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Figure S1: Normalization of fast variables improves the numerical
method testing the accuracy of the stochastic QSSA with Eq. 8.
A) Relative fluctuations in DA decrease as DT increases in the unscaled model
of Eqs. 1-3. Here, the binding rate before scaling (k∗f ) is 0.1nM−1h−1. Other
parameters are the same as those used in Fig. 2A. B) Due to this change of
fluctuation range, the accuracy of the stochastic and deterministic QSSA, es-
timated as described in Fig. 2A-B, do not change in tandem as DT changes.
Specifically; when the accuracy of the deterministic QSSA is estimated for a
range of initial conditions that includes all possible values of the fast species,
the error of deterministic QSSA increases as DT increases. However, the error
of the stochastic QSSA decreases. Estimating the accuracy of the deterministic
QSSA for the unscaled model with Eq. 8 fails in predicting how DT changes the
accuracy of stochastic QSSA. C) However, this limit can be overcome with the
scaled model (Eqs. 1-3). In Fig. 2A, as kf increases, the stochastic QSSA of the
scaled model (Eqs. 1-3) becomes more accurate. Since kf = DT k

∗
f , the result

of Fig. 2A indicates that either increasing DT or k∗f reduces the error of the
stochastic QSSA for the unscaled model, matching simulations of the unscaled
model. This shows that the results of the scaled model can be converted to
those of the unscaled model.
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Figure S2: The distribution of R at steady state from the stochastic
simulations of the full (Eqs. 1-3) and reduced model (Eqs. 5) cor-
responding to Figs. 2A-B. As kf (A) and KD (B) increase, the difference
between the distributions of the full and reduced models decrease just as do the
coefficient of variation (c.f. Figs. 2A-B). Here µ is the mean of R and σ is the
standard deviation of R
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Figure S3: The distribution of S at steady state from the stochastic
simulations of the full (Eq. 9) and reduced model (Eq. 10). A) When
k−1 increases the difference between the distributions of the stochastic QSSA
and the full model decreases, just as does the coefficient of variation (Fig. 3D).
B) When k−2 increases the differences of distributions of stochastic QSSA and
full model show little change, similar to the behavior of the corresponding co-
efficient of variations (Fig. 3E). Here µ is the mean of variable S and σ is the
standard deviation of S.
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Figure S4: The accuracy of deterministic QSSAs depends on the initial
conditions. A) When the initial condition is on the limit cycle (the black circle
in Fig. 4C), both the deterministic pQSSA and tQSSA accurately approximate
the full model of transcriptional negative feedback (Fig. 4A). B) On the other
hand, for initial conditions off the limit cycle (the black square in Fig. 4C), only
the deterministic tQSSA accurately approximates the full model.
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Figure S5: Fourier transforms of trajectories obtained from stochastic
simulations. Fourier transforms of trajectories of the stochastic model (104

cycles) obtained using the tQSSA (Eq. 17) match those of the full model (Eqs.
11-14). However, Fourier transforms obtained using the pQSSA (Eq. 18) show
oscillations with a lower frequency and high amplitude than those from the full
model, as seen Fig. 4B.
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Figure S6: Different reductions of the negative feedback loop model
with enzymatic degradation A) The diagram of the DR model where tran-
scriptional repression step only is reduced. B)The diagram of the ER model
where enzymatic degradation step only is reduced. See Fig. 5A for the dia-
gram EDR model where both the transcriptional repression step and enzymatic
degradation step are reduced.

Table S1: The propensity functions used for the stochastic simulations

Reaction Macroscopic rate Propensity function
k−→ X k k

X
k−→ Y kX k nX

Ω

X + Y
k−→ Z kXY k nX

Ω
nY

Ω

X
kZ−−→ Y kX

KM+X
knX/Ω

KM+nX/Ω

X
kZ−−→ Y kX2

K2
M+X2

k(nX/Ω)2

K2
M+(nX/Ω)2
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