SUPPLEMENTARY MATERIAL FOR

Reassessment of MxiH subunit orientation and fold within native Shigella T3SS needles using surface labelling and solid-state NMR

Joeri Verasdonck^{a,‡}, Da-Kang Shen^{b,‡}, Alexander Treadgold^{b,‡}, Christopher Arthur^c, Anja Böckmann^{d,*}, Beat H. Meier^{a,*} and Ariel J. Blocker^{e,*}

^aPhysical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.

^bSchool of Cellular & Molecular Medicine, University of Bristol, BS8 1TD, Bristol, United Kingdom.

^cSchool of Chemistry, University of Bristol, BS8 1TS, Bristol, United Kingdom.

^dInstitut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France. ^eSchools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, BS8 1TD, Bristol, United Kingdom.

[‡]Joint first authors

*Corresponding authors: Ariel Blocker, <u>ariel.blocker@bristol.ac.uk</u>, tel +441173312063, fax +441173312091, Beat H. Meier, <u>beme@ethz.ch</u>; Anja Böckmann, <u>a.bockmann@ibcp.fr</u>

LIST OF SUPPLEMENTARY ITEMS

Table S1: Shigella flexneri strains used in this study

Table S2: Primer sequences used in this study

Table S3: Solid state NMR data collection conditions

Table S4: Assignment table

Figure S1: Location of the amino acids selected for mutagenesis in surface labelling experiments designed to test the differing MxiH models

Figure S2: Electrospray mass spectra of untreated and labelled needles

Figure S3: Sequence alignment showing variation between MxiH in *S. flexneri* serotype 5a and 6

Figure S4: 20-ms DARR spectrum of the natively-grown uniformly-labelled MxiH needles

Figure S5: Representative plane (¹³C 59.54 ppm) of NCACB spectrum

Figure S6: 200-ms DARR spectrum

Figure S7: Representative plane (55.17 ppm) of the CCC-spectrum

Figure S8: Direct comparison of chemical shifts between the native needles assigned in this work and the *in vitro* polymerized needles by Demers et *al*. (2013).

Strain	Genotype (strain; plasmid)	Reference
WT	Wild-type M90T, serotype 5a	(Sansonetti et al., 1982)
ΔmxiH	SH116	(Blocker et al., 2001)
∆mxiH mxiH	SH116; pACT3 <i>mxiH</i>	(Shen et al., 2010)
$\Delta mxiH mxiH_{L32C}$	SH116; pACT3 <i>mxiH</i> _{L32C}	This study
$\Delta mxiH mxiH_{V68C}$	SH116; pACT3 <i>mxiH</i> _{V68C}	This study

TABLE 1. Shigella flexneri strains used in this study

TABLE 2. Primer sequences used in this study*

Primer	Sequence
MxiH_NdeI_For	ATTA <u>CATATG</u> AGTGTTACAGTACCGAATG
MxiH_HindIII_Rev	ATGC <u>AAGCTT</u> TTATCTGAAGTTTTGAATA
MxiH _{L32C} _For	GGTGAACTAACATGTGCACTAGATAAATTAGC
MxiH _{L32C} _Rev	GCTAATTTATCTAGTGCACATGTTAGTTCACC

*Underlined capital letters represent restriction endonuclease sites generated to facilitate cloning.

