DMH-III-96 (C44H32N6O5)	460	5000			5000	5000

F						
$C_{20}H_{14}F_{3}N_{3}O_{2}$	DM-II-30 C20H13N3O2BrF3)	17.6	13.4	28.51	7.8	5000
Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl C	DM-II-33 (C20H13N3O2BrCl3)	88.6	85	11.6	26.2	5000
Br Br C ₂₀ H ₁₃ Br ₄ N ₃ O ₂	DM-II-34					

C ₁₈ H ₁₂ BrN ₃ O ₂	DM-III-01 (C18H12N3O2Br)	5000	12		4.73	5000
$C_{40}H_{30}Br_2N_6O_5$	DM-III-93 (C40H30N6O5Br2)	351	5000		179	5000
		240	5000	5000	5000	5000
			0000	5000	5000	3000

N H H						
$C_{11}H_6N_4O_4$	EDC-I-071	12.9	83.1		314	5000
$C_{13}H_6N_4S_2$	EDC-I-093	13.6	423		2912	5000
$C_{24}H_{32}N_2O_4$	EDC-II-012	1000	3000	3000	3000	3000

C ₂₅ H ₃₄ N ₂ O ₄	EDC-II-015	3000	3000	3000	3000	3000
$C_{24}H_{32}N_2O_3$	EDC-II-024	3647	29749	35060	12683	30000
$C_{25}H_{34}N_2O_3$	EDC-II-031	1000	1000	1000	1000	1000
				200	200	4000
C ₂₇ H ₂₄ N ₂ O ₄	EDC-II-044	15.4		293	323	1000
C ₂₂ H ₁₅ N ₅ O	EMJ-I-025	288	474	316	86	5000

				r		
C ₂₄ H ₁₉ N ₅ O	EMJ-I-026	5000	135	1027	152	5000
C ₁₇ H ₁₆ CIN ₅ O ₂	FG8205	0.4	2.08	1.16	1.54	227
- - - - - - - - - - - - - -	FLUNITRAZEPAM	2.2	2.5	4.5	2.1	2000
C ₂₁ H ₁₇ N ₃ O ₂ S	HDA-343	25	82.6	58.8	159	10000
C ₂₀ H ₂₅ CIN ₂ O ₄	HDA-90-III	25.6	105.4	163.6	 160.6	10000
	HDA-II-96	236	3000	3000	3000	10000

	H LL037	15.07	8 127	28.20	0.818	
	113-1-037	13.07	0.127	20.23	0.010	
C ₂₀ H ₁₅ N ₅ O	HJ-I-040	1070	869.4	1123.6	1065	
CasHusCINsOs	Hz111 C20H16N3CIO2	46 65	34	77 6	24.6	842
C ₂₀ H ₁₆ IN ₃ O ₂	Hz120 ANX2	5000	35	78.5	20.6	32.2
<u> </u>						
C ₁₆ H ₁₄ BrN ₃	Hz135 C16H14N3Br	94.03	182		97	5000
NH Si						
C ₂₁ H ₂₃ N ₃ Si	Hz141 C21H23N3Si	6480	5000	5000	737	5000

N Si C ₂₁ H ₂₃ N ₃ OSi	Hz146 C21H23N3OSi	5000	5000		5000	5000
		5000	5000		5000	5000
C ₁₈ H ₁₅ N ₃ O	HZ147 C18H15N3O	5000	5000		5000	5000
NH NH						
C ₁₈ H ₁₅ N ₃	Hz148 C18H15N3	10.98	5000		256	5000
Br O						
C ₁₆ H ₁₄ BrN ₃ O	Hz150 C16H14N3OBr	485	469	5000	419	5000
H N N N						
C ₁₉ H ₁₉ N ₃ OSi	Hz157 C19H19N3OSi	5000	5000	5000	5000	5000
	Hz158 C20H21N3OSi	5000	5000	5000	5000	5000

		1					
C ₁₇ H ₁₃ N ₃ O	Hz160 C17H13N3O	492	2633	334		87.3	5000
Br							
C ₁₉ H ₁₅ BrN ₄ O ₂	Hz164 C19H15N4O2Br	99.18	150	459		108.2	494
Si N		5000	5000			5000	5000
C ₂₄ H ₂₄ N ₄ O ₂ Si	Hz165 C24H24N4O2Si	5000	5000			5000	5000
C ₂₁ H ₁₆ N ₄ O ₂	Hz166 C21H16N4O2	118	148	365	5000	76.88	5000
Br N							
C ₁₃ H ₉ BrN ₂ OS	JC184 C13H9BrN2OS	9.606	10.5			6.709	
N Si Si							
C ₁₈ H ₁₈ N ₂ OSSi	JC207 C18H18N2OSSi	104.8	169.7			68.16	
H N							
, 's		00.40	40.00			E 000	
C ₁₅ H ₁₀ N ₂ OS	JC208 C15H10N2OS	22.42	18.89			5.039	

		-	-	-	 	
C ₁₀ H ₂₀ N ₂ OSSi	JC209 C19H20N2OSSi	294.6	334.7		249.5	
C ₂₀ H ₁₅ N ₃ O ₂ S	JC221 ANX1	106.2	49.4	182	7.75	362
N O N N S						
C ₁₆ H ₁₂ N ₂ OS	JC222 C16H12N2OS	86.7	45.11		17.63	
C ₂₀ H ₁₅ N ₃ O ₂ S	JIE-I-12	3576	454.8	768.3	4416	
		50.0	450	00	40.0	0.00
C ₁₉ H ₂₀ BrN ₃ O ₃	JYI-01(C19H20N3O3Br)	59.2	159	96	10.6	2.88
	JYI-03 (C21H21N3O3)	185.4	107		0.954	3.34

		-	-	-	 	
$C_{21}H_{23}N_3O_3$	JYI-04 (C21H23N3O3)	28.3	16		0.51	1.57
	IXI-06 (C23H23N3O4)	16.5	5 4 8	5000	12.6	5000
Br		6.01	0.48	5000	12.0	2000
O C ₁₇ H ₁₃ BrF ₃ N ₃ O ₃	JYI-10 (C17H13N3O3F3Br)	5000	368		12.3	23
	JYI-11 (C22H22N3O3F3Si)	5000	5000		648	3 97
					010	0.01
C ₁₉ H ₁₆ F ₃ N ₃ O ₃	JYI-12 (C19H16N3O3F3)	91	39		4.5	6.8
$C_{21}H_{16}F_{3}N_{3}O_{4}$	JYI-13 (C21H16N3O4F3)	5000	63.7		16	8.38
	JYI-14 (C17H14N3O3F3)	32	25		13	565

