
S1 Text

Validation of the Methodology

Fitting a Full Model to Epidemic Data

In this section we aim to validate the implementations of the part of our algorithm concerned with the
sampling of unobserved sequences and transmission graphs (fitting the six-cluster epidemic simulated
in the main text). While estimation of the full set of model parameters is not feasible given insufficient
genetic data (see main text), we consider a minimally sufficient case in which we compare the posterior
distributions of the coverage rate and κ obtained respectively from two scenarios. In scenario I, we
assume no genetic data and fit the full model (epidemic and genetic model). In scenario II, we
assume no genetic data and fit only the epidemic model. Assuming other model parameters to be
known, we also impute the times of exposures in both scenarios. In Scenario I we impute unobserved
transmitted sequences, the master sequence and the transmission graphs which are the key components
in our algorithm. Theoretically, the two scenarios should yield identical posterior distributions for the
coverage rate and κ as the observed data are the same. S1 Fig. shows that the posterior distributions
of the coverage rate and κ display no significant differences, which in turn supports the validity of
our algorithm. Note that the minor difference between the posterior (cumulative) distributions of the
coverage rate is likely to be caused by numerical rounding behaviours due to widely differing model
dimensions and hence in the magnitudes of likelihood values. In fact, the posterior (non-cumulative)
densities suggest very similar coverages rates − in scenario I, the coverage rate has mean 0.68 and
a standard deviation 0.027; in scenario II, the coverage rate has mean 0.68 and standard deviation
0.028.

Posterior Distribution of Parameter p for the FMD Outbreak (Darlington, 2001)

S12 Fig. shows that the posterior distributions of p are very similar to its prior. Heuristically speaking,
under our prior assumptions, the data are only informative about p when there is evidence of multiple
clusters (i.e., when there are multiple background sequences S1,S2,. . . derived from the master sequence
GM ). Since single-cluster transmission graphs are strongly supported under the posterior distribution
arising from our analysis (see main text Case Study), should our algorithm be efficient in exploring
the sequence and tree space and correctly implemented, we should expect the posterior for p to be
identical to its prior. This is straightforward to verify mathematically.

Proposition 0.1 Conditioning on a single-cluster transmission graph and on each base of the master
sequence GM being drawn a priori uniformly from the set ωN = {A,C,G,U}, the posterior for p is
identical to its prior.

Proof Denoting π(p) and π(p|S) as the the prior and the posterior distribution (given a single sequence
S initiates the epidemic) of p respectively, we have

π(p|S) ∝ π(p)×
∑
GM

P (GM )× P (S|p,GM )

∝ π(p)×
∑
GM

P (S|p,GM ) (∵ P (GM ) = constant)

= π(p)×
∑
GM

P (GM |p, S)

= π(p).

The last equality holds as ∑
GM

P (GM |p, S) = 1.

Note that if we condition on there being more than one cluster, the second equality does not hold
(i.e., P (S1, S2, . . . |p,GM ) 6= P (GM |p, S1, S2, . . . )).
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Supplementary Details of the MCMC Algorithm

The model parameters and the unobserved quantities are updated sequentially (see below). In this
section we give supplementary details of the algorithm not described in the main text.

Sampling of Ej

In the Part I of the description of the algorithm in the main text, the exposure time E
′
j is proposed

as a random draw
E

′
j ∼ U(tl, tu). (1)

If j is a primary infection we have
tl = 0 (2)

and

tu =


min{tsj , Ij}, if j has an observed sequence sample (at tsj) and j ∈ χI ,
tsj , if j has an observed sequence sample and j /∈ χI ,
Ij , if j has no observed sequence sample and j ∈ χI ,
tmax, if j has no observed sequence sample and j /∈ χI .

(3)

In the case of ψj ∈ χI , we have
tl = Iψj (4)

and

tu =


min{tsj , Ij , Rψj}, if j has an observed sequence sample (at tsj) and j ∈ χI ,
min{tsj , Rψj}, if j has an observed sequence sample and j /∈ χI ,
min{Ij , Rψj}, if j has no observed sequence sample and j ∈ χI ,
Rψj , if j has no observed sequence sample and j /∈ χI .

