	CdiA-CT toxin	Cdil immunity	Distance (Å)
EC869 ₀₁₁			
Main-Side	Lys242 NZ	lle137 O	2.73
	Arg249 NH2	Phe75 O	2.72
	Glu250 O	Thr31 OG1	3.65
Side-Side	Asp187 OD2	Arg71 NE	2.82
	Lys242 NZ	Asn138 OD1	3.90
	Tyr244 OH	Lys128 NZ	3.99
	Glu243 OE1	Arg122 NE	3.15
	Glu243 OE2	Arg122 NE	3.70
	Glu243 OE2	Lys109 NZ	3.33
	Glu243 OE2	Arg122 NH2	3.10
	Ser247 OG	Glu130 OE1	3.36
	Glu250 OE1	Arg122 NH2	3.18
	Glu250 OE2	Arg122 NH2	3.39
	Glu250 OE2	Thr31 OG1	3.82
	Glu250 OE2	Asn12 ND2	3.08
	Glu250 OE1	Lys109 NZ	3.12
YPIII			
Main-Side	Thr250 O	Asn30 ND2	3.89
	Lys243 NZ	Pro133 O	2.85
	Glu242 OE2	Leu147 N	3.72
	Ala203 O	Arg28 NE	2.92
	Thr204 O	Arg28 NE	3.43
	Thr204 O	Arg28 NH2	3.43
	Met255 O	Arg28 NH1	2.79
Side-Side	Lys243 NZ	Ser132 OG	2.55
	Lys195 NZ	Glu137 OE1	2.68
	Lys195 NZ	Glu137 OE2	3.01
	Arg202 NH1	Ser29 OG	2.99
	Lys243 NZ	Asp121 OD2	3.05
	Asp201 OD1	Arg69 NH1	2.71
	Asp201 OD2	Arg69 NH2	3.09

Table S1. Direct hydrogen bonds and ion pairs between CdiA-CT/Cdil toxin/immunity proteins.

Table S2. Bacterial strains and plasmids

Strain or plasmid	Description ^a	Reference or
		source
Strains		
BL21-Gold(DE3)	<i>E. coli</i> B F ⁻ <i>ompT hsdS</i> ($r_B^- m_B^-$) <i>dcm</i> ⁺ <i>gal</i> λ (DE3) <i>endA</i> , Tet ^R	Agilent
EPI100	F^- mcrA Δ(mrr-hsdRMS-mcrBC) φ80dlacZΔM15 ΔlacXcZΔM15 ΔlacX recA1 endA1 araD139 Δ(ara, leu)7697 galU galK λ^- rpsL nupG, Str ^R	Epicentre
EPI100 <i>pir</i> ⁺	F ⁻ mcrA Δ (mrr-hsdRMS-mcrBC) φ80dlacZ Δ M15 Δ lacXcZ Δ M15 Δ lacX recA1 endA1 araD139 Δ (ara, leu)7697 galU galK λ^- rpsL nupG pir ⁺ (DHFR), Str ^R Tp ^R	Epicentre
X90	F´ lacl ^q lac´ pro´/ara ∆(lac-pro) nal1 argE(amb) rif [⊄] thi-1, Rif ^R	1
DY378	W3110 λ <i>cl</i> 857 Δ(cro-bioA)	2
DA28100	<i>galK</i> ::sYFP2opt-cat	Dan Andersson
CH2016	X90 (DE3) ∆ <i>rna ∆slyD∷kan</i> , Rif ^R Kan ^R	3
CH2550	EPI1100 galK::sYFP2opt-kan	This study
CH2567	MC4100 mKate::cam Str ^R Cm ^R	This study
CH8251	MC4100 <i>rif</i> , Str ^R Rif ^R	4
Plasmids		
pTrc99a	IPTG-inducible expression plasmid, Amp ^R	GE Healthcare
pTrc99KX	Derivative of pTrc99A that contains KpnI restriction site immediately downstream of the ribosome-binding site, Amp ^R	5
pCH450	pACYC184 derivative with <i>E. coli araBAD</i> promoter for arabinose-inducible expression, Tet ^R	6
pSIM6	Heat-inducible expression of the phage λ Red recombinase proteins, Amp^{R}	7
pET21S	pET21d derivative with SpeI restriction site for in-frame fusion to His_6 coding sequences, Amp^R	8
pDE1013	pEndy1013-mKate2::cat	9
pNAK	pBluescript derivative with FRT-flanked kanamycin- resistance cassette, Amp ^R Kan ^R	This study
pDAL878	Constitutive expression of $cdiA^{EC93}$ -(ΔCT), in which the toxinencoding sequence has been deleted, Cm^{R}	8
pCH10164	Constitutive expression of chimeric $cdiA^{EC93}$ - $CT(D198A)_{o11}^{EC869}$ and $cdiI_{o11}^{EC869}$. The Asp198Ala mutation inactivates the DNase domain. Cm ^R	4
pCH848	pTrc99KX:: <i>cdil</i> ^{YPIII} , Amp ^R	This study