Experiment	DARR 20ms	DARR 200ms	NCA	NCACB	CCC
Spectrometer	850 MHz	850 MHz	850 MHz	850 MHz	850 MHz
Probe	1.9 mm Bruker	1.9 mm Bruker	1.9 mm Bruker	1.9 mm Bruker	1.9 mm Bruker
MAS / kHz	18 kHz	18 kHz	18 kHz	18 kHz	18 kHz
Measurement Time	1.5d	1.5d	8h	5d	6d
Number of Scans	24	24	16	16	4
Interscan delay / s	2.6	2.6	3	2.5	2.6
Transfer 1	НС-СР	НС-СР	HN-CP	HN-CP	HC-CP
Time / ms	0.5	0.5	1	1	0.5
Field / kHz	50(C)/77(H)	50(C)/77(H)	50(N)/67.6(H)	50(N)/61.5(H)	50(C)/78(H)
Shape	tan(H) D=15	tan(H) D=15 kHz	tan(H) D=27 kHz	tan(H) D=25 kHz	tan(H) D=15 kHz
	kHz				
Carrier / ppm	63	63	123	121	49
Transfer 2	DARR	DARR	N-CA	N-CA	DREAM
Time / ms	20	200	6.5	6	4
Field / kHz	18(H)	18(H)	13.5(N)/4.7(C)	13.5(N)/4.7(C)	8.7(C)
Shape	-	-	tan(C) D=1.9 kHz	tan(C) D=1.9 kHz	tan(C) D=3.5 kHz
Carrier / ppm	-	-	50	50	52
Transfer 3	-	-	-	DREAM	DARR
Time / ms				4	80
Field / kHz				8.7(C)	18(H)
Shape				tan(C) D=3.5 kHz	-
Carrier / ppm				52	-
t1 Increments	2048	2048	600	95	220
Sweep width / kHz	60	60	24.4	5	85
carrier / ppm	110	110	123	121	50
acq. time / ms	17.1	17.1	12.3	9.5	6.1
zero-filling points	4096	4096	2048	256	256
window function	qsine 3	qsine 3	qsine 3	qsine 2.6	qsine 2.6
t2 Increments	3072	3072	3072	110	110
Sweep width / kHz	100	100	81.5	8.3	85
carrier / ppm	81.5	81.5	54	50	50
acq. time / ms	18.8	18.8	18.8	6.6	6.1
zero-filling points	8192	8192	8192	256	256
window function	qsine 3	qsine 3	qsine 3	qsine 2.6	qsine 2.6
t3 Increments	-	-	-	2560	3072
Sweep width / kHz				81.5	380
carrier / ppm				50	96
acq. time / ms				15.7	18.8
zero-filling points				4096	4096
window function				2.6	2.6
Decoupling	SPINAL64	SPINAL64	SPINAL64	SPINAL64	SPINAL64
Field / kHz	90	90	90	90	90

TABLE S3. Solid-state NMR data collection conditions*

*The value "D" for the shape refers to the difference between minimum and maximum B_1

frequency

TABLE S4. Assignment table

1	Met	N		CA		CO		CB													
2	Ser	Ν		CA	57,61	CO	170,31	CB	63,16												
3	Val	Ν	121,56	CA	61,45	CO	174,89	CB	34,27	CG1	18,55	CG2	20,83								
4	Thr	Ν	127,29	CA	61,97	CO	174,36	CB	68,28	CG2	22,44										
5	Val	Ν	125,61	CA	68,65	CO	175,45	CB	28,77	CG1	23,33	CG2	21,83								
6	Pro	Ν	133,91	CA	65,31	CO	175,98	CB	31,90	CD	49,64	CG	27,28								
7	Asn	Ν	118,56	CA	52,36	CO	176,82	CB	39,15	CG	175,27										
8	Asp	Ν	116,62	CA	52,36	CO	176,80	CB	40,94	CG	180,66										
9	Asp	Ν	112,87	CA	54,12	CO	176,82	CB	41,18	CG	180,82										
10	Trp	Ν	119,82	CA	54,83	CO	175,55	CB	30,33	CD1	128,82	CD2	130,80	CE2	138,97	CG	109,55	CZ2	112,99	CZ3	120,42
11	Thr	Ν	110,14	CA	58,40	CO	176,06	CB	73,44	CG2	21,05										
12	Leu	Ν	120,44	CA	58,44	CO	179,28	CB	42,05	CD1	26,53	CG	26,96								
13	Ser	Ν	114,50	CA	63,04	CO	175,78	CB	62,47												
14	Ser	Ν	123,82	CA	61,77	CO	178,54	CB	62,17												
15	Leu	N	128,27	CA	58,49	CO	178,05	CB	41,44	CD1	27,19	CD2	25,28	CG	27,38						
16	Ser	N		CA	62,64	CO	180,52	CB	62,92												
17	Glu	N	119,40	CA	58,88	CO	177,77	CB	29,88	CD	184,08	CG	36,53								
18	Thr	N	116,01	CA	67,26	CO	178,11	CB	68,81	CG2	20,78			054		050		~~			
19	Phe	N	120,36	CA	61,46	00	1/7,03	CB	38,43	CD1	132,64	CD2	132,64	CE1	130,31	CE2	130,31	CG	138,97		
20	Asp	N	120,73	CA	57,57	CO	177,72	CB	40,12	CG	178,51										
21	Asp	N	119,46	CA	56,84	00	180,15	СВ	40,53	CG	178,30										
22	Gly	IN N	107,72	CA	46,98	00	175,31	C D	CO 01	662	10.01										
23	Inr	IN N	105,31	CA	60,54	00	175,97	CB	09,81	CGZ	19,91	66	24.20								
24	GIN	IN NI	123,33		67.16	00	179,72	CB	28,38	CD	21 02	CG	34,30								
25		IN N	126.27		59 20	00	170,50		07,49 11 17		21,95	CD2	22 10	66	28 64						
20	Gln	N	116 60		58,50 61 / 6	00	170,31	CB	30.31	CDI	177 70	602	23,40	CU	20,04						
27	Gly	N	110,00		46 94	00	177 16	CD	50,51	CD	177,70	cu	57,45								
20	Glu	N	173 91		59 18	00	180 72	CB	29 33	CD	183.05	CG.	36 74								
30	Leu	N	123,31		57 77	00	177 11	CB	41 89	CD1	26.28	00	26 91								
31	Thr	N	117.86	CA	67 33	00	176 52	CB	69 15	CG2	20,20	00	20,51								
32	Leu	N	118.05	CA	57 73	0	179 13	CB	41 89	CD1	23 30	CG	25 72								
33	Ala	N	121.95	CA	55.02	co	178.95	CB	17.87	001	23,30		23,72								
34	Leu	N	,55	CA	58.30	co	1.0,00	CB	42.14	CD1	25.35	CG	27.32								
35	Asp	N	120.33	CA	57.25	CO	178.2	CB	42.10	CG	179.81		_,,SZ								
36	Lys	N	115,20	CA	59,58	CO	179,41	CB	33,62	CD	30,20	CE	41,92	CG	26,13						
									· ·		, -										