(5)

When ψj /∈ χR, Equation 5 reduces to Equation 3. In the Part II of the description of the algorithm
in the main text, E

′
j is proposed in the same manner with ψj now being replaced by ψ

′
j . The reader

is reminded that the sampling of E
′
j is only a part of the joint sampling procedures described in the

main text.

Sampling of Ij

To incorporate some uncertainty in the onset of infectiousness, Ij is assumed known within a range.
Let to denote the actual time of symptom onset. Then we assume that Ij is known only within a
range to ±D. For simulation studies, we assume to to be the true Ij and D = 0.6. Taking account of
the additional constraint that Ej < Ij < Rj , we propose I

′
j uniformly between ta and tb where

ta = max{Ej , to −D} (6)

and
tb = min{Rj , to +D}. (7)

Rj is replaced by tmax if j /∈ χR.

Sampling of G1,j

In addition to the joint sampling of E
′
j and G

′
1,j , separate updating of G

′
1,j is necessary to explore

thoroughly the domain of G. We implement a simple updating algorithm for proposing G
′
1,j − for an

individual j ∈ χE , each nucleotide base G
′i
1,j is sampled uniformly from the set ωN = {A,C,G, T}.
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Sampling of θ

Each parameter in θ = (α, β, a, b, γ, η, κ, p, µ1, µ2) is updated sequentially with a standard random-
walk Metropolis-Hastings algorithm. For example, a new parameter value α′ is proposed from a normal
distribution centered on the current value of α

α′ ∼ N(0, ρ2) (8)

where ρ controls the step-size of the random-walk.

Sampling of Cryptic Exposures

Denote ωC as the set of exposed individuals who do not have an observed sample and are not in χI .
We refer to j ∈ ωC as to a cryptic exposure. We incorporate j in our framework by imputing the
sequence transmitted to j. Allowing cryptic exposures requires a ‘swap’ of individuals between the
sets ωC and χS and a transmitted sequence needs to be imputed when an individual from χS moves
to ωC . After the individual to be swapped has been proposed, the sequence is imputed in a similar
manner to Part II of the algorithm described in the main text. The acceptance probability is similar
to that in Part II of the algorithm described in the main text with an additional term that accounts
for the ‘swapping’ probability [1].

Initialisation of the Transmission Graph ψ

When only a subset of individuals j ∈ χE have an observed sequence sample, the choice of the starting
value of ψ becomes important for the rate of convergence of the Markov chain. In this case, we sample
the starting value ψ0 from the marginal posterior distribution of ψ, Pe(ψ), obtained from only fitting
the epidemic model to the epidemic data using standard data-augmentation methods. Effectively, we
set g(·) = h(·) = 1 in the likelihood function (main text) and do not attempt to impute the unobserved
sequences.

Sampling and Initialisation of GM

The master sequence GM determines the source sequence for a particular cluster and the choice of
its initial value in the MCMC algorithm is very important. Specifically, we choose the first observed
sample in the population as the initial value. We implement a simple updating algorithm similar to
the updating of G1,j − each nucleotide base in G

′i
M is proposed uniformly from the set ωN \GiM .

Initial Values of Other Parameters

In the application to FMDV, we initially set α = 0.0002, β = 3.0, a = 2.0, b = 2.0, µ = 8.0, κ = 0.1,
µ1 = 1e − 04 and µ2 = 5e − 05 as the initial values. In the simulation studies, each parameter in θ
is initialised to be one half of its true value. An initial value of Ij , j ∈ χI , is randomly drawn within
a range to ±D. Set the initial χE be χI (i.e., no cryptic exposures). Let ωψ = {j ∈ χI |Ij ≤ tu} be
the set of potential sources for a particular individual i ∈ χE−1. The source of i, ψi, is then chosen
uniformly from ωψ. Note that in the case of fitting the full model, a candidate drawn from Pe(ψ) is
set to be ψi if it is also in χψ (see also main text). After initialising the transmission network and
times of events (i.e., Ej and Ij), the transmitted sequences are initialised sequentially in the order of
Ej according to the evolutionary model specified by Equation 2 in the main text.