F F						
$C_{19}H_{14}F_{3}N_{3}O_{3}$	JYI-15 (C19H14N3O3F3)	205	812		4.8	22
$C_{23}H_{23}N_{3}O_{3}S$	JYI-19 (C23H23N3O3S)	2.2	205		34	12.7
		20.06	611		ΕA	40.46
C ₂₅ H ₂₅ N ₃ O ₃	JYI-20 (C25H25N3O3)	20.96	611		54	40.46
Г Г Г Г Г Г Г Г Г Г Г Г Г Г	JYI-21 (C23H17N3O3F3)	113.7	5000		209	60.96
C ₂₀ H ₁₅ BrFN ₃ O ₂	JYI-32 (C20H15N3O2BrF)	3.07	4.96		2.92	52.24
C ₂₅ H ₂₄ FN ₃ O ₂ Si	JYI-38 (C25H24N3O2FSi)	5000	314		55.4	5000

Br N						
C ₁₅ H ₁₀ BrFN ₂ O	JYI-42	0.26	0.15	0.28	0.26	
Br F						
C ₁₈ H ₁₁ BrFN ₃ O ₂	JYI-47	2.8	2.3	0.5	0.4	
C ₂₄ H ₁₈ FN ₃ O ₃	JYI-48	75.59	90.68	12.78	31.28	
$C_{20}H_{12}BrF_4N_3O_2$	JYI-49 (C20H12N3O2F4Br)	1.87	2.38		6.7	3390
		106 4	200		37.6	5040

·						
Si						
	IVI-53 (C23H21N3O2E4Si)	77 4	40.4	183	133	3650
F	<u>311-33 (0231121113021 431)</u>	11.4	40.4	105	100	
F						
$C_{24}H_{15}F_4N_3O_3$	JYI-54 (C24H15N3O3F4)	2.89	172	6.7	57	1890
C ₂₀ H ₁₉ FN ₂ OSi	JYI-55	41.39		0.504	24.75	
C ₂₄ H ₁₈ FN ₃ O ₃	JYI-56 (C24H18N3O4F)	95.2	346	131	34.6	4140
C ₁₇ H ₁₂ BrFN ₄	JYI-57	0.08	0.08	0.13	0.04	
	JYI-59 (C22H13N3O2F4)	1.08	2.6	11 82	11 5	5000

H N N							
F							
C ₁₇ H ₁₁ FN ₂ O	JYI-60 (C17H11N2OF)	3.7	1.6	4.3		1.7	5000
C ₁₇ H ₁₂ BrFN ₄	JYI-64 (C17H12N4FBr)	0.3	1.11	0.62		0.9	5000
F							
C ₁₉ H ₁₃ FN ₄	JYI-70 (C19H13N4F)	6.3	2.1			0.56	5000
C ₂₂ H ₂₁ FN ₄ Si	JYI-72 (C22H21N4SiF)	48.5	18.5			11.5	5000
F							
C ₂₂ H ₁₆ FN ₃ O ₂	JY-XHE-053	22	12.3	34.9		0.7	
HN HN							
		450				2000	10000
$U_{22}H_{19}N_{3}U_{2}$	LD-9	001				3000	10000

N H H							
C ₁₇ H ₁₆ N ₂ O	LJD-I-0036A	245	818	869		10000	10000
N H							
C ₁₆ H ₉ CIN ₄	LJD-II-87	3000	3000	3000		10000	10000
HN HN N							
L L							
C ₁₆ H ₁₀ N ₄	LJD-III-15E	1.93	14	19		70.8	1000
	LJD-III-22A	105	227 5	284		3000	10000
		100	227.0	204		0000	10000
C ₁₄ H ₁₄ N ₂ O	MA-3-PROPOXYL	5.3	52.3	68.8		591	1000
$C_{13}H_{14}F_3N_3O_2$	MH-1 (Parkistan)	3000	3000	3000	3000	3000	3000
F N F							
FF C ₁₃ H ₁₃ F ₃ N ₂ OS	MH-2 (Parkistan)	3000	3000	3000	3000	3000	3000

HN						
С ₁₉ H ₁₅ N ₃	MJP-II-34	240		391	1360	10000
HN						
		1 1	1.0	1 1	40.2	1000
C ₁₇ H ₁₁ N ₃ F	IVIL I -I-70	1.1	1.2	1.1	40.3	1000
HN						
С ₁₇ H ₁₀ FN ₃	MLT-II-16	5.05	10.41	18.4	260	10000
CI						
HN ²						
	MLT-II-18	3.9	12.2	24.4	210	10000
HN						
C ₁₈ H ₁₃ N ₃ O	MLT-II-18	3.4	11.7	11	225	10000
HN						
C ₁₇ H ₁₀ BrN ₃ H	MLT-II-29					

HN HN C ₁₇ H ₁₁ N ₃ O	MLT-II-34	7.04	15.95	22.3		158	1000
$C_{24}H_{17}N_{3}O$	MLT-II-87	432	3000	3000		10000	10000
		070	2602	1002	05	08	115
C ₁₈ H ₁₅ BrF ₃ N ₃ O ₃	MIMB-II-37	872	2602	1003	95	98	115
O C ₁₈ H ₁₅ BrF ₃ N ₃ O ₃	MMB-II-43	1353	5173	1535	98	132	78
С ₁₅ H ₁₁ F ₃ N ₂ O ₂	MMB-II-57	90	931	172	3000	1000	3000
C ₁₅ H ₁₁ F ₃ N ₂ O ₂	MMB-II-68A	27	343.3	453	3000	1847	3000

N'							
$C_{14}H_9F_3N_2O_2$	MMB-II-74	3	24.5	41.7	500	125.7	1000
BI N O F							
C ₁₉ H ₁₇ BrF ₃ N ₃ O ₃	MMB-II-87	200	333	107	109	5.4	333
C ₁₈ H ₁₂ BrF ₆ N ₃ O ₃	MMB-II-89	333	333	333	333	43	333
		20	24	57	0	0.25	26
C ₁₈ H ₁₈ BrN ₃ O ₃ 0 N //	IVIIVIB-II-90	20	24	5.7	9	0.25	30
C ₁₉ H ₂₁ N ₃ O ₄	MMB-II-99	>333	333	333	333	333	333
C ₁₈ H ₁₉ N ₃ O ₃	MMB-III-016	3	1.97	2	1074	0.26	211
C ₁₈ H ₁₃ F ₆ N ₃ O ₃	MMB-III-018	117	140	78	3500	14	976

C ₁₉ H ₂₁ N ₃ O ₄	MMB-III-019	3333	3333	3333	3500	889	3500
C ₁₈ H ₁₆ F ₃ N ₃ O ₃	MMB-III-14	13	13	6.9	333	1.1	333
C ₁₅ H ₁₆ N ₂ O	MSA-0-28	36.9	194	245		1000	1000
$C_{14}H_{14}N_{2}O$	MSA-3-IPBC	283	3000	3000		10000	10000
CI							
	MSA 1 71	60.4	105.0	126		1000	10000
S	IVISA-I-71	00.4	120.3	120		1000	10000
C N N H H							
C ₁₂ H ₇ N ₃ S	MSA-II-35	67.2	120	141		3000	10000
C ₁₅ H ₁₄ N ₂ O	MSA-IV-35	2.1	16	21		995	3000

