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Supplementary Figure 1 | Bulk elastic modes of solid and metamaterial aluminum. (a) Three different geometries 

are studied: (1) perforated treated as is, (2) perforated treated as an effective medium, and (3) solid aluminum. 

Perforations are of the form of a triangular lattice of air holes. Radius of the holes is 0.0423 that of the crystal period. 

The period of the perforations to that of the lattice is 1/9 (Thus the filling factor of the air holes is 0.649). The effective 

metamaterial aluminum is simulated as an unperforated aluminum slab with effective elastic properties as given in 

Supplementary Table 1. (b) Dispersion diagram of the low-frequency modes of all three structures along the X 

direction. 𝑘𝑦 and 𝑘𝑧 are assumed to be zero. Red curves correspond to the exact solution and the blue curves 

correspond to the approximate simulation using the effective elastic moduli given in Supplementary Table 1. The 

spectral range of interest (<200 kHz) shows excellent match between the two approaches. Dashed black curves show 

the dispersion without any perforations, in which the two transverse modes, T1 and T2, are degenerate. In the 

perforated material, however, these transverse modes are no longer degenerate. The longitudinal mode L is also 

modified by the perforations. 
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Supplementary Figure 2 | Dispersion diagram for the structure shown in Figure 1 of the main text, with and 

without the sub-wavelength perforations.  Matching both the Dirac frequency and Dirac velocity is quite hard 

without the sub-wavelength perforations, shown in Supplementary Figure 1a. 
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Supplementary Figure 3 | Band structure of the perturbed structure obtained from first-principles FEM simulation 

of the perturbed structure (solid lines) and first-order perturbation theory in conjugation with the unperturbed modes 

obtained from FEM simulations (markers). The topological bandgap marked by the blue circle (as well as the rest of 

the spectrum) is accurately predicted by the perturbation theory given in Supplementary Note 2.  
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Supplementary Figure 4 | Berry curvature neat the 𝑲 (top) and 𝑲′ (bottom) points for four bands of interest. 

Berry curvature is numerically calculated from the perturbed structure eigenmodes (see Fig. 2 of the main text) using 

first-principles FEM COMSOL simulations. The area under each peak (dip) is equal to 𝜋 (−𝜋). Note that the 

degenerate bands have opposite sign of Berry curvature, characteristic of QSHE. 
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Supplementary Figure 5 | Bandstructure of the surface (red) and bulk (black) modes for the line defect given in Fig. 

5a of the main text. 

 

 

 

Supplementary Figure 6 | The free and clamped external boundaries support topologically trivial surface modes 

(shown by the red curves). Here, a supercell of 10x1 unit cells with free (left panel) and clamped (right panel) 

boundaries on both ends of the supercell was simulated.  
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Supplementary Figure 7 | Modification of the modes lifetime due to the interaction with viscous fluids, water (a) 

and air (b), shown by markers. The case without a fluid (vacuum) is shown by black solid lines. Lifetime, defined as 

the ratio of the real part to the imaginary part of the eigenfrequency, is plotted by colour in log scale. (c,d) show how 

downscaling the structure proportionally to the periodicity increases both the frequencies (c) and lifetimes (d). Four 

frequency points (doubly degenerate modes at the K point, shown in a) are chosen as examples. In (c-d), the structure 

is assumed to be embedded in water. Other parameters are: 𝑐𝑎𝑖𝑟=343.2 m/s, 𝑐𝑤𝑎𝑡𝑒𝑟=1481.4 m/s, 𝜌𝑎𝑖𝑟=1.2 kg.m-3, 

𝜌𝑤𝑎𝑡𝑒𝑟=999.6 kg.m−3 . 

 

 

 

Supplementary Figure 8 | Hydrostatic pressure field profile generated in water due to the vibrating elastic 

crystal. Two cuts of the unit cell are shown: z=0 and y=0. The elastic deformations are assumed to be 100 nm in 

amplitude. The maximum generated pressure is denoted below each panel. The panels correspond to the same 

frequency points marked in Supplementary Figure 7 as (1) to (4). The simulations were performed in COMSOL 

Multiphysics using coupled 3D full-wave elastic and acoustic fields.  
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Supplementary Figure 9 | Effect of water loading on the topologically protected edge modes propagating 

between two domains with the counterbores made on opposite faces. Markers corresponds to the water 

environment and black lines are associated with the vacuum case. Attenuation is shown in colour in log scale. 
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Supplementary Table 1| Phononic Metamaterials Effective Stiffness Tensor  

Stiffness tensor components and mass density of solid and metamaterial aluminum. The second column is extracted 

from fitting to the dispersion of low-frequency modes in Christoffel model. 