Computing Time and Other Benchmarks

The MCMC algorithm was coded in the C++ language (executed on a system with an Intel(R), i7-
2600, 3.40GHz CPU). To provide a benchmark, we report the computing time and some key features
of the Markov chain from the simulated single-cluster example where full genome sequencing and full
sampling of exposures were considered (i.e., population size N = 150, sequence length n = 8000 and
sampling proportion =100%).
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Convergence and mixing of the chain were assessed on the basis of visual inspection of trace
plots. MCMC output is a chain of autocorrelated samples, and a common measure of mixing and the
size of independent samples is the so-called effective sample size (Eff) which aims at “un-coupling”
the effect of autocorrelation (it is often advised not to stop the MCMC with Eff < 100). The
effective sample size of a parameter θ is commonly defined as Eff(θ) = S/(1 + 2

∑
k ρk(θ)), where

S is the number of posterior samples and ρk(θ) is the autocorrelation at lag k (the sum is usually
truncated at lag k when ρk(θ) < 0.05). The effective sample sizes for individual model parameters
were computed using a package [2] available in the statistical software R. We obtained a converged
and well-mixed chain with a reasonable effective sample size (obtained from 400,000 iterations after
50,000 burn-in). The computing time was 63803.28 seconds (17.7 hours) which is considered to be
practical and efficient [3, 4]. The effective size was Effθ = (286, 912, 998, 5380, 1950, 7416, 9945, 30133)
with elements corresponding to parameters in θ = (β, a, b, γ, η, κ, µ1, µ2). We also report that the
computing time is greatly reduced (i.e., 2.3 hours) in the case of partial genome sequencing with
n = 1000 − this has practical implications, for the estimates of most epidemiological parameters
obtained from using partial genome sequencing have no material difference compared to using full
genome sequencing (S10 Fig. −S11 Fig.). We also note that our code may be parallelised fairly easily
for a potentially significant reduction in run time, using multi-core computers that are becoming more
common nowadays; for example, mutations nucleotide sites are assumed to be independent of each
other, which can be utilised for parallelisation in a straightforward manner using popular platforms
like MPI or OpenMP.

Acceptance Probabilities

The acceptance probability of a proposed parameter value θ
′
i with current value θi is

pa = min{1, L(θ
′
; z)

L(θ; z)
× P (θ

′
i)

P (θi)
× q(θi|θ

′
i)

q(θ
′
i|θi)
} (9)

where P (θi) is the prior distribution of θi and q(θ
′
i|θi) proposal distribution of θ

′
i given the current

value θi. The probability of accepting a proposal to a component of the augmented data z′i is similar.

In most of the cases, q is a symmetric proposal distribution and hence the proposal ratio (e.g.,
q(θi|θ

′
i)

q(θ
′
i |θi)

)

reduces to 1, simplifying the problem. However, when the proposal density is less straightforward the
proposal ratio must be treated explicitly.

We describe in detail the computation of the proposal ratio for the joint sampling of E
′
j and G

′
1,j

described in Part I of the algorithm in the main text. As an illustration, we consider only the case
where Gp and Gf are both defined. We have to compute the forward proposal probability (i.e., the
denominator)

q(E
′
j , G

′
1,j |Ej , G1,j) = q1(E

′
j |E)× q2(G

′
1,j |E

′
j ,E,G) (10)

and the backward proposal probability (i.e., the numerator)

q(Ej , G1,j |E
′
j , G

′
1,j) = q1(Ej |E′)× q2(G1,j |Ej ,E′,G′). (11)

As ψj is unchanged the domains of Ej and E
′
j are identical and we have

q1(Ej |E′)
q1(E

′
j |E)

= 1. (12)

We also have
q2(G

′
1,j |E

′
j ,E,G) = p

mf
f × (1− pf )n−mf (13)

where mf is the number of nucleotides on Gf which match the nucleotide in the corresponding position
of G

′
1,j . The quantity q2(G1,j |Ej ,E′,G′) is similarly computed by considering the reverse move. In

particular, we must re-define Gp and Gf as the direction of change of time is reversed. The proposal
ratio for the joint sampling procedure in Part II of the algorithm in the main text can be easily
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computed in a similar fashion. In this case we must take account of the difference in the domains
of Ej and E

′
j in the respective proposal distributions, and the ratio of probabilities of proposing ψj

and ψ′j as described in Part II of the algorithm in the main text. Non-informative uniform priors
with “unrealistically” wide intervals are specified for all model parameters. For example, the prior for
mutation rates is U(0, 0.1), the mean latent period has a prior U(0, 50) and the secondary transmission
rate β has a prior U(0, 50).