$C_{18}H_{20}N_2O_4$	MSR-I-032	6.2	18.7	4	3.3	74.9
	MSR-I-036	46	422	400	107 5	300
C ₁₇ H ₂₀ N ₄ O ₃	MSR-I-036	46	422	400	107.5	300
C ₁₆ H ₁₉ N ₃ O ₂	MSR-I-046	45	540	700	380	3000
$C_{16}H_{18}N_4O_3$	MSR-I-049	896	1000	570	91.5	3000
GraHarNaOa	MSR-I-056	24 6	214 4	270 4	331.0	1000
		2 1.0	000	200	000	
$[C_{17}H_{20}N_2O_3]$	MSK-I-05/	>300	300	300	300	300

				-			
C ₁₆ H ₁₈ N ₂ O ₃	MSR-I-100	300	300	300		300	300
, Н С ₁₇ Н ₁₇ СIN ₂ О	N-111	691		4209	3000	3439	3000
NH ⁺ Cl							
, Н С ₁₇ Н ₁₈ СIN ₃ О	N-112	296		5260	3000	3000	3000
\ H C ₁₈ H ₁₉ CIN ₂ O ₂	N-120	422		1000	3000	932	3000
H C ₁₇ H ₁₇ CIN ₂ O	N-26	1000		3000	3000	3000	3000
NH ⁺ Cl ⁻							
H C ₁₉ H ₂₁ CIN ₂ O	N-30	1491		2000	2000	2000	2000
H C ₁₉ H ₂₁ ClN ₂ O ₂	N-80	1614.4		2000	2000	2000	2000

F							
C ₁₈ H ₁₃ FN ₂ O	OMB-18	3.9	1.2	3.4	1733	0.8	5
C ₄₀ H ₄₅ EN ₂ O	OMB-19	22	4.6	20	3333	3.5	40
						0.0	
	PS-1-26 C23H17N5O	933.5	366	260		393.5	5000
Br		100	204			00	5000
C ₂₁ H ₁₆ BrN ₅ O	PS-1-27 C21H16N5BrO	182	294			86	5000
Si N							
C ₂₆ H ₂₅ N ₅ OSi	PS-1-28 C26H25N5OSi	5000	5000			5000	5000
Br							
C ₂₀ H ₁₇ BrN ₄ O	PS-1-34B		4.198	3.928			

	DS 1 27	102	25	425	22	5000
$C_{25}H_{23}N_5O$	PS-1-37	193	35	435	22	5000
Br N						
C₁₃H₅BrN₂OS	PS-I-68	3134	481.3	679.5	101.3	
	DC 1 74	145.0	100.0	244.0	110.0	
$C_{20}H_{20}N_4SSI$	ro-I-/ I	14 3. 0	ZZ.Ŏ	214.2	Y.Z	

					1		
N N N							
C ₁₇ H ₁₂ N ₄ S	PS-I-72	123	31	386		34	5000
C ₁₆ H ₁₅ N ₃ O ₂	PWIII-012	1000	1000	1000		166	1000
			0.47	0.40			47.04
C ₁₆ H ₁₀ CIN ₃ O	PWZ-0071	0.23	0.17	0.12		0.44	17.31
	PW/7-007A	0 11	0 1	0.09		0.2	10
				0100		012	
C ₁₇ H ₁₃ N ₃ O ₂	PWZ-009A1	1.34	1.31	1.26		0.84	2.03
C ₁₄ H ₁₄ CIN ₃ O ₂	PWZ-029	300	300	300		38.8	300

C ₁₃ H ₁₁ Cl ₂ N ₃ O	PWZ-031A	300	300	300	28.5	300
C ₁₃ H ₁₂ CIN ₃ O ₂	PWZ-034A	300	300	300	300	300
C15H16CIN3O2	PWZ-035A	300	300	300	82.7	300
C ₁₇ H ₁₈ CIN ₃ O ₂	PWZ-049	1581	2865	2739	166	2930
$C_{14}H_{12}CIN_3O_2$	PWZ-051	17535	33834	22125	2612	29500
		0492	20000	15400	2592	20160
C ₁₉ H ₂₅ ClN₄O	PWZ-058	4201	12590	6266	1346	8600
---	----------	------	-------	------	------	------
C ₁₄ H ₁₄ ClN ₃ O	PWZ-066	408	1527	1125	182	3648
C ₁₇ H ₂₀ CIN ₃ O	PWZ-068	2050	2900	2907	369	960
C ₁₆ H ₁₇ N ₃ O ₄	PWZ-085	4.86	13	8.5	0.55	40
C ₁₇ H ₁₉ N ₃ O ₄	PWZ-096	11.1	36	16.9	1.07	51.5
$C_{17}H_{12}CIN_{3}O_{2}$	PZII-028	0.2		0.2	0.32	1.9

-	1	r			1	
C ₁₈ H ₁₅ N ₃ O ₃	PZII-029	0.34		0.79	0.52	10
N N ⁺		0404		4000	4005	4000
C ₁₅ H ₁₀ N ₈ O	QH-133	2164		4620	1635	1000
C ₁₆ H ₁₂ N ₄ O ₅	QH-146	0.49		0.76	7.7	10000
C ₁₆ H ₁₂ N ₈ O	QH-149					
F N N						
s						
C ₁₃ H ₉ FN ₂ OS	QH-27	175	335	405	150	300
F N						
C ₁₄ H ₁₁ FN ₂ OS	QH-28	141	215	205	65.5	300
N ⁴ O						
C ₁₅ H ₁₀ N ₄ O ₅	QH-65					

C ₁₅ H ₁₂ N ₂ O	QH-II-058b	288	233	350		140	3000
$C_{16}H_{14}N_2O$	QH-11-059	81	138	318		98	3000
C ₁₆ H ₁₃ BrN ₂ O	QH-11-063	9.4	9.3	31		7.7	3000
Si C ₂₁ H ₂₂ N ₂ OSi	QH-11-065	94	73	203		63	3000
C ₁₈ H ₁₄ N ₂ O	QH-11-066	76.3	42.1	47.4	2000	6.8	3000
N ⁺ O ⁻							
C ₁₅ H ₁₀ BrN ₃ O ₃	QH-II-067a	16	31	52		199	3000

C ₁₇ H ₁₃ N ₃ O	QH-II-072	320	310	350	265	3000
Br						
	011 11 075	0.40	0.04	0.05	4.0	40
C ₁₆ H ₁₀ BrN ₃ O	QH-II-075	0.18	0.21	0.25	1.3	40
			0.00	0.05	0.40	
S_{1}	QH-II-080b	3	3.7	4.7	24	1000
і С ₂₁ Н ₁₉ N ₃ OSi	QH-II-082	1.7	1.8	1.6	6.1	100
	QH-II-085	0.08	0.06	0.02	0.08	