pCH2409	Constitutive expression of chimeric <i>cdiA</i> ^{EC93} - <i>CT</i> ^{YPIII} and <i>cdiI</i> ^{YPIII} genes, Cm ^R	This study
pCH2500	pNAK:: <i>galM´</i> , Amp ^R Kan ^R	This study
pCH2503	pNAK:: <i>galT´-yfp-galM´</i> , Amp ^R Kan ^R	This study
рСН9305	Constitutive expression of chimeric $cdiA^{EC93}$ - CT_{o11}^{EC869} and $cdiI_{o11}^{EC869}$ genes, Cm^{R}	4
pCH9315	pTrc99A:: <i>cdil</i> _{o11} ^{EC869} , Amp ^R	4
pCH9938	pUC57::NEILACOT_05636 encoding Cdil ^{Nlact} from <i>Neisseria</i> <i>lactamica</i> ATCC 23970, Amp ^R	This study
рСН9940	pUC57::Ykris_10749 encoding Cdil ^{Ykris} from <i>Yersinia pseudotuberculosis</i> ATCC 33638, Amp ^R	This study
pCH10101	pCH450::NEILACOT_05636, Tet ^R	This study
pCH10103	pTrc99KX::Ykris_10749, Amp ^R	This study
pCH10163	Cosmid pCdiA-CT/ <i>pheS</i> * that carries a <i>kan-pheS</i> * cassette in place of the <i>E. coli</i> EC93 <i>cdiA-CT/cdil</i> coding sequence. Used for allelic exchange and counter-selection. Cm ^R Kan ^R	4
pCH10170	pET21-derivative that expresses Cdil ^{Ykris} -His ₆ from <i>Y. kristensenii</i> ATCC 33638, Amp ^R	This study
pCH10172	pET21-derivative that expresses Cdil ^{Nlact} -His ₆ <i>N. lactamica</i> ATCC 23970, Amp ^R	This study
pCH10175	pET21-derivative that expresses CdiA-CT(D198A) _{o11} ^{EC869} containing the β 4/ β 5 hairpin from CdiA-CT ^{Ykris} , Amp ^R	This study
pCH10365	pET21-derivative that expresses CdiA-CT(D198A) _{o11} EC869 containing the $\beta4/\beta5$ hairpin from CdiA-CT ^{Nlact} , Amp ^R	This study
pCH10367	pET21-derivative that expresses Cdil ^{YPIII} -His ₆ from from <i>Y. pseudotuberculosis</i> YPIII, Amp ^R	This study
pCH10369	pET21-derivative that expresses CdiA-CT _{o11} $EC869/\Delta\beta4\beta5}$ lacking the $\beta4/\beta5$ hairpin, Amp ^R	This study
pCH10407	pET21-derivative that expresses CdiA-CT/Cdil _{o11} ^{EC869} -His ₆ complex from <i>E. coli</i> EC869, Amp ^R	4
pCH10413	pET21-derivative that expresses CdiA-CT/Cdil ^{YPIII} -His ₆ complex from <i>Y. pseudotuberculosis</i> YPIII, Amp ^R	This study