Contribution Genetic Data to Model Assessment

The authors have shown that effective model assessment of a general spatio-temporal model may
be achieved by proposing suitably designed non-centred parameterization schemes and imputing the
corresponding residuals, whose sampling distributions are known, in such a manner that posterior
distributions are sensitive to mis-specifications of particular components of the model [6]. Here we
investigate how the genetic data may help in assessing, in particular, the goodness-of-fit of a specified
spatial kernel by utilizing the so-called Infection-link Residual (ILR).

The set of ILR, hereinafter denoted as r = {r1, r2, · · · , rne} where ne is the total number of expo-
sures, uniquely determines the respective infection link (i.e., source of infection) for every exposure.
The distribution of r can be shown to be U(0, 1) under their construction scheme and the model
assumption given by Equation (1) in the main text and is independent a priori of the form of the
spatial kernel. Its posterior samples, hereinafter denoted as r̃, can be easily imputed in standard data
augmentation algorithms such as Markov chain Monte Carlo (MCMC) by inverting the construction
procedures of ILR and imputing the infection links. On applying a classical test to r̃ for its compli-
ance with U(0, 1), a posterior distribution of p-values is generated from which the evidence against
the model assumption can be discerned. Specifically, we measure the evidence against the model by
π(P (r̃) < 0.05|y), the proportion of the posterior p-values which are less than 0.05. The Anderson-
Darling hypothesis test [5] is adopted (for details see [6]). We consider the six-cluster epidemic data
mentioned in the main text.

We consider fitting three forms of spatial kernel:

• An exponentially-bounded kernel (Kernel A): K(dij , κ1) = exp(−κ1dij);

• A power-law kernel (Kernel B): K(dij , κ2) = d−κ2ij ;

• A Cauchy-type kernel (Kernel C): K(dij , κ3) = 1

κ3{1+(
dij
κ3

)3}
.

It is noted that Kernel A is the actual spatial kernel used in the simulations.
In the main text we have shown that increased availability of genetic data improves the estimation

of the transmission graph. Given that the imputations of ILR rely on the imputed infection links
(equivalently the transmission graph), increased availability of genetic data may potentially increase
the sensitivity of the test based on imputed ILR over the mis-specification of the model. Table S7
shows that this improvement of sensitivity is indeed achieved.

Further Simulated Epidemics

In this section we consider 15 random independent replicates of epidemics. Specifically we simulate
5 epidemics using each of the 3 sets of the model parameters where multiple-cluster scenarios were
investigated. All the epidemics considered here are of more than one cluster. To recap, compared to
the first set of model parameters, the second set of model parameters is characterized by a higher
background transmission rate and hence is expected to give rise to epidemics exhibiting higher numbers
of clusters than those generated from the first and third set of model parameters. The third set of
model parameters is characterized by the lower mutation rates which match the foot-and-mouth disease
scenario.

For epidemics simulated from the first and second sets of model parameters, we compare the
estimation performance at sampling levels 100%, 50% and 0% of exposures. For epidemics simulated
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from the third set of model parameters, we compare the estimation performance at sampling levels
100%, 10% and 0% of exposures.

In the main text it is observed that posterior uncertainty in the model parameter estimates tends
to increase as the sampling % drops with this effect appearing most dominant for the secondary
transmission rate β and the spatial kernel parameter κ. Tables S1−S3, which show the sample means
and standard deviations of the posterior samples of β and κ, suggest similar findings. Note that for the
third set (characterized by significantly lower mutation rates and showing a higher tolerance to level
of sub-sampling) we have considered sampling level 10% (instead of 50%) obtaining results similar to
the 0% setting.

Tables S4−S6 show the absolute difference between the number of clusters obtained from the
posterior samples and the actual number of clusters, denoted as ∆Nc. They also show the number of
different bases (out of 1,000) between the imputed master sequence GM and the actual ones, denoted
as ∆M , and the overall coverage rate obtained from the posterior samples. Similar to the findings
shown in the main text, it is observed that ∆Nc and ∆M in general increase when the sampling
percentage reduces. In the case where no genetic data are available the mean of ∆Nc, and its degree
of variation, are quite considerable. Also, comparison of the values of ∆M from Table S4 and Table S5
reveals that the estimation of GM may become more reliable as the number of clusters increases. It is
observed that when there are fewer than 3 clusters in the actual epidemic (e.g., Replicate 1, Replicate
3 and Replicate 5 in Table S4), ∆M becomes considerably larger. The overall coverage rate increases
with the sampling percentage and becomes less dispersed.