C ₂₀ H ₁₄ N ₂ O	QH-IV-016	3000	3000	3000	3000	3000
C₂₂H₂₄N₂OSi	QH-IV-019	3000	3000	3000	3000	3000
C ₁₉ H ₁₆ N ₂ O	QH-IV-021	3000	3000	3000	3000	3000

C ₁₅ H ₁₄ FN ₃ O ₃	Ro15-1788	0.8	0.9	1.05		0.6	148
$C_{15}H_{14}N_6O_3$	Ro15-4513	3.3	2.6	2.5		0.26	3.8
C ₁₈ H ₁₇ N ₃ O ₃	RY-008	3.75	7.2	4.14		1.11	44.3
	PX 020	275	207	227		22	201
	RT-020	275	307	337		23	301
C ₂₂ H ₂₇ N ₃ O ₃ Si /	RY-023 C22H27N3O3Si	197	142.6	255	7.8	2.61	58.6
	RY-024 C10H10NI2O3	26.0	26.3	18.7		0.4	5 1
C ₁₉ H ₁₉ N ₃ O ₃	KY-024 C19H19N3O3	26.9	26.3	18.7		0.4	5.1

/							
ď							
C ₁₇ H ₁₉ N ₃ O ₃	RY-031 (RY-10)	20.4	27	26.1		1.5	176
N O							
N No							
C ₁₈ H ₂₁ N ₃ O ₃ H	RY-033	14.8	56	25.3		1.72	22.9
N N							
s s							
	DV 025	080	500	775		02.5	2000
C ₁₇ H ₁₂ N ₂ OS	RT-035	960	590	115		92.0	3000
s							
C ₁₈ H ₁₄ N ₂ OS	RY-037	300	300	300		300	300
	RY-047	200	124	79		4	340
		200	127	75			040
C ₂₄ H ₁₇ N ₅ O ₂	RY-049						
_NO							
Br							
		40	00	45			40
U ₁₇ H ₁₆ BrN ₃ U ₃	K I-UDJ	49	29	CI			40

C ₁₉ H ₁₅ N ₅ O ₂	RY-059	89	70	91	3.7	301
C ₁₇ H ₁₂ N ₂ O ₂	RY-060	1000	1000	1000	1000	1000
C ₁₆ H ₁₄ BrN ₃ O ₃	RY-061	17	13	6.7	0.3	31

C ₁₈ H ₁₅ N ₃ O ₃	RY-067	21	12	10	0.37	42
CaaHaaNaQaSi	RY-068	500	877	496	37	1000

C ₂₁ H ₁₆ N ₄ O ₄	RY-069	692	622	506	19	1000
C ₁₈ H ₁₃ N ₅ O ₂	RY-071	19	56	91	7.2	266
	RY-072	220	<u>150</u> 88	184	8.5	<u>361</u> 267
	RY-075			-	-	
	DV 070	20	07	40	0.7	22

		-					
l C ₂₀ H ₂₃ N ₃ O ₃ Si	RY-079	121.1	141.9	198.4	159	5	113.7
C ₁₇ H ₁₅ N ₃ O ₃	RY-080 C17H15N3O3	28.4	21.4	25.8	5.3	0.49	28.8
Si O							
C ₂₁ H ₂₅ N ₃ O ₃ Si	RY-097	300	300	300		300	300
CreHtzN2Q2	RY-098	10.1	22.2	16.5		1.68	100
C ₁₈ n ₁₇ N ₃ O ₃	K1-090	10.1	22.2	10.5		1.00	100
$C_{17}H_{16}BrN_3O_3$	RY-I-26	1000	1000	1000		1000	1000
	RY-1-27	1000	1000	1000		1000	1000

C ₁₉ H ₁₇ N ₃ O ₃	RY-I-28	283	318	102	 7.2	61
0 С ₁₉ Н ₁₅ N ₅ O ₂	RY-I-29	1000	1000	1000	157	1000
C ₁₆ H ₁₄ N ₄ O ₃	RY-I-31	10	45	19	6	1000
	04.04.004	0040	4007		000.0	
C ₂₄ H ₂₀ FN ₃ O ₂	SA-01-031	2013	1007		009.3	
CasHusNiOs	SA-SH-053-2'N-R-CH3	406	73565	3392	16843	
			10000	0002		
C ₂₂ H ₁₆ FN ₃ O ₂	SH-053-2'F (JY-XHe-053)	21.99	12.34	34.9	0.671	
		750 4	040 0	760 0	05 47	
C ₂₃ H ₁₈ FN ₃ O ₂	SH-053-2'F-K-CH3	759.1	948.2	108.8	95.17	

N						
H						
C ₂₃ H ₁₈ FN ₃ O ₂	SH-053-2'F-S-CH3	468.2	33.27	291.5	19.2	
C ₂₁ H ₁₆ N ₄ O ₂	SH-053-2'N	300	160	527	82	5000
C ₂₂ H ₁₈ N ₄ O ₂	SH-053-2'N-S-CH3	6951	2331	2655	744.1	
C ₂₃ H ₁₉ N ₃ O ₂	SH-053-R-CH3	2026	2377	1183	949.1	
	SH 052 S CH2	1666	1060	1240	206.4	
	30-000-0-000	1000	1203	1249	200.4	
C ₂₃ H ₁₉ N ₃ O ₂	SH-053-S-CH3	5000	551	540.1	201	5000

H						
		480	F70 F	706.4	200.0	
C ₁₆ H ₁₄ N ₂ O	3H-I-029B	409	576.5	700.1	200.0	
Br N						
C ₁₄ H ₁₀ BrN ₃ O	SH-I-02B	29.82	1315	18	74.05	
Br N H						
C ₁₆ H ₁₃ BrN ₂ O	SH-I-030	14.42	11.04	19.09	1.89	

C ₁₆ H ₁₄ N ₂ O	SH-I-035A	7389	6049	16811	15793	
Br N						
C ₁₆ H ₁₃ BrN ₂ O	SH-I-035B	7439	11084	3021	4043	
	SH-I-036	587	587.9	280.2	150.8	

$C_{26}H_{27}N_3O_2Si$	SH-I-041					
Br F						
C ₁₆ H ₁₂ BrFN ₂ O	SH-I-044	5633	2034	6658	3521	
	SH-I-047	1710	17 52	1222	1519	

C ₁₅ H ₁₂ BrN ₃ O	SH-I-049S	155.6	137.2	88.5	11094	
	SH 1.055	5100	1629	1204	222.4	
	SH-I-06	0100	1000	1007	<i>LL</i> U.T	