Solid unperforated aluminum (isotropic) Metamaterial aluminum (hexagonal) 

𝒄𝟏𝟏 = 𝒄𝟑𝟑 = 𝝀 + 𝟐𝝁 = 𝟏𝟏𝟎. 𝟕 𝐆𝐏𝐚 𝑐11 = 11.7 GPa 

𝒄𝟏𝟐 = 𝒄𝟏𝟑 = 𝝀 = 𝟓𝟗. 𝟔 𝐆𝐏𝐚 𝑐33 = 28.8 GPa 

𝒄𝟒𝟒 = 𝒄𝟔𝟔 = 𝝁 = 𝟐𝟓. 𝟔 𝐆𝐏𝐚 𝑐12 = 6.9 GPa 

𝝆 = 𝟐𝟕𝟎𝟎 𝐤𝐠.𝐦−𝟑 𝑐13 = 𝑐23 = 6.5 GPa 

Assuming: Young’s modulus E = 69 GPa 𝑐44 = 𝑐55 = 5.4 GPa 

and Poisson’s ratio 𝝂 = 𝟎. 𝟑𝟓 𝜌 = 947.5 kg.m−3 
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Supplementary Note 1 | Effective Medium Theory 

The metamaterial with sub-wavelength patterns used in this work was modeled as an effective uniform 

medium. This approximation holds very accurately as long as the size of the patterns remains much smaller 

than the wavelength of interest.  

To find the effective elasticity parameters of the metamaterial, we studied the dispersion of very-low-

frequency modes of the patterned structure. These modes are described by the Christoffel model of a 

continuum medium. According to this model, the dispersion of the modes are described by the Christoffel 

tensor 𝚪: 

𝜌 (
𝜔

𝑘
)
2
𝐮⃗⃗ = 𝚪 𝐮⃗⃗  ,                                                                    (1) 

where 𝜌 is the continuum mass density, 𝐮⃗⃗  the displacement field, 𝜔 the frequency, and 𝑘 the propagation 

constant, of the eigenmode. The Christoffel tensor 𝚪 is related to the stiffness tensor and the propagation 

direction: 𝛤𝑖𝑙 = 𝑐𝑖𝑗𝑠𝑙
𝑘𝑗𝑘𝑠

|𝑘|2
, where all the indices run from 1 to 3. By calculating the modes dispersion for 

different propagation directions and finding the ratio of 𝜔/𝑘, it is possible to find the entire ‘effective’ 

stiffness tensor 𝐜. 

The crystal considered in this work possesses hexagonal symmetry. Such a crystal is described by five 

nontrivial elements of the stiffness matrix 

𝐜 =

[
 
 
 
 
 
 
𝑐11 𝑐12 𝑐13 0 0 0
𝑐12 𝑐11 𝑐13 0 0 0
𝑐13 𝑐13 𝑐33 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐44 0

0 0 0 0 0
𝑐11−𝑐12

2 ]
 
 
 
 
 
 

                                                      (2) 

Note that here we have used the Voigt representation1 to reduce the number of indices. Supplementary 

Table 1 lists the nontrivial components of the stiffness tensor for both solid unperforated aluminum and an 

aluminum metamaterial made by sub-wavelength patterning as shown in Supplementary Figure 1a. Note 

the strong degree of anisotropy of the perforated structure by comparing the two columns of the table. This 

strong anisotropy was a key in achieving the degeneracy between the otherwise highly non-degenerate 

symmetric and anti-symmetric modes of an elastic slab. 