A Markov Process to Model the Evolutionary Process

A continuous-time Markov process with states (i.e., nucleotide bases) taking values in the set ωN =
{A,C,G,U} can be defined to model the nucleotide substitution process. Let µxy be the transition
rate between state x ∈ ωN and y ∈ ωN . Moreover, let P(4t) be the transition probabilities matrix
whose entry pxy(4t) is the probability of transition to state y after arbitrary evolutionary time 4t,
given the initial state x.

The particular form of P(4t) depends on the model assumptions. For details of the derivation of
P(4t) see [7]. For example, the simplest form of a nucleotide substitution model (the Jukes-Cantor
model) assumes that the transition rates between any pair of nucleotide bases are the same (i.e.,
µxy = µ, x 6= y). Under the JC model,

P(4t) =


1− 3at at at at
at 1− 3at at at
at at 1− 3at at
at at at 1− 3at


where

at =
1− e−4µ4t

4
. (14)

The Kimura model we adopt [7] allows different rates for transition and transversion. Let µ1 and µ2
be the rates of transition and transversion respectively. Then under the Kimura model

pxx(4t) = 0.25 + 0.25e−4µ24t + 0.5e−2(µ1+µ2)4t, x ∈ ωN (15a)

pxy(4t) =

{
0.25 + 0.25e−4µ24t − 0.5e−2(µ1+µ2)4t, for x 6= y and it is a transition.

0.25− 0.25e−4µ24t, for x 6= y and it is a transversion.
(15b)

Note that the notation used to denote transition probabilities differs from that used in Equation (2)
in the main text. The notation pxy(·) used here is more intuitive in the context of a matrix.
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Signum Function

The signum function of a real number t is defined as follows:

sgn(t) =


−1, if t < 0,

0, if t = 0,

+1, if t > 0.

(16)
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Table S1: Independent replicates of multiple-cluster epidemics simulated from the 1st set
of model parameters with α = 0.0004, β = 8, κ = 0.02, a = 10, b = 0.5, γ = 2.0, η = 2.0,
p = 0.01, µ1 = 0.002 and µ2 = 0.0005. Sample means and standard deviations of the posterior
samples of β and κ obtained from fitting the model to 5 independent replicates of multiple-cluster
epidemics simulated from the first set of model parameters.

β = 8.0 κ = 0.02

Sampling% 100% 50% 0% 100% 50% 0%

Replicate 1 8.39 (1.13) 7.38 (1.12) 10.08 (4.29) 0.018 (0.001) 0.018 (0.0012) 0.021 (0.0029)

Replicate 2 6.91 (0.82) 7.45 (1.02) 10.91 (8.73) 0.019 (0.0011) 0.019 (0.0012) 0.021 (0.0045)

Replicate 3 7.92 (1.01) 8.92 (1.34) 12.64 (6.71) 0.019 (0.0011) 0.019 (0.0012) 0.022 (0.0035)

Replicate 4 7.64 (1.02) 8.28 (1.29) 12.73 (7.95) 0.02 (0.0012) 0.021 (0.0014) 0.024 (0.0048)

Replicate 5 8.90 (1.27) 10.02 (1.96) 9.57 (4.78) 0.02 (0.0012) 0.021 (0.0015) 0.022 (0.0031)

Table S2: Independent replicates of multiple-cluster epidemics simulated from the 2nd

set of model parameters, which is characterized by a higher background transmission
rate and higher mutation rates compared to the first set of model parameters. Sample
means and standard deviations of the posterior samples of β and κ obtained from fitting the model
to 5 independent replicates of multiple-cluster epidemics simulated from the second set of model
parameters with α = 0.002, β = 8.0, κ = 0.02, a = 10, b = 0.5, γ = 2.0, η = 2.0, p = 0.01, µ1 = 0.003
and µ2 = 0.001.