37	Leu	Ν	123,55	CA	56,60	CO	178,13	CB	42,47	CD1	25,41	CD2	26,59	CG	26,61						
38	Ala	Ν	118,85	CA	54,02	CO	177,35	CB	17,48												
39	Lys	Ν	110,00	CA	55,92	CO	177,27	CB	34,25	CD	29,42	CG	25,80								
40	Asn	Ν		CA	50,35	CO	171,45	CB	38,37												
41	Pro	Ν		CA	62,77	CO	174,68	CB	31,26	CG	27,29										
42	Ser	Ν	106,99	CA	57,10	CO	174,83	CB	67,26												
43	Asn	Ν	126,48	CA	51,70	CO	172,77	CB	39,42	CG	176,80										
44	Pro	Ν	139,21	CA	65,42	CO	176,92	CB	32,92	CD	51,07	CG	27,47								
45	Gln	Ν	116,22	CA	58,22	CO		CB	26,97	CG	32,14										
46	Leu	Ν	121,48	CA	58,01	CO	178,33	CB	41,97	CD1	25,37	CG	27,75								
47	Leu	Ν	117,94	CA	58,33	CO		CB	42,02	CD1	24,73	CD2	23,56	CG	26,25						
48	Ala	Ν	122,96	CA	55,27	CO	182,04	CB	18,58												
49	Glu	Ν	122,29	CA	59,12	CO	179,10	CB	29,20	CG	36,65										
50	Tyr	Ν	119,82	CA	62,59	CO	176,41	CB	38,48												
51	Gln	Ν	117,04	CA	60,19	CO	180,76	CB	27,25	CD	179,21	CG	32,94								
52	Ser	Ν	116,19	CA	63,42	CO	175,63	CB	62,06												
53	Lys	Ν	122,32	CA	58,32	CO	178,86	CB	32,11	CD	27,42	CE	42,82	CG	24,85						
54	Leu	Ν	120,69	CA	57,80	CO	179,48	CB	40,87	CD1	21,47	CD2	25,21	CG	26,35						
55	Ser	Ν	113,12	CA	63,20	CO	176,01	CB	63,61												
56	Glu	Ν	121,94	CA	61,46	CO	177,50	CB	31,31	CD	182,33	CG	39,26								
57	Tyr	Ν	119,18	CA	62,68	CO	176,95	CB	39,26	CD1	132,27	CD2	132,27	CE1	118,17	CE2	118,17	CG	130,55		
58	Thr	Ν	111,18	CA	66,09	CO	176,34	CB	68,62	CG2	21,89										
59	Leu	Ν	123,89	CA	57,75	CO	178,42	CB	40,22	CD1	22,13	CD2	27,97	CG	26,21						
60	Tyr	Ν	124,11	CA	59,01	CO	176,93	CB	36,23	CD1	134,27	CD2	134,27	CE1	118,17	CE2	118,17	CG	129,50	CZ	157,73
61	Arg	Ν	117,52	CA	56,61	CO	180,50	CB	30,94	CD	42,27	CG	25,39	CZ	159,57						
62	Asn	Ν	119,31	CA	56,96	CO	176,07	CB	39,92	CG	175,13										
63	Ala	Ν	123,98	CA	56,05	CO	180,07	CB	17,49												
64	Gln	Ν	121,93	CA	57,97	CO	175,70	CB	31,30	CD	178,29	CG	32,91								
65	Ser	Ν	109,93	CA	60,58	CO	179,38	CB	63,50												
66	Asn	Ν	117,36	CA	55,85	CO	177,05	CB	37,21	CG	174,02	ND2	109,91								
67	Thr	Ν	116,66	CA	68,98	CO	174,63	CB	68,72	CG2	20,93										
68	Val	Ν	120,71	CA	67,27	CO	176,52	CB	32,13	CG1	22,54	CG2	20,81								
69	Lys	Ν	118,84	CA	58,40	CO	177,10	CB	32,56	CD	28,02	CE	42,44	CG	25,42						
70	Val	Ν	118,72	CA	66,90	CO	179,72	CB	31,87	CG1	24,11	CG2	22,16								
71	lle	Ν	117,95	CA	61,52	CO	177,62	CB	34,30	CD1	7,68	CG1	26,85	CG2	17,64						
72	Lys	Ν	123,67	CA	61,33	CO	178,42	CB	30,67	CD	29,38	CE	42,04	CG	24,88						
73	Asp	Ν	118,85	CA	57,46	CO	180,73	CB	39,34	CG	179,25										
74	Val	Ν	124,71	CA	66,32	CO	176,78	CB	31,82	CG1	25,07	CG2	21,48								
75	Asp	Ν	119,57	CA	55,20	CO	177,22	CB	38,00	CG	172,18										
76	Ala	Ν	121,28	CA	54,73	CO	180,00	CB	18,11												
77	Ala	Ν	121,29	CA	54,71	CO	180,01	CB	18,07												