Supplementary Figure 1b shows how well the results of the effective medium simulations match the exact 

solution in the frequency range of interest (<200 kHz). Even though the fitting parameters were obtained 
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by considering the very low frequency modes, as can be seen from the dispersion diagram the match works 

quite well even for high frequecnies. In very high frequencies (>200 kHz), the perforations start to play 

signicant role and some resonance features can be seen up in the dispersion diagram. However, as long as 

we are interested in the wavelengths as large as the unit cell size (here, 9 times the period of the sub-

wavelength holes), no distinction may be drawn between the two approaches. This is why we confidently 

used the effective medium theory in solving the large-domain simulations, whose computation can be very 

demanding and frequenctly unfeasible. 

Finally, in Supplementary Figure 2 we show that without the non-resonant sub-wavelength perforations, 

achieving the matching conditions for both the Dirac frequency and Dirac velocity are hard. The 

perforations are auxiliary knobs that result in additional anisotropy enabling such matching. 

 

Supplementary Note 2 | First-Order Perturbation Theory 

First-order perturbation theory can be used to explain the effects of a small perturbation to the eigenmodes 

of an elastic system. In our case, the system is perturbed by carving out some of the elastic material, 

resulting in a change of the resonator’s free external boundary. The boundary with vacuum is characterized 

by zero traction 𝑇̂ ⋅ 𝒏 = 0. Below we will explain how we can construct a new set of eigenmodes from the 

unperturbed ones such that they satisfy this new boundary condition at the shifted boundary.  

Both unperturbed and perturbed eigenmodes satisfy the following Cauchy elastic equations: 

𝛁. 𝐓 = 𝑖𝜔𝜌𝐯⃗ 

𝛁𝑠𝐯⃗ = 𝑖𝜔𝐒
    ,                                                                   (3) 

where T is the stress tensor, S the strain tensor, 𝐯⃗  the velocity vector, 𝜔 the angular frequency, 𝜌 the density, 

and 𝛁𝑠 = 1/2 (𝛁 + 𝛁𝑇) is the symmetric gradient operator. The only difference between the perturbed and 

unperturbed cases is in the boundary conditions. To find the projection of the perturbed eigensolutions on 

the unperturbed ones, we multiply (from the left side) the first line of Supplementary Eq. 3 by 𝐯⃗ 𝑚
∗  and the 

second line by 𝐓𝑚
∗ . Here, 𝐯⃗ 𝑚 and 𝐓𝑚 are the velocity and strain fields of the m-th unperturbed eigenmode. 

After integrating the result of these dot products over a volume 𝑉, we find the following projection 

equations: 

∮ 𝐯⃗ 𝑚
∗ ⋅ 𝐓 ⋅ 𝒏 𝑑𝑎

𝑆
+ 𝑖𝜔𝑚 ∫ 𝐓𝑚

∗ ⋅ 𝐒 𝑑𝑉
𝑉

= 𝑖𝜔 ∫ 𝐯⃗ 𝑚
∗ ⋅ 𝜌 ⋅ 𝐯⃗  𝑑𝑉

𝑉

∮ 𝐯⃗ ⋅ 𝐓𝑚
∗ ⋅ 𝒏 𝑑𝑎

𝑆
+ 𝑖𝜔𝑚 ∫ 𝐯⃗ 𝑚

∗ ⋅ 𝜌 ⋅ 𝐯⃗  𝑑𝑉
𝑉

= 𝑖𝜔 ∫ 𝐓𝑚
∗ ⋅ 𝐒 𝑑𝑉

𝑉

      ,                       (4) 
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where 𝑆 is the surface enclosing the volume 𝑉. Above, we used the vector identity 𝒂⃗⃗ ⋅ 𝛁 ⋅ 𝐌 = −𝛁𝑠 𝒂⃗⃗ ⋅ 𝐌 +

𝛁 ⋅ (𝒂⃗⃗ ⋅ 𝐌). Let us assume that 𝑉 is the volume of the perturbed structure. Therefore, everywhere on the 

surface 𝑆,  the boundary condition of zero traction holds 𝑇̂ ⋅ 𝒏 = 0. Note that this is only true for the 

perturbed solution, since the surface 𝑆 is only a virtual boundary for the unperturbed system. Summing the 

two lines in Supplementary Eq. 4, we obtain the expression for the new eigenvalues: 