β = 8.0 κ = 0.02

Sampling% 100% 50% 0% 100% 50% 0%

Replicate 1 8.29 (1.17) 8.21 (1.57) 6.21 (2.17) 0.021 (0.0012) 0.020 (0.0015) 0.018 (0.0023)

Replicate 2 8.13 (1.11) 7.89 (1.25) 8.47 (4.11) 0.021 (0.0013) 0.019 (0.0013) 0.020 (0.0033)

Replicate 3 8.16 (1.09) 10.58 (1.98) 14.91 (7.87) 0.019 (0.0012) 0.020 (0.0013) 0.023 (0.0036)

Replicate 4 8.60 (1.25) 8.88 (1.62) 8.75 (4.91) 0.021 (0.0012) 0.021 (0.0015) 0.020 (0.004)

Replicate 5 7.80 (1.06) 9.12 (1.45) 10.22 (5.83) 0.021 (0.0012) 0.021 (0.0013) 0.022 (0.0036)

Table S3: Independent replicates of multiple-cluster epidemics simulated from the 3rd set
of model parameters, characterized by lower mutation rates, compared to the first set
of model parameters. Sample means and standard deviations of the posterior samples of β and κ
obtained from fitting the model to 5 independent replicates of multiple-cluster epidemics simulated
from the third set of model parameters with α = 0.0004, β = 8.0, κ = 0.02, a = 10, b = 0.5, γ = 2.0,
η = 2.0, p = 0.01, µ1 = 10−4 and µ2 = 5× 10−5.

β = 8.0 κ = 0.02

Sampling% 100% 10% 0% 100% 10% 0%

Replicate 1 9.79 (1.61) 7.36 (1.52) 10.04 (4.33) 0.019 (0.0013) 0.018 (0.0016) 0.021 (0.003)

Replicate 2 9.69 (1.55) 9.76 (2.59) 13.99 (8.9) 0.021 (0.0013) 0.022 (0.002) 0.024 (0.0043)

Replicate 3 8.59 (1.25) 8.22 (1.71) 12.60 (6.62) 0.019 (0.0012) 0.019 (0.0017) 0.022 (0.0035)

Replicate 4 9.02 (1.41) 8.92 (2.47) 12.73 (7.95) 0.022 (0.0014) 0.023 (0.0023) 0.024 (0.005)

Replicate 5 9.02 (1.36) 8.82 (1.95) 13.46 (7.99) 0.021 (0.0014) 0.021 (0.0018) 0.023 (0.0036)
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Table S4: Independent replicates of multiple-cluster epidemics simulated from the 1st set
of model parameters. Define ∆M to be the number of bases differing between the imputed master
sequence GM and the true sequence used in the simulation, and similarly ∆Nc to be the difference of
number of clusters between actual and inferred quantities. This tables shows the posterior summaries
of ∆Nc, ∆M and the coverage rate, obtained from fitting the model to 5 independent replicates of
multiple-cluster epidemics simulated from the first set of model parameters. The mean values are
followed by the standard deviations in brackets.

∆Nc ∆M Coverage(%)

Sampling% 100% 50% 0% 100% 50% 100% 50% 0%

Replicate 1 0.01 (0.1) 0.18 (0.44) 1.60 (3.01) 19.3 (3.32) 19.0 (3.10) 99.9 (0.28) 83 (1.9) 58.5 (3.3)

Replicate 2 0.0 (0.05) 0.35 (0.61) 2.60 (4.59) 0.26 (0.51) 1.0 (0.84) 98.8 (0.31) 87.7 (1.8) 65.7 (4.6)

Replicate 3 0.04 (0.19) 0.22 (0.47) 0.95 (3.04) 24.7 (2.53) 29.37 (2.6) 99.7 (0.39) 85 (2.2) 62.7 (4.3)

Replicate 4 0.07 (0.25) 0.41 (0.62) 1.59 (3.27) 0.03 (0.17) 0.09 (0.28) 98.6 (0.50) 83.3 (2.2) 62.8 (4.1)

Replicate 5 0.0 (0.07) 0.25 (0.52) 1.03 (2.58) 14.3 (2.8) 13.1 (2.6) 99.9 (0.17) 82.8 (2.5) 61.4 (4.1)

Table S5: Independent replicates of multiple-cluster epidemics simulated from the 2nd set
of model parameters. Posterior summaries of ∆Nc, ∆M and the coverage rate obtained from
the posterior samples from fitting the model to 5 independent replicates of multiple-cluster epidemics
simulated from the second set of model parameters, which is characterized by a higher background
transmission rate and higher mutation rates compared to the first set of model parameters. The mean
values are followed by the standard deviations in brackets. Note that, the master sequence GM is
estimated very accurately due to the larger number of clusters in this set of model parameters.