^aAbbreviations: Amp^R, ampicillin-resistant; Cm^R, chloramphenicol-resistant; Kan^R, kanamycinresistance; Rif^R, rifampicin-resistant; Tet^R, tetracycline-resistant; Tp^R, trimethoprim-resistant $\label{eq:constraint} \textbf{Table S3}. \ Oligonucleotides used in this study.$

Oligonucleotide	Sequence	Reference
Kan-1 (CH106)	5' - TGT GTA GGC TGG AGC TGC TTC	10
Kan-2 (CH107)	5' - CAT ATG AAT ATC CTC CTT AGT TCC	10
galM-Bam-for (CH3789)	5′ - CGC <u>GGA TCC</u> CGG AAG AGC TGG	This study
galM-Sac-rev (CH3790)	5′ - TCT <u>GAG CTC</u> AGG GCA AAC AGC ACC	This study
galT-Kpn-for (CH3787)	5′ - CAC <u>GGT ACC</u> ATT TGG GCA AAT AGC TTC C	This study
yfp-Eco-rev (CH3788)	5′ - CT <u>GAA TTC</u> GCG GCC GCT TCT AGA	This study
YPK0575-Kpn-for	5′ - TTT <u>GGT ACC</u> ATG GTA GAG AAT AAT TAT CTA AAC	This study
(CH2447)	TCC	This study
YPK0576-Xho-rev	5' - TTC <u>CTC GAG</u> ACC TTT ACA GCG ACT CAA TGC CAG	This study
(CH2448)		
(CH2440)	5′ - TGA <u>GGT ACC</u> ATG AAC GAT ATA GTA AAA AG	This study
YPK0576-Xho-		
rev2 (CH2790)	5′ - TTT <u>CTC GAG</u> TTA ACC TTT ACA GCG	This study
Nlact-cdil-Spe-rev	5' - AAA ACT AGT CTT ACA ATA ACT TAG	This study
(CH2345)		
Ykris-cdil-Spe-rev	5' - AAA <u>ACT AGT</u> GCC TTT ACA GCG GC	This study
(CH2346) Trc-seg2 (CH823)	5′ - GTT CTG GCA AAT ATT CTG AAA TGA GC	This study
ara seg (CH043)		
β-deletion-for1	TCG AT	This study
	5' - GCG GAT CCG CTT TTA AAC TTA GCC GCA GCA TCG	This study
β-deletion-rev1	ATG	,
	5′ - GC <u>G GAT CC</u> G GCA CTT CAT CAA TGA TCT CTA ACA	This study
β-deletion-for2	GGG	
β-deletion-rev2	5′ - GC <u>C TCG AG</u> A CTA GTA CCT TTG CAG CGA CTC AAG	This study
EC869-CT-Nco	5' - ATT <u>CCA TGG</u> GCA CAA ACC AGT CTC TGA CCT TCG	4
EC869-cdil-Spe	5' - TCT <u>ACT AGT</u> ACC TTT GCA GCG ACT CAA GGC CAG	4
EC869-	5' - AAA ACT TAC TCT CTT TCT GGT GTT GAG TTA ACT	This study
Nlact(beta)-for	TCA TCA ATG ATC TC	