𝑖(𝜔 − 𝜔𝑚) =
∮ 𝐯⃗ ⋅ 𝐓𝑚

∗ ⋅ 𝒏 𝑑𝑎
𝑆

∫ [𝐓𝑚
∗ ⋅ 𝐒 + 𝐯⃗ 𝑚

∗ ⋅ 𝜌 ⋅ 𝐯⃗ ] 𝑑𝑉
𝑉

 

 

(5) 

The surface integral can be rewritten into a volume integral proportional to the small change in the volume 

𝛥𝑉. Reversing the sign of surface normal so that the volume enclosed by S is Δ𝑉 – the removed volume – 

and using the above-mentioned vector identity once again, one can rewrite the surface integral as a volume 

integral: 

∮ 𝐯⃗ ⋅ 𝐓𝑚
∗ ⋅ (−𝒏) 𝑑𝑎

𝑆

= ∫ ∇ ⋅ [𝐯⃗ ⋅ 𝐓𝑚
∗ ] 𝑑𝑉

Δ𝑉

= 𝑖𝜔 ∫ 𝐓𝑚
∗ ⋅ 𝐒 𝑑𝑉

Δ𝑉

− 𝑖𝜔𝑚 ∫ 𝐯⃗ 𝑚
∗ ⋅ 𝜌 ⋅ 𝐯⃗  𝑑𝑉

Δ𝑉

≈ 𝑖𝜔𝑚 ∫[𝐓𝑚
∗ ⋅ 𝐒 − 𝐯⃗ 𝑚

∗ ⋅ 𝜌 ⋅ 𝐯⃗ ]𝑑𝑉

Δ𝑉

 (6) 

 

Combing Supplementary Eqs. 5 and 6, we reach at the final expression for the change in the eigenvalue due 

to the removal of the volume by Δ𝑉:  

𝜔 − 𝜔𝑚

𝜔𝑚
=

∫ [−𝐓𝑚
∗ ⋅ 𝐒 + 𝐯⃗ 𝑚

∗ ⋅ 𝜌 ⋅ 𝐯⃗ ]𝑑𝑉
Δ𝑉

∫ [𝐓𝑚
∗ ⋅ 𝐒 + 𝐯⃗ 𝑚

∗ ⋅ 𝜌 ⋅ 𝐯⃗ ] 𝑑𝑉
𝑉

 (7) 

Supplementary Eq. 7 is closely related to the Slater theory of perturbed electromagnetic cavities.2 Assuming 

that the perturbation is small, the new eigenfunctions can be expanded in terms of the unperturbed ones: 

𝐯⃗ = ∑𝜙𝑛𝐯⃗ 𝑛, and 𝐓 = ∑𝜙𝑛𝐓𝑛. In this case, Supplementary Eq. 7 can be recast into an eigenvalue problem: 

∑ 𝜔𝑚(𝑈𝑚𝑛 + 𝛥𝑚𝑛) 𝜙𝑛
𝑛

= 𝜔 ∑ 𝑈𝑚𝑛𝜙𝑛
𝑛

 

 

(8)  

where 𝛥𝑚𝑛 = ∫ [−𝐓𝑚
∗ ⋅ 𝐒𝑛 + 𝐯⃗ 𝑚

∗ ⋅ 𝜌 ⋅ 𝐯⃗ 𝑛]𝑑𝑉
Δ𝑉

 and 𝑈𝑚𝑛 = ∫ (𝐓𝑚
∗ ⋅ 𝐒𝑛 + 𝐯⃗ 𝑚

∗ ⋅ 𝜌 ⋅ 𝐯⃗ 𝑛) 𝑑𝑉
𝑉

. By properly 

choosing the arbitrary normalization of the unperturbed eigenmodes (𝑈𝑚𝑛 = 𝛿𝑚𝑛), one can further simplify 

the form of Supplementary Eq. 8.  
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Case of 4 Modes Representing Two Overlaid Dirac Bands  

The first-order perturbation theory developed in the previous section can be used to treat degenerate cases 

as well. In the system considered in this paper, there are 2 overlaid Dirac cones, amounting to 4 degenerate 

modes at the K point (bands 8 to 11, as shown in Supplementary Figure 3) and quasi-degenerate in its 

vicinity due to having approximately the same group velocity. Here, in this section, we will develop a low-

energy Hamiltonian describing the hybridization between these modes in the close vicinity of the K point. 