∆Nc ∆M Coverage(%)

Sampling% 100% 50% 0% 100% 50% 100% 50% 0%

Replicate 1 0.12 (0.34) 2.11 (1.29) 3.44 (4.14) 0.0 (0.0) 0.0 (0.0) 98.3 (0.57) 83.7 (2.2) 63.3 (4.5)

Replicate 2 0.01 (0.1) 0.50 (0.73) 2.87 (4.58) 0.0 (0.0) 0.0 (0.0) 99.7 (0.36) 85.2 (2.1) 60.7 (4.3)

Replicate 3 0.14 (0.35) 1.18 (0.95) 2.43 (5.67) 0.0 (0.0) 0.0 (0.0) 99.1 (0.39) 75.5 (2.2) 61.6 (4.4)

Replicate 4 0.0 (0.0) 1.17 (1.09) 3.89 (4.94) 0.0 (0.0) 0.0 (0.0) 99.6 (0.4) 81.8 (2.3) 57.7 (4.7)

Replicate 5 0.0 (0.0) 2.20 (1.51) 2.77 (4.07) 0.0 (0.0) 0.0 (0.0) 99.2 (0.35) 79.8 (2.2) 65.2 (3.9)

Table S6: Independent replicates of multiple-cluster epidemics simulated from the 3rd set
of model parameters. Posterior summaries of ∆Nc, ∆M and the coverage rate obtained from
the posterior samples from fitting the model to 5 independent replicates of multiple-cluster epidemics
simulated from the third set of model parameters characterized by lower mutation rates, compared to
the first set of model parameters, to reflect beliefs regarding FMD virus. The mean values are followed
by the standard deviations in brackets.

∆Nc ∆M Coverage(%)

Sampling% 100% 10% 0% 100% 10% 100% 10% 0%

Replicate 1 0.01 (0.115) 0.61 (0.82) 1.54 (3.18) 12.06 (2.4) 12.0 (2.3) 89.4 (2.0) 60.3 (3.3) 58.5 (3.4)

Replicate 2 0.04 (0.20) 1.2 (1.15) 2.17 (3.58) 0.48 (0.50) 1.56 (0.66) 92.2 (1.7) 68 (3.0) 65.7 (3.7)

Replicate 3 0.02 (0.15) 0.49 (0.83) 0.88 (2.79) 16.93 (2.65) 18.38 (3.13) 93.6 (1.6) 66.4 (3.3) 62.6 (3.9)

Replicate 4 0.12 (0.35) 0.75 (0.56) 2.09 (2.59) 0.0 (0.0) 0.71 (0.71) 93.2 (1.6) 67.1 (3.3) 62.7 (4.0)

Replicate 5 0.0 (0.0) 0.32 (0.57) 0.74 (1.90) 4.89 (1.37) 5.71 (1.49) 94.9 (1.7) 68.1 (3.7) 64.5 (4.0)
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Table S7: Contribution of genetic data to model assessment. Values of π(P (r̃) < 0.05|y),
where y is the observed data, estimated from 2,000 posterior samples of ILR computed from the 6-
cluster epidemic under different model assumptions regarding the spatial kernel, with Kernel A being
the one used in the simulation.

π(P (r̃) < 0.05|y)

Sampling 100% 80% 50% 0%

Kernel A 10% 10% 9% 13%

Kernel B 50% 39% 36% 28%

Kernel C 100% 100% 100% 78%
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[4] Morelli MJ, Thébaud G, Chadœuf J, King DP, Haydon DT, Soubeyrand S. A Bayesian infer-
ence framework to reconstruct transmission trees using epidemiological and genetic data. PLoS
Computational Biology. 2012;8:e1002768.

[5] Lewis PA. Distribution of the Anderson-Darling statistic. The Annals of Mathematical Statistics.
1961;p. 1118–1124.

[6] Lau MSY, Marion G, Streftaris G, Gibson GJ. New model diagnostics for spatio-temporal
systems in epidemiology and ecology. J R Soc Interface. 2014;11:20131093.

[7] Yang Z. Computational molecular evolution. vol. 284. Oxford: Oxford University Press; 2006.

10


