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Figure 1: The weights learned on image stacks of the C. elegans germ line. The
left two figures visualize the component of the weight vector learned from XY
sections, while the right two correspond to XZ sections.

Since there are millions of negative windows, we use an iterative training
algorithm that trains the detector with a subset of negative examples, searches
for additional hard (high-scoring) negative examples, adds them to the training
set and retrains the classifier. The training process repeats, terminating when
no additional hard negative examples can be found in the set of training stacks.
This iterative approach of hard negative mining is mathematically equivalent
to performing training on the whole set of negatives while vastly decreasing the
training time and memory requirements.

To make the training algorithm robust to potential errors in the localization
of cell centers by human labelers, we perform latent estimation of the “true”
cell center for each positive training example. Briefly, once a detector has been
trained, we run the detector on the positive training data and re-estimate the
center of each cell as the maxima of the detector response within a small radius
of the original ground-truth detection. The detector is then re-trained with these
updated set of positive locations. This latent optimization typically converges
to a local maxima within 5-10 iterations (see [2] for details).

The final step in detection is to resolve the scored windows across di�erent
locations and scales into a set of discrete detections. Since many windows in the
spatial vicinity of a cell tend to receive above-threshold scores, we suppress de-
tections which overlap with any higher-scoring detection. The overlap threshold
was chosen to optimize performance on a validation dataset.

2 Evaluating Detection Performance

A detection is considered correct if it was within 1.5 microns of the human-
marked location. To evaluate the accuracy of a given set of reported detections,
we compute the precision (proportion of returned detections which were correct)
and the recall (proportion of human-marked cells which were recovered). At high
thresholds the detector only returns a few detections and naturally achieves high
precision at the expense of low recall. To summarize detector performance in
a manner which is independent of the final operating threshold, we compute
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Figure 2: Appearance variation of training samples. We show examples from
the training set overlayed with their corresponding detector confidence scores.
In (a) we show the top 20 highest-scoring examples, and in (b) we show the
bottom 20 lowest-scoring examples.
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Figure 3: The e�ect of training set size on performance. We show AP on the
test set as a function of the number of stacks n used for training, out of 13
stacks total. Because for each n there are

�13
n

�
possible training sets, we run

this experiment multiple times for each n on di�erent random subsets (shown
as red dots). The mean AP is shown in blue. It can be seen from the red
points that if the training stacks are chosen wisely, then n = 1 is su⇥cient to
achieve peak performance (AP=0.995). However, choosing a non-representative
or poorly imaged stack can cause the AP to dip (as low as 0.861). We also find
that n � 8 is enough to “cancel out” the negative e�ects of any poorer-quality
training stacks.
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