We assume that the linear dispersion of the modes is engineered such that they all have the same Dirac 

frequency (𝜔𝐷) and Dirac velocity (𝑉𝐷), therefore, 𝜔𝑖(δ𝐤) = 𝜔𝐷 ± 𝑉𝐷|δ𝐤|. The upper and lower branches 

of the Dirac modes are labeled as (I) and (II), respectively, in the superscript. Two of the unperturbed modes 

are symmetric (here, labeled as 𝑆𝐼 and 𝑆𝐼𝐼), and two are anti-symmetric (here, labeled as 𝐴𝐼 and 𝐴𝐼𝐼). From 

the numerical simulations we observe that only the lower S and upper A as well as the lower A and upper S 

modes interact; all the other off-diagonal elements of the 𝛥𝑚𝑛 matrix are zero. 

[
 
 
 
 
−𝑉𝐷|𝛿𝒌| + 𝜔𝐷𝛥𝑆𝐼𝑆𝐼 0 0 𝜔𝐷𝛥𝑆𝐼𝐴𝐼𝐼

0 𝑉𝐷|𝛿𝒌| + 𝜔𝐷𝛥𝑆𝐼𝐼𝑆𝐼𝐼 𝜔𝐷𝛥𝑆𝐼𝐼𝐴𝐼 0

0 𝜔𝐷𝛥
𝑆𝐼𝐼𝐴𝐼
∗ −𝑉𝐷|𝛿𝒌| + 𝜔𝐷𝛥𝐴𝐼𝐴𝐼 0

𝜔𝐷𝛥
𝑆𝐼𝐴𝐼𝐼
∗ 0 0 𝑉𝐷|𝛿𝒌| + 𝜔𝐷𝛥𝐴𝐼𝐼𝐴𝐼𝐼]

 
 
 
 

[
 
 
 
 
𝜙𝑆

𝐼

𝜙𝑆
𝐼𝐼

𝜙𝐴
𝐼

𝜙𝐴
𝐼𝐼]
 
 
 
 

= 

= (𝜔 − 𝜔𝐷)

[
 
 
 
 
𝜙𝑆

𝐼

𝜙𝑆
𝐼𝐼

𝜙𝐴
𝐼

𝜙𝐴
𝐼𝐼]
 
 
 
 

                 (9) 

In the main text we demonstrated  that by adjusting the slab thickness, it is possible to achieve two sets of 

double degenerate eigenmodes with a bandgap in between such that the slope of the dispersion is zero (i.e., 

𝜕𝑘𝜔 = 0) at the K point (i.e., when 𝛿𝑘 = 0). It is easy to see that such condition can be satisfied only if 

𝛥𝑆𝐼𝑆𝐼 = 𝛥𝑆𝐼𝐼𝑆𝐼𝐼 = 𝛥𝐴𝐼𝐴𝐼 = 𝛥𝑆𝐼𝐼𝑆𝐼𝐼 ≡ Δ𝜔/𝜔𝐷, and |𝛥𝑆𝐼𝐴𝐼𝐼| = |𝛥𝑆𝐼𝐼𝐴𝐼|. By redefining the arbitrary phase of 

the unperturbed eigenmodes, the off-diagonal elements of the 𝚫 matrix are made to take the form 𝛥𝑆𝐼𝐴𝐼𝐼 =

−𝛥𝑆𝐼𝐼𝐴𝐼 ≡ 𝑖𝑚/𝜔𝐷, from which the ‘mass’ term m in band theory is defined. Taking all these considerations 

into account, the ‘Hamiltonian’ (Supplementary Eq. 9) can be written as 

[
 
 
 
−𝑉𝐷|δ𝐤| 0 0 𝑖 𝑚

0 𝑉𝐷|δ𝐤| −𝑖 𝑚 0

0 𝑖 𝑚 −𝑉𝐷|δ𝐤| 0

−𝑖𝑚 0 0 𝑉𝐷|δ𝐤|]
 
 
 

[
 
 
 
 
𝜙𝑆

𝐼

𝜙𝑆
𝐼𝐼

𝜙𝐴
𝐼

𝜙𝐴
𝐼𝐼]
 