78 Ile N 119,97 CA 64,99 CO 178,33 CB 38,22 CD1 15,26 CG1 28,13 CG2 18,48 79 Ile N 116,82 CA 63,44 CO 180,00 CB 38,02 CD1 15,11 CG1 31,57 CG2 17,15 80 Gln N 119,84 CA 57,93 CO 177,09 CB 28,19 CD 180,68 CG 33,52 - 17,19 C0 17,19 CB 37,74 CG 175,38 CE1 129,76 CE1																					
79 Ile N 116,82 CA 63,44 CO 180,00 CB 38,02 CD1 15,11 CG1 31,57 CG2 17,15 80 Gin N 119,84 CA 57,93 CO 177,09 CB 28,19 CD 180,68 CG 33,52 - 180,68 CG 33,52 - - - - - - 11113 - 10 175,38 - -	78	lle	Ν	119,97	CA	64,99	CO	178,33	CB	38,22	CD1	15,26	CG1	28,13	CG2	18,48					
80 Gin N 119,84 CA 57,93 CO 177,09 CB 28,19 CD 180,68 CG 33,52 81 Asn N 115,31 CA 52,60 CO 175,98 CB 37,74 CG 175,38 82 Phe N 118,30 CA 56,58 CO 175,21 CB 38,16 CD1 129,35 CE1 129,76 CE2 129,76 CG 140,28 83 Arg N 117,27 CA 57,13 CO 181,45 CB 31,79 CD 43,53 CG 27,51 CZ 159,56	79	lle	Ν	116,82	CA	63,44	CO	180,00	CB	38,02	CD1	15,11	CG1	31,57	CG2	17,15					
81 Asn N 115,31 CA 52,60 CO 175,98 CB 37,74 CG 175,38 82 Phe N 118,30 CA 56,58 CO 175,21 CB 38,16 CD1 129,35 CD2 129,35 CE1 129,76 CE2 129,76 CG 140,28 83 Arg N 117,27 CA 57,13 CO 181,45 CB 31,79 CD 43,53 CG 27,51 CZ 159,56	80	Gln	Ν	119,84	CA	57,93	CO	177,09	CB	28,19	CD	180,68	CG	33,52							
82 Phe N 118,30 CA 56,58 CO 175,21 CB 38,16 CD1 129,35 CD2 129,35 CE1 129,76 CE2 129,76 CG 140,28 83 Arg N 117,27 CA 57,13 CO 181,45 CB 31,79 CD 43,53 CG 27,51 CZ 159,56	81	Asn	Ν	115,31	CA	52,60	CO	175,98	CB	37,74	CG	175,38									
83 Arg N 117,27 CA 57,13 CO 181,45 CB 31,79 CD 43,53 CG 27,51 CZ 159,56	82	Phe	Ν	118,30	CA	56,58	CO	175,21	CB	38,16	CD1	129,35	CD2	129,35	CE1	129,76	CE2	129,76	CG	140,28	
	83	Arg	Ν	117,27	CA	57,13	CO	181,45	CB	31,79	CD	43,53	CG	27,51	CZ	159,56					