C ₂₆ H ₂₆ FN ₃ O ₂ Si	SH-I-064	4249	3970	3412	1215	
	SH-1-067					
C ₂₀ H ₁₂ BrFN ₄ O	SH-I-085	11.08	4.866	13.75	0.24	
C ₂₂ H ₁₇ N ₃ O ₂	SH-I-75	1487	989.9	773	0.1825	
C ₁₈ H ₁₅ BrN₄	SH-I-89S	12.78	8.562	8.145	3.23	

		-	-		 	
N H F F						
C ₂₃ H ₁₆ F ₃ N ₃ O ₂	SH-I-R66	219.5	169.1	87.01	47.97	
	SH-I-S66	22.03	30 36	55 26	0.69	
			00.00	00.20	0.00	
N						
C ₁₅ H ₁₂ BrN ₃ O	SH-053-2'N-S-CH3					
C ₂₃ H ₁₈ FN ₃ O ₂	SH-O53-S-CH3-2'F	350	141	1237	16	5000
C ₁₈ H ₁₃ N ₅	SH-TRI-108 ANX4	143.9	81.29	103.9	45.64	
	SH-TSC-1(PWZ-029)	362.4	180.3	328.2	6.185	

Br C ₂₁ H ₁₈ BrN ₃ O ₂	SH-TSC-6(SH-I-034)	913.2	283	300	436.8	
Br C ₂₁ H ₁₈ BrN ₃ O ₂	SH-TSC-7(SH-I-040)	709	1997	1256	727.4	
$C_{20}H_{16}N_4$	SH-TS-CH3	107.2	50.09	20.95	8.068	

N N O							
C ₁₈ H ₁₄ BrN ₃ O	SHU-1-07	108	260	175	940	155	2535
С ₁₈ H ₁₄ CIN ₃ O	SHU-1-15	81	63	86	2175	174	2167
C ₁₈ H ₁₅ N ₃ O	SHU-1-19	4	12	7	48	14	84
	SHU-221 (YI L-250)	102	130	330	3000	118	3000
	300-221 (ALI-230)	492	439	338	3000	110	3000
C ₁₇ H ₁₂ N ₂ O	SHU-221-1	66	41	43	3000	9	3000
$C_{20}H_{22}N_2Si$	SHU-223	1000	1000	1000	1000	1000	1000

Si C							
$C_{20}H_{22}N_2Si$	SHU-224	1000	1000	1000	1000	1000	1000
C ₁₈ H ₁₈ N ₂ O	SHU-525	667	667	667	667	667	429
C ₁₇ H ₁₁ N ₃	SHU-528	667	667	667	667	667	429
C ₁₀ H ₁₀ N ₂ O	SHU-530	667	667	667	667	667	429
C ₂₀ H ₁₃ N ₃ O ₂	SHU-537	333	333	333	333	667	429
C12H46N2Q	SHU-547	667	667	667	667	667	429
							-
C ₁₇ H ₁₆ N ₂ O	SHU-550	333	333	333	333	333	429

ОН							
ОН							
		1000	1000	1000	1000	1000	1000
С ₁₀ Н ₈ О ₂	5H0-III-032	1000	1000	1000	1000	1000	1000
C ₂₀ H ₁₈ FN ₃ O	SHU-III-24	1000	1000	1000	1000	1000	1000
C ₁₂ H ₁₀ O ₂	SHU-III-32	1000	1000	1000	1000	1000	1000
$C_{14}H_{12}O_3$	SHU-III-33	1000	1000	1000	1000	1000	1000
C ₁₄ H ₁₀ O ₂	SHU-III-34	1000	1000	1000	1000	1000	1000
C ₁₄ H ₁₄ O ₂	SHU-III-36	1000	1000	1000	1000	1000	1000
C15H12O2	SHU-III-37	1000	1000	1000	1000	1000	1000

C ₁₂ H ₈ N ₂	SHU-III-40	1000	1000	1000	1000	1000	1000
C ₁₀ H ₈ O ₃	SHU-III-42	1000	1000	1000	1000	1000	1000
$C_{10}H_{10}O_3$	SHU-III-42A	1000	1000	1000	1000	1000	1000
C ₈ H ₈ O ₂	SHU-III-42B	1000	1000	1000	1000	1000	1000
C ₁₁ H ₁₀ O ₂	SHU-III-44	1000	1000	1000	1000	1000	1000
C ₁₀ H ₁₂ O ₂	SHU-III-45	1000	1000	1000	1000	1000	1000

C10H1000	SHU-III-66	1000	1000	1000	1000	1000	1000
N							
C ₁₃ H ₁₃ NO ₂	SHU-III-87	1000	1000	1000	1000	1000	1000
ОН							
$C_{11}H_9NO_2$	SHU-III-88	1000	1000	1000	1000	1000	1000
N							
C ₁₃ H ₁₁ NO ₂	SHU-III-90	1000	1000	1000	1000	1000	1000
C ₁₇ H ₁₅ NO ₂	SHU-III-93	1000	1000	1000	1000	1000	1000
		1000	1000	1000	1000	1000	1000
	0110-111-34						1000

	SI L II 25	244	500	532	1560	10000
		277	500	002	1500	
	SDH 121	0.14	1 10	1 70	1	470
	<u>ЗГП-121</u>	0.14	1.13	1.72	4	41 U
й С ₁₆ Н ₁₆ N ₂ O ₃	SPH-165	0.63	2.79	4.85	10.4	1150
H C ₂₃ H ₂₂ N ₂ O ₃	SPH-166	20.8	78.3	58.7	67.3	10000
Υ C ₁₇ H ₁₉ CIN ₂ O ₂	SPH-178	1000	1000	1000	1000	1000
	SPH-195	7.2	168.5	283.5	271	10000

HO HO $C_{16}H_{16}N_{2}O_{4}$	SPH-38	2	5.4	10.8		18.5	3000
	SR-II-54	174.1	363.2	946.4		966.6	
		0	05	0			
C ₁₈ H ₁₉ N ₃ O ₃	500-8-14	8	25	8	6.9	0.9	14
	SVO-8-20	11	<u>40</u> 5.3	<u>28</u> 5.3	<u>19</u> 2.8	0.6	138
C ₂₁ H ₁₉ N ₃ O ₃	SVO-8-67	7	41	26	15	2.3	191

C ₃₀ H ₂₆ Cl ₂ N ₆ O ₆	TC-YT-TC-2	2657	737.8	643		1973	
C ₁₇ H ₁₇ N ₃ O ₃	TG-4-29	8.3	10.2	6.9		0.4	7.61
	TG-4-29	2.8	3.9	2.7	2.1	0.18	3.9

C ₁₉ H ₁₇ N ₃ O ₃ S	TG-4-39	1.6	34	24	5.6	1.4	23
CueHusNeOs	TG-I-97						
	TG-II-82	16	29	28		1	1000
			2.0	2.0		-	
C ₁₃ H ₉ N ₅ O ₂	TJH-6AZ						
C ₂₀ H ₁₉ N ₃ O ₂	TJH-IV-43	5.42	30.19	48.9		475	10000