 
 
 

= (𝜔 − 𝜔𝐷 − Δ𝜔)

[
 
 
 
 
𝜙𝑆

𝐼

𝜙𝑆
𝐼𝐼

𝜙𝐴
𝐼

𝜙𝐴
𝐼𝐼]
 
 
 
 

.                 (10) 

Next, we move to the more intuitive circularly polarized LCP/RCP basis by applying the following unitary 

transformation 
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𝐔 =
1

√2𝑖
[
1 0
0 1

]⨂ [𝑒
−𝑖𝜙/2 𝑖𝑒−𝑖𝜙/2

−𝑒𝑖𝜙/2 𝑖𝑒𝑖𝜙/2
]                                       (11) 

In this basis, the problematic absolute value of |δ𝐤| disappears. The phase 𝜙 is defined as δ𝐤 =

|δ𝐤| exp 𝑖𝜙 = 𝛿𝑘𝑥 + 𝑖𝛿𝑘𝑦. Thus, the Hamiltonian (𝐔𝐇𝐔−1) becomes 

ℋ̂𝐴𝑆 =

[
 
 
 
 

0 𝑉𝐷(𝛿𝑘𝑥 − 𝑖𝛿𝑘𝑦) 𝑚 0

𝑉𝐷(𝛿𝑘𝑥 + 𝑖𝛿𝑘𝑦) 0 0 −𝑚

𝑚 0 0 𝑉𝐷(𝛿𝑘𝑥 − 𝑖𝛿𝑘𝑦)

0 −𝑚 𝑉𝐷(𝛿𝑘𝑥 + 𝑖𝛿𝑘𝑦) 0 ]
 
 
 
 

      (12) 

It is clear that the off-diagonal elements of the matrix induce hybridization between the LCP/RCP modes 

of the A and S class of modes. The hybridized modes that are the new unmixed eigenfunctions of the system 

can be found from the following unitary transformation: 

𝐔′ =
1

√2
[
1 1
1 −1

]⨂ [
1 0
0 1

] .                                                  (13) 

Under this transformation, the new Hamiltonian (obtained by 𝐔′𝐇𝐔′−1) exactly matches the Kane-Mele 

low-energy Hamiltonain,3 

𝓗+/− =

[
 
 
 
 

𝑚 𝑉𝐷(𝛿𝑘𝑥 − 𝑖𝛿𝑘𝑦) 0 0

𝑉𝐷(𝛿𝑘𝑥 + 𝑖𝛿𝑘𝑦) −𝑚 0 0

0 0 −𝑚 𝑉𝐷(𝛿𝑘𝑥 − 𝑖𝛿𝑘𝑦)

0 0 𝑉𝐷(𝛿𝑘𝑥 + 𝑖𝛿𝑘𝑦) 𝑚 ]
 
 
 
 

.                (14) 

This can be written in a compact form using the Pauli matrices: 

𝓗+/− = 𝑉𝐷𝜏̂0𝑠̂0𝝈̂∥ ⋅ δ𝐤∥ + 𝑚𝜏̂3𝑠̂3𝜎̂3 ,                                                 (15) 

where 𝜎̂𝑖, 𝜏̂𝑖, and 𝑠̂𝑖 are the band, inter-valley and pseudo-spin subspace Pauli matrices. Although, we didn’t 

explicitly examine the intervalley subspace (K and K′), the Hamiltonian given in Supplementary Eq. 15 can 

be directly deduced from the time-reversal symmetry of the system. To put it differently, it is easy to show 

that the Berry phase of each band around the K point is 𝜋 × 𝑠𝑔𝑛(𝑚) and according to the time-reversal 

symmetry, the overall Berry phase must be zero, hence, at the K′ point, the mass term should reverse sign.   

It is important to note that by reversing the perturbation (carving out the other side of the crystal face 

instead), the mass term changes sign. This can be easily verified from the unperturbed modes profile and 

the definition of the 𝛥𝑚𝑛 tensor, given below Supplementary Eq. 8. 
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Supplementary Note 3 | Topological Character and Spin Chern Number 

The dispersion diagram 𝜔(𝒌), historically assumed to contain most of the useful information about the 

system, lack the information about the system’s topology. Topological numbers can only be calculated from 

the eigenfunctions themselves. Examples of such topological measures are Chern number and Berry phase. 

