Supplemental Information

Wang and Andresen Eguiluz et. al.

Supplemental Figure Captions

Fig. S1. ECM composition and linearization of force-distance profiles. (A) Cellderived ECMs were immunostained simultaneously for fibronectin and collagen, showing that early tumor-associated ECMs were comprised exclusively of Fn. Scale bars = 50 μ m. (B) Linearization of the representative compressive force-distance profiles for control ECMs (experimental \circ , fit - -) and for tumor ECMs (experimental \bullet , fit —) shown in Fig. 1*E*. Tumor-associated ECMs show a larger linear regime as compared to the control ECMs.

Fig. S2: Chemical crosslinking increases stiffness. Tumor-associated ECMs (n=20) were 60% stiffer than control ECMs (n=30). (p < 0.05).

Fig. S3: ECM creep tests. (A) The viscoelastic behavior of both control (\circ) and tumorassociated (•) Fn matrices was next quantified through creep experiments by monitoring change in matrix indentation depth after rapid (instantaneous) force application. Instantaneous forces correspond to F₁ = F₁' = 3.7 mN, F₂ = F₂' = 7.4 mN, and F₃'= 11.1 mN. All creep data were well fitted using a double exponential decay to extract fast (τ_1) and slow (τ_2) characteristic times. (B) There was an overall slower response (hence higher viscosity) of tumor-conditioned matrices (n=3) compared to that of control matrices (n=2).

Fig. S4: Chemical crosslinking relaxes conformation. (A) Crosslinked control Fn ECMs comprised close-to-compact/relaxed Fn fibers (high FRET, red/yellow pixels). (B) Crosslinked tumor-associated Fn ECMs comprised stretched/unfolded Fn fibers (low FRET, blue pixels). (C) Representative histograms of FRET ratios displayed. (D) Mean FRET intensity ratios of tumor-associated Fn ECMs (n=14) were significantly lower than that of control Fn ECMs (n=18). Scale bars = 50 μ m.

Fig. S5: Focal adhesion protein recruitment on tumor-associated Fn ECMs associated with development of focal contacts. After 4 hr, untreated cells seeded onto control ECMs developed fibrillar adhesions comprising both talin and pFAK (insets: double arrows) while cells treated with β_1 -integrin blockers showed large adhesive clusters (focal contacts consisting of talin only) left behind by cells in the surrounding matrix (insets: ECM cluster). In contrast, untreated cells seeded onto tumor ECMs developed focal contacts comprising both talin and pFAK (insets: large arrowheads), whereas cells treated with α_v -integrin blockers were able to develop fibrillar adhesions (insets: double arrows). Cells treated with both integrin blockers were able to develop fibrillar adhesions (insets: adhesions when seeded onto control ECMs (insets: double arrows) and to

generate focal contacts (clusters) when seeded onto tumor ECMs (insets: ECM cluster). Scale bar = 50 μ m.

Supplemental Figure 5