			1		I	
$C_{24}H_{21}N_{3}O_{2}$	TJH-IV-50	30.7	205	271	814	10000
H						
C ₁₉ H ₂₃ N ₃ O ₂	TJH-IV-51	2.39	17.4	14.5	316	10000
C ₁₄ H ₉ N ₃ O ₂ S	TJH-V-88	3.41		30	140.9	10000
CI						
	triazolam					
N						
C ₂₅ H ₂₁ N ₃ O	TSC-I-93	5000	5000	5000	304	5000
C ₂₆ H ₂₃ N ₃ O	TSC-I-94					

N							
$C_{15}H_8F_6N_2O_2$	WY-B-09-1	3.99	8	32	1000	461	2000
	WY-B-09-2	1000	2000	2000	3000	1000	3000
			2000	2000		1000	
$C_{21}H_{24}N_2O_2Si$	WY-B-14(WYS7)	6.84	30	36	2000	108	1000

				-	-		
$C_{21}H_{24}N_2O_2Si$	WY-B-14(WYS7)	8.5	165	245		1786	5000
	WY-B-15	0.92	0.83	0.58	2080	4.42	646
				-			-
	W/Y-B-17	2000	2000	2000	3000	2000	5000
	VV T-D-17	2000	2000	2000	3000	2000	5000
		12	30	17	2000	100	3000
		12			2000	122	3000
	WY-B-23-1	10	33	43	1000	189	2000
							2000
$C_{15}H_{11}F_{3}N_{2}O_{3}$	WY-B-23-2(WYS11)	4.2	37.7	39	2000	176	69.4

H C ₁₈ H ₁₁ F ₃ N ₂ O ₃	WY-B-27-1	26	143	117	3000	127	2000
$C_{18}H_{11}F_{3}N_{2}O_{2}S$	WY-B-27-2	9.19	111	72	2000	449	2000
		05	407	405	0000	000	0000
$C_{20}H_{13}F_{3}N_{2}O_{2}$	W Y-B-29-2	25	137	125	2000	299	2000

C ₁₉ H ₂₀ N ₂ O ₂ Si	WY-B-99-1	4.4	4.5	5.58	2000	47	2000
$C_{44}H_{46}N_4O_8$	WYS1 C45H50N4O6	missing					
		0.00	20	25.0		540.7	45.0
	W1310 C141191 314202	0.00		23.0		540.7	10.0
$C_{20}H_{18}N_2O_2S$	WYS12 C20H18N2O2S	37	166	314		2861	5000
		0.440	40	07.5		160	E000
C ₂₀ H ₁₈ N ₂ O ₃	WYS13 C20H18N2O3	2.442	13	27.5		163	5000
	WYS14 C34H29F3N4O4	798	5000			5000	5000

HN N							
	WYS15 C22H20N2O2	3.63	2.02	44.3		76.5	5000
HO							
Н		5000	5000			5000	5000
C ₁₅ H ₁₄ N ₂ O ₂ 0 11	WYS16 C18H22N2O2	5000	5000			5000	5000
		missing					
C ₁₇ H ₁₂ N ₂ O ₂		missing					
0							
$C_{20}H_{18}N_2O_2$	WYS18 C21H22N2O2	missing					
C ₂₆ H ₃₂ N ₂ O ₄ Si	WYS19 C26H32N2O4Si						
H H							
C24H20N4Q4	WYS2 C35H34N4O4						
		20	404	100	200	200	4000
$C_{34}H_{30}N_4O_4$	VV Y 52 U35H34N4U4	J 30	124	100	300	300	4000

		-	-	-	-		
C ₂₃ H ₂₄ N ₂ O ₄	WYS20 C23H24N2O4	450	5000			5000	5000
 C ₂₁ H ₂₃ IN ₂ O ₄	WYS21 C21H23IN2O4	missing					
$C_{34}H_{34}N_4O_4$	WYS3 C35H38N4O4	241	5000	1841		5000	5000
C ₄₆ H ₄₆ N ₄ O ₈	WYS4 C48H56N4O8	missing					
$C_{37}H_{42}N_4O_4$	WYS5 C37H42N4O4	5000	5000			5000	5000
		-					
--	--------------------	---------	--------	--------	--------	------	
	WYS9 C16H15IN2O2	2.72	22.2	23.1	562	122	
					002		
NH NH							
C ₁₆ H ₁₆ N ₂ O ₂	WYSC1 (BCCt)	1.094	5.44	12.3	69.8	21.2	
C ₁₅ H ₁₁ F ₃ N ₂ O ₂	WYSC2 C15H11F3N2O2	14.14	113	170	518	61.2	
$C_{18}H_{16}N_2O_2$	WY-TSC-4(WYS8)	109.431	2374.5	1656.4	2663.5		
н <i>П</i>	WY-TSC-4(WYS8)	0.007	0.99	1.63	51.04		
C ₁₉ H ₁₄ N ₂ O	WZ-030	279	210	200	45.15	1000	

C ₂₀ H ₁₆ N ₂ O	WZ-032	965	345	590	150	3000
F F	WZ 000	10	20 F	20 F	10.6	1000
C ₁₉ H ₁₃ FN ₂ O	VVZ-069	40	30.5	38.5	12.6	1000
C ₂₀ H ₄₅ FN ₂ O	WZ-070	72.7	30.7	53.2	18.6	300
C ₁₄ H ₁₃ CIN ₂ OS	WZ-113	19.2	13.2	13.4	11.5	300
$C_{14}H_{13}CIN_2O_2$	WZ-148	300	300	300	300	300
F F	W/7-153	199	151 3	191 6	73.5	1000
	VVZ-100	100	101.0	191.0	10.0	1000
F						
C ₂₀ H ₁₅ FN ₂ O	WZ-154	>300	>300	>300	>300	>300

H F						
C ₁₉ H ₁₃ FN ₂ O	WZ-175	1000	1000	1000	1000	1000
C ₂₀ H ₁₅ FN ₂ O	WZ-176	>300	>300	>300	>300	>300
C ₁₃ H ₁₅ FN ₂ O	WZ-185	>300	>300	>300	>300	>300

-							
		4000	1000	1000	1000	50	4000
C ₂₁ H ₁₇ N ₃ O ₃	XHE-I-030	1000	1000	1000	1000	53	1000
$ \begin{array}{c} $	XHE-I-038	7.3	5	34		132	1000
		21	05	272		91	1000
			30				1000
C ₁₅ H ₁₄ BrN ₃ O ₃	XHE-I-046	1000	1000	1000		1000	1000
$\sim C_{21}H_{19}N_{3}O_{3}$	XHE-I-048	220	440	481		50	160
C ₂₂ H ₂₃ N ₃ O ₃ Si	XHE-I-050	254	300	300		195	3000