(CH2341)		
EC869-	5' - CTC AAC ACC AGA AAG AGA GTA AGT TTT AAA CTT	This study
Nlact(beta)-rev	AGC CGC AGC ATC G	
(CH2342)		
EC869-	5' - CAT ACA CAT ACT CTT TCA GGC GAA CAG TTA ACT	This study
Ykris(beta)-for	TCA TCA ATG ATC TC	
(CH2343)		
EC869-	5' - CTG TTC GCC TGA AAG AGT ATG TGT ATG AAA CTT	This study
Ykris(beta)-rev	AGC CGC AGC ATC G	
(CH2344)		
DL1527 (CDI204)	5' - GAA CAT CCT GGC ATG AGC G	4
EC869o11-G173- rev (CH3640)	5' - CCC AAC ATA ATC CTC CCA CGG CAT ACC	This study
EC869o11-G173- for (CH3641)	5' - GGT ATG CCG TGG GAG GAT TAT GTT GGG	This study
EC93-YPIII-chim-	5' - GGT CTG GTG TCT AAC CTT TGG GTT AAC CTT TAC	This study
rev (CH2689)	AGC GAC TCA ATG C	-
EC93-YPIII-down-	5' - GCA TTG AGT CGC TGT AAA GGT TAA CCC AAA GGT	This study
for (CH2690)	TAG ACA CCA GAC C	
DL2368 (CDI205)	5' - GTT GGT AGT GGT GGT GCT G	4

References

- 1. Beckwith, J. R. & Signer, E. R. (1966). Transposition of the lac region of *Escherichia coli*. I. Inversion of the *lac* operon and transduction of *lac* by phi80. *J Mol Biol* **19**, 254-65.
- Thomason, L., Court, D. L., Bubunenko, M., Costantino, N., Wilson, H., Datta, S. & Oppenheim, A. (2007). Recombineering: genetic engineering in bacteria using homologous recombination. *Curr Protoc Mol Biol* Chapter 1, Unit 1 16.
- 3. Garza-Sanchez, F., Janssen, B. D. & Hayes, C. S. (2006). Prolyl-tRNA(Pro) in the A-site of SecM-arrested ribosomes inhibits the recruitment of transfer-messenger RNA. *J Biol Chem* **281**, 34258-68.
- Morse, R. P., Nikolakakis, K. C., Willett, J. L., Gerrick, E., Low, D. A., Hayes, C. S. & Goulding, C. W. (2012). Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems. *Proc Natl Acad Sci U S A* 109, 21480-5.
- 5. Koskiniemi, S., Garza-Sanchez, F., Sandegren, L., Webb, J. S., Braaten, B. A., Poole, S. J., Andersson, D. I., Hayes, C. S. & Low, D. A. (2014). Selection of orphan Rhs toxin expression in evolved *Salmonella enterica* serovar Typhimurium. *PLoS Genet* **10**, e1004255.
- 6. Hayes, C. S. & Sauer, R. T. (2003). Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. *Mol Cell* **12**, 903-11.
- 7. Datta, S., Costantino, N. & Court, D. L. (2006). A set of recombineering plasmids for gramnegative bacteria. *Gene* **379**, 109-15.
- 8. Poole, S. J., Diner, E. J., Aoki, S. K., Braaten, B. A., t'Kint de Roodenbeke, C., Low, D. A. & Hayes, C. S. (2011). Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. *PLoS Genet* **7**, e1002217.
- 9. Bonnet, J., Subsoontorn, P. & Endy, D. (2012). Rewritable digital data storage in live cells via engineered control of recombination directionality. *Proc Natl Acad Sci U S A* **109**, 8884-9.
- 10. Hayes, C. S., Bose, B. & Sauer, R. T. (2002). Proline residues at the C terminus of nascent chains induce SsrA tagging during translation termination. *J Biol Chem* **277**, 33825-32.

Figure legends

Figure S1. The macrocyclic peptide mimic of the β -hairpin from CdiA-CT₀₁₁^{EC869}.