Figure S1. Location of the amino acids selected for mutagenesis in surface labelling experiments designed to test the differing MxiH models. A) and B) Top and side view of 22-mer of Fujii *et al.* (2012) model (PDB IB 2J0R), respectively. C) and D)Top and side view of 22-mer of Demers *et al.* (2014) model (PDB IB 2MME), respectively. Amino acids selected for mutagenesis to cysteines are shown as stick models only in the top five MxiH subunits of each model. L32 is in green and V68 in red.

Figure S2. Electrospray mass spectra of untreated and labelled needles. Native mass spectrometry analysis of purified needles (A and C) and purified needles labelled with Cy3 maleimide (B and D). Spectra were recorded over mass-to-charge ratio (m/z) window of 600-2000.

```
MxiH serotype 5a<br/>MxiH serotype 61020304050MSVTVPNDDW TLSSLSETFD DGTQTLQGEL TLALDKLAKN PSNPQLLAEY<br/>MSVTVPDKDW TLSSLSETFD DGTQTLQGQL TSALNALAEN PSNPQLLAEY<br/>*******607080<br/>QSKLSEYTLY RNAQSNTVKV IKDVDAAIIQ NFR<br/>QSKLSEYTLY RNAQSNTVKV IKDVDAAIIQ NFR
```

Figure S3. Sequence alignment showing variation between MxiH in S. flexneri

serotypes 5a and 6. Individual sequences are shown using the same colour code as in Fig. 5 and varying amino acids are indicated by red asterisks.

Figure S4. 20-ms DARR spectrum of the natively-grown uniformly-labelled MxiH needles. The data has been zero-filled and apodized with a shifted squared sine-bell function. Assigned peaks have been labelled on one side of the diagonal.

Figure S5. Representative plane (¹³C 59.54 ppm) of NCACB spectrum. Black labels indicate peaks with their maximum in this plane. Grey labels indicate peaks with their maximum in another plane.

Figure S6. 200-ms DARR spectrum. The data has been zero-filled and apodized with a shifted squared sine-bell function.

Figure S7. Representative plane (55.17 ppm) of the CCC-spectrum. This contains a number of sequential contacts that were used to properly assign serotype-specific mutations. The data has been zero-filled and apodized with a shifted squared sine-bell function.

Figure S8. Direct comparison of chemical shifts between the native needles assigned in this work and the *in vitro* polymerized needles by Demers et *al.* (2013). Comparisons are made for $C\alpha$ (a), $C\beta$ (b), CO (c) and N (d). Red bars highlight the serotype differences in the sequence. The rather large deviation of Ser2 can be explained by the presence of non-native Gly and His at the N-terminus in the work of Demers et *al*.