$C_{19}H_{15}N_3O_3$	XHE-I-051	35	39	42		5.3	979
BL N N N N N N N N N N N N N N N N N N N							
О С ₁₇ H ₁₁ Br ₂ N ₃ O ₂	XHE-I-055b	615	1000	1000	2213	268	1524
C ₂₄ H ₁₉ N ₃ O	XHE-I-065	7.2	17	18	500	57	500
C ₂₁ H ₂₁ N ₃ O ₃	XHE-I-066A(SS)	196.66	176.14	95.4	74.26	125.06	186.25
H N N N H							
C ₂₁ H ₂₁ N ₃ O ₃	XHE-I-066B(SR)	76.04	73.56	45.05	22.72	53.42	51.32

Si							
C ₂₁ H ₁₉ N ₃ OSi	XHE-I-073	62	155	217	1000	393	1000
H C ₁₉ H ₁₃ N ₃ O	XHE-I-093	2	7.1	8.9	1107	20	1162
$C_{21}H_{17}N_{3}O_{2}$	XHE-I-096	3079	1000	4636	1601	567	2712
C ₂₄ H ₂₇ N ₃ O ₃ Si	XHE-I-47	705	2502	2460		480	10000
C ₁₉ H ₂₁ N ₃ O ₃	XHE-II-002	8.3	18	13	3.9	1.5	11

Br N N N O O C ₂₀ H ₁₈ BrN ₃ O	XHE-II-006a	4.7	4.4	20	1876	89	3531
			7.7	20			0001
	XHE-II-006b	37	15	12	1807	144	1000
П С ₂₂ Н ₁₉ N ₃ O	XHE-II-011	9	60	39	3233	90	1000
C ₂₀ H ₁₆ BrN ₃ O ₂	XHE-II-012	49	24	31	1042	14	2038
N N N N N N N N N N N N N N N N N N N							
C ₂₅ H ₂₇ N ₃ OSi	XHE-II-014	329	1098	1156	1000	2462	1000

$C_{22}H_{19}N_3O$	XHE-II-017	3.3	10	7	258	17	294
С ₂₈ H ₂₇ N ₃ O	XHE-II-019	273	428	762	1000	1464	1000
N N N N O O O O O	XHE-II-024	0.09	0.18	0.32	14	0.24	11
	XHE-11-053	287	45	96	1504	13.8	1000
		201					
C ₁₇ H ₁₃ N ₅ O ₂	XHE-II-065	1000	409	216	37	6.4	175
	XHE-11-070	350	522	151	150/	55	1000

C ₁₈ H ₁₉ N ₃ O ₃	XHE-II-073A (R ENRICHED)	5.9	11	10	15	1.18	140
C10H10N2O2	XHE-II-073B (S-ENRICHED)	11	17	12	33	2.1	269
C ₂₃ H ₂₇ N ₃ O ₃	XHE-II-077	1363	1000	3403	3561	1000	1000
		1604	1000	1000	1000	1000	1000
Br NNN NNN H		1004	1000	1000		1000	
C ₂₀ H ₁₈ BrN ₃ O	XHE-II-087c	1000	1000	1000	1000	1000	1000
$R_{24}H_{25}N_{3}O$	XHE-II-098a	1000	1000	1000	1000	1000	1000

	1000
X N C24H24BrN30 CI	1000
$\begin{array}{c c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	1000
$\begin{array}{c c} & & & \\ &$	500
C16H10BrNgO XHE-III-06a 1 2 1 5 1.8 Image:	740
	310

		0.05				10	000
C ₂₀ H ₁₈ FN ₃ O	XHE-III-24	0.25		8	222	10	328
C ₁₅ H ₁₄ CIN ₃ O ₃	XHE-III-49	1.3	5.5	4.2	38.7	11.3	85.1
		4074	400.4	00.40	1000	4450	1000
C ₁₂ H ₈ CIN ₃ O	XHE-III-54	1071	1624	2048	1000	1158	1000

N H		1005	1010	1000	1000	1000	1000
C ₁₂ H ₈ BrN ₃ O	XHE-III-56b	1005	1642	1928	1000	1300	1000
	XHE-111-67	1000	1000	1000	1000	1000	1000
		1000	1000	1000	1000	1000	1000
H C ₁₂ H ₈ FN ₃ O	XHE-III-69	3433	1000	1000	1000	1000	1000
		007 5	2256	2494	711	500	1000
	AHE-III-70	997.5	2356	2484	711	500	1000
	XHE-III-73	1000	303	942	1000	492	1000
C ₂₀ H ₂₃ N ₃ O ₄	XHE-III-74	77	105	38	0.42	2.2	5.8

Br						
C ₁₈ H ₁₂ BrN ₃ O ₂	XLI-12TC					
C ₁₂ H ₁₁ BrN ₂ O ₂	XLI-13TC	2078	5289	618.7	8382	
$C_{19}H_{19}N_3O_4$	XLI-14TC					

				-	 	
	XIII 45TC					
C ₁₇ H ₁₃ N ₃ O ₃	XLI-151C					
Вг ОН						
		7004	0545	707 4	4004	
C ₁₅ H ₁₂ BrN ₃ O ₃	XLI-16TC	/664	3515	/8/.4	1831	
Br C ₁₉ H ₂₀ BrN ₃ O ₃	XLI-17TC	224.8	106.6	120.6	92.43	
	XI I-18TC					
- 10: 10: 3 4						

			-	-				
Br C ₂₂ H ₂₀ BrN ₃ O ₂	XLi223	C22H20BrN3O2	14	8.7	18	1000	10	2000
C ₂₇ H ₂₉ N ₃ O ₂ Si	XLi224	C27H29N3O2Si	333	333	333	3000	333	2000
C. H. N.O.	XI i225	C24H21N3O2	333	225	174	3000	110	2000
F	XLI-232							
	XI I-2	50 (SHU-221)	1000	1000	339	1000	118	1000
N		00 (0110-221)	1000	1000	338	1000	110	1000
Br N								
C47H42BrN4	XLi268	C17H13BrN4	2.81	0.69			0.62	

		1	1	1	· · ·		
Si							
C ₂₃ H ₂₃ N ₃ Si	XLi269 C22H22N4Si	221.8	154.2			15.51	
N							
C ₁₉ H ₁₄ N ₄	XLi270 C19H14N4	36.39	25.81			5.291	
C ₂₀ H ₁₉ N ₃ O ₃	XLi275 C20H19N3O3	35.61					
Br							
CI							
		0.054		0.440		0.004	
C ₁₅ H ₁₀ BrClN ₂ O	XLI-286	0.051	0.064	0.118		0.684	
CI							
C ₁₉ H ₁₃ ClN ₄	xli296						
Br							
C ₁₇ H ₁₃ BrN ₄	XLI-2TC	3.442	1.673	44.08		1.121	
N. 0-							
C ₁₈ H ₁₉ N ₃ O ₄	XLI-317	60.24	24.05	4.562		0.295	