Figure S2. Comparison of CdiA-CT catalytic sites. In both panels EC869 and YPIII carbon atoms are depicted in white and grey, respectively, and oxygen and nitrogen atoms are colored red and blue, respectively. (**A**) CdiA-CT₀₁₁^{EC869} active site contains a Zn²⁺ ion, depicted by at purple sphere with water molecules depicted as smaller red spheres, and interacting bonds with Zn²⁺ are depicted as black dotted lines. (**B**) CdiA-CT^{YPIII} active site has no extra density that would create a zinc coordination sphere. Water molecules are depicted as yellow spheres.

Figure S3. **Alignments of CdiA-CT/Cdil**_{o11}^{EC869} **family members.** (**A**) Alignment of DNase toxin domain homologues. Residue are numbered according to the CdiA-CT_{o11}^{EC869} sequence beginning with Val1 of the VENN peptide motif. The alignment was rendered with Jalview at 30% sequence identity with progressively darker shades of purple indicating greater residue conservation. Secondary structure elements correspond to CdiA-CT_{o11}^{EC869}. CdiA-CT_{o11}^{EC869} and CdiA-CT^{YPIII} residues that form H-bonds/ion-pairs with cognate immunity proteins are shown in orange, and residues that form hydrophobic/van der Waals contacts are shown in blue. (**B**) Alignment of immunity protein homologues. Residue numbers and secondary structure elements correspond to Cdil_{o11}^{EC869}. Residues that interact with toxins are color coded according the scheme described for panel **A**.

Figure S4. Electrostatic surfaces of CdiA-CT/Cdil₀₁₁^{EC869} and CdiA-CT/Cdil^{YPIII} complexes.

Electrostatic surface representation of $Cdil_{o11}^{EC869}$ (**A**) and $Cdil^{YPIII}$ (**B**). Red and blue surfaces correspond to positive and negative surface potentials (respectively) and white indicates hydrophobic surfaces. Toxin β -hairpins are show in stick representation in the left panels. Right panels are rotated 180° around the y-axis with respect to the left panels and the immunity proteins are shown in cartoon representation.

Figure S5. Target cells become filamentous after inhibition by the CDI₀₁₁EC869 and CDI^{YKris}

systems. Co-culture competitions were performed using mock inhibitors or inhibitor cells deploying the CDI_{o11}^{EC869} and CDI^{YPIII} systems and target cells carrying an empty vector (none) or a plasmid expressing $CdiI_{o11}^{EC869}$ or $CdiI^{YPIII}$. Cell length values were measured from microscopy images taken of each competition. Each object plotted represents the length of a single cell. Black bars indicate the mean of each data set. *P* values from two-tailed unpaired t-tests are reported. ***, *P*=<0.0001.

Figure S6. **Superimposition of immunity protein homologues**. The Cdil^{YPIII}, Cdil_{o11}^{EC869}, Cdil^{Ykris} and Cdil^{Nmen} immunity proteins are depicted in cartoon representations colored in magenta, cyan, gold and gray, respectively. The structures of Cdil^{Nmen} (PDB ID: 2GKP) and Cdil^{Ykris} were determined in the absence of bound toxin. The location of the β -hairpin binding pocket is indicated and the extended loop (E-L) connecting α 1* to α 2* of Cdil^{YPIII} is labeled.

Figure S7. **Electrostatic surface potential of toxin** β **-hairpin chimeras.** (**A**) Electrostatic surface representation of Cdil₀₁₁^{EC869} with the toxin β -hairpin in cartoon and sticks colored green (left panel). The right panel is rotated 180° around the y-axis with respect to the left panel. The immunity protein is depicted as cartoon representation and the toxin β -hairpin is rendered as an electrostatic surface representation. (**B**) and (**C**) Models of CdiA-CT^{Nlact} and CdiA-CT^{Vkris} β -hairpins docked onto Cdil₀₁₁^{EC869} immunity protein. The models are viewed in the same orientation as the right image in panel **A**. The β -hairpins are rendered as electrostatic surface representations, with red and blue representing positive and negative surface potentials (respectively) and white indicating hydrophobic surfaces.

Figure S1

Figure S3