F F F F F F F F F F F F F F F F F F F	XLI-332	1390	1507	3405	132.1	
/						
C ₂₁ H ₂₃ N ₃ O ₃	XLi337 C21H23N3O3					
C ₂₃ H ₂₁ CIN ₄	XLi338 C23H21CIN4	380	189	692	5000	5000
	VI. 2000 . 0000 1000 14	5000	005	5000	5000	5000
			020	5000	5000	5000
C ₂₆ H ₂₅ N ₃ O ₂	XLi340 C26H25N3O2					
Si C ₂₀ H ₁₉ CIN ₂ OSi	XLi343 C20H19CIN2OSi	6.4	17.7		150.5	

		1				
					10.07	
C ₃₄ H ₂₈ N ₆ O ₇	Xli-347 C34H28N6O7	828.05	690.2		13.87	
C ₂₀ H ₁₉ CIN ₂ OSi	XLI-348	13.56	11.17	1.578	82.05	
C ₁₇ H ₁₁ ClN ₂ O	XLi350 C17H11CIN2O	1.224	1.188		2.9	
Si Ci						
C ₂₁ H ₂₁ CIN ₂ OSi	XLi351 C21H21CIN2OSi	1.51	0.97		1.98	
C ₁₈ H ₁₃ CIN ₂ O	XLi352 C18H13CIN2O	1.56	0.99		1.96	
			4700 -			5000
C ₃₃ H ₃₄ N ₆ O ₆	XLI356 C33H34N6O6	1851.5	4702.5	8545	100.5	5000
C ₂₂ H ₂₁ N ₃ O ₂	Xli366 C22H21N3O2	1				

C ₁₅ H ₁₂ CIN ₃ O	XLI-381	619.9	285.6	3639	7.1	
C ₂₉ H ₂₈ Br ₂ N ₆ O ₄	XLI-382					
C ₃₉ H ₄₆ N ₆ O ₄ Si ₂	XLI-385					

Br						
$C_{20}H_{15}BrFN_3O_2$	XLI-8TC	21.52	11.01	2.16	4.06	
C ₁₉ H ₁₃ CIN ₄	XLi-JY-DMH ANX3	3.3	0.6	1.9	4.4	5000
C ₂₂ H ₂₁ ClN₄Si	XLi-JY-DMH-TMS C22H21N4SiCI)	35	63	99.13	69.7	5000

C ₁₃ H ₁₄ N ₂ O ₃	XLI-TC	8155	7528	1036	508.9	
C ₂₅ H ₂₅ N ₃ O ₂ Si	XliXHe-II-048 C25H25N3O2Si	5000	5000	5000	5000	
	X7112					
С ₁₆ H ₁₀ N ₄	YCT-5	2.2	11.46	16.3	200	10000
HN HN N H						
C ₁₆ H ₁₀ N ₄	YCT-7A	3	23.8	30.5	240	10000
	YCT-7B	28	118	156	1000	10000
U ₁₆ ⊓ ₁₀ N ₄		20		100	1000	10000

	YT-5	0 421	0 6034	36.06	1 695	
		0.721	0.0004	50.00	1.000	
	VT C	45.04	07.0	60.40	4 0 2 0	
C ₁₄ H ₁₂ CIN ₃ O ₃	Y1-6	15.31	87.8	60.49	1.039	
		0.45.0	000.0	0.45.0	4.07	
C ₁₈ H ₁₅ N ₃ O ₃	Y I -I-38	945.9	320.8	245.9	4.07	
Br						
C ₁₈ H ₁₄ BrN ₃ O	YT-II	6.93	0.87	3.51	5.12	
C ₁₈ H ₁₉ N ₃ O ₃	YT-II-76	95.34	2.8	0.05	0.04	
C ₃₃ H ₂₈ Br ₂ N ₆ O ₆	YT-II-791	1495	2681	527.4	144	
$C_{34}H_{30}Br_2N_6O_6$	YT-II-792	789.6	599.5	1698	83.18	

$C_{34}H_{30}Br_2N_6O_6$	YT-II-793	1383	2881	782.6	128.9	
C ₃₄ H ₃₀ Br ₂ N ₈ O ₄	YT-II-794	4536	126.2	4981	932.8	
C ₁₆ H ₁₆ CIN ₃ O ₄	YT-II-83	32.74	13.22	24.1	3.548	

C ₃₄ H ₃₆ N ₈ O ₄	YT-III-19	5329	182.4	3817	3313	
C ₂₃ H ₂₁ N ₃ O ₂	YT-III-23	19.83	23.65	19.87	1.105	
C ₁₈ H ₂₀ CIN ₃ O ₄	YT-III-25	2.53	5.79	5.69	0.09	
	YT-III-271	32 54	1 26	2 35	103	
	YT-III-272	295.9	14.98	10.77	103.3	
		2.00.0	000	000	070.0	
$\left C_{44} H_{34} F_2 N_6 O_4 \right $	YT-III-273	245.1	366	389	879.4	

$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	YT-III-28	130.7	80.03	82.9	192	
C ₂₁ H ₁₆ N ₄ O	YT-III-31	36.39	67.85	129.7	7.59	
C ₂₃ H ₂₀ FN ₃ O ₂	YT-III-38	1461	18.21	14.63	3999	
N N C ₂₀ H ₂₁ N ₅ O ₂	<u>Y</u> T-III-42	<u>382</u> .9	16.83	44.04	9.77	
$\begin{array}{c} C_{29}H_{24}Cl_2N_6O_6 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	YT-TC-1	441.8	927.4	157.9	122.2	
C ₃₀ H ₂₆ Cl ₂ N ₆ O ₆	YT-TC-2	839.1	1647	568.1	421.9	

C ₁₇ H ₁₈ IN ₃ O ₃	ZG-208	9.7	11.2	10.9	0.38	4.6
C ₁₇ H ₁₈ N ₄ O ₅	ZG-213	12.8	49.8	30.2	3.5	22.5
C ₁₈ H ₁₈ N ₄ O ₃ S	ZG-224	17.1	33.7	50	2.5	30.7

C ₁₇ H ₁₈ N ₆ O ₃	ZG-234	7.25	22.14	9.84	0.3	5.25
C ₁₇ H ₁₈ CIN ₃ O ₃	ZG-63A	17.3	21.6	29.1	0.65	4
	70604	6 9	16.2	0.2	0.95	54 6
U ₁₅ H ₁₄ UN ₃ U ₃ /	ZG09A	0.0	10.3	9.2	0.00	54.0
C ₁₅ H ₁₄ CIN ₃ O ₃	ZG-69a(Ro15-1310)	6.8	16.3	9.2	0.85	54.6

0						
N						
C ₁₉ H ₂₁ N ₃ O	ZOLPIDEM	26.7	156	383	10000	10000

Clayton et al. Alpha 5 Supporting Information - 136