Here is the detailed description of how we calculate these numbers for the elastic waves.  

Berry connection (or potential) of band n is defined as 𝐀⃗⃗ (𝑛)(𝐤 ) = 𝐼𝑚 {∮ < 𝐮⃗⃗ (n)(𝐤 ) | 𝛁
𝐤 
𝒖⃗⃗ (𝑛)(𝐤 ) >

𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑑𝑉}, or in the component representation, it is given by 𝐴𝑖(𝐤 ) = 𝐼𝑚 {∮ [𝑢𝑥
∗(𝒓)𝜕𝑘𝑖

𝑢𝑥(𝒓) +
𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

𝑢𝑦
∗ (𝒓)𝜕𝑘𝑖

𝑢𝑦(𝒓) + 𝑢𝑧
∗(𝒓)𝜕𝑘𝑖

𝑢𝑧(𝒓)]𝑑𝑉}, where i for a 2D crystal can be 1 or 2. Here, 𝐮⃗⃗  is the displacement 

field of the eigenmode. The eigenmode amplitude is normalized such that 

∮ < 𝐮⃗⃗ (n)(𝐤 ) | 𝒖⃗⃗ (𝑛)(𝐤 ) > 𝑑𝑉
𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

= 1. To reduce the numerical error, it is best to normalize the arbitrary 

eigenmode phase by that of an arbitrary (but with non-vanishing magnitude of 𝐮⃗⃗ ) point. Also, to calculate 

the differentiations with enough accuracy, we used a 5-point stencil in each direction. 

Berry connection, similar to the electromagnetic vector potential, is gauge dependent. Berry curvature, 

defined as 𝛁 × 𝐀⃗⃗ , similar to the magnetic field, is gauge invariant. In a 2D crystal, Berry curvature is given 

by 𝐵𝑧
(𝑛)

(𝐤 ) = 𝜕𝑘𝑥
𝐴𝑘𝑦

(𝑛)
− 𝜕𝑘𝑦

𝐴𝑘𝑥

(𝑛)
. To calculate the Berry curvature, we used again a 5-point stencil in each 

dimension. Supplementary Figure 4a shows the Berry curvature in the vicinity of the K point for the four 

bands of interest (shown by circle in Supplementary Figure 3) after the perturbation, shown in Figure 2 of 

the main text, is introduced. Berry phase, defined as the integration of the Berry curvature, is equal to 𝜋 

(−𝜋), when the integration is performed near a peak (or a dip). This is similar to the Berry phase of the 

Dirac bands in integer Quantum Hall effect.  

However, this contribution is opposite near the K′ point (Supplementary Figure 4b), dictated by the time 

reversal symmetry. Hence, the Chern number, given by the integration of the Berry curvature over the entire 

Brillouin zone (divided by 2𝜋) adds up to zero for Quantum Spin Hall Effect studied in this work. Spin 

Chern number, defined as the integration of the Berry Curvature of the same spin over the entire Brillouin 

zone, is, however, nonzero, classifying our synthetic crystal as the first phononic crystal with QSHE. The 

contribution of each peak (or dip) of the Berry curvature to the Chern number is +1/2 (-1/2). Thus, the Spin 

Chern number, is 𝐶𝑆 = ±1.  
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Supplementary Note 4 | Effects of Leakage and Attenuation Caused by 

Interaction with Viscous Fluid 
 

In the main text, we assumed that the external boundaries of the system are free, that is, when the 

background environment is vacuum. This is justified due to the significant impedance mismatch between 

our crystal made of Aluminum and air as the background. Below, we will show that loading of the system 

with air, or even water, has little effect on the dispersion of the topological elastic modes. We found the 

interaction with a viscous fluid gives rise to rather marginal effect of dissipation of the bulk and edge modes. 

By considering realistic values for the fluid viscosity, it was found that the lifetime of the modes (in the 

unit of the elastic wave period) exceed the value of 10,000 in the spectral range considered (~130 kHz). 

Since the viscosity scales as the frequency squared, this results in a greater impedance mismatch for higher 

frequencies. One therefore may expect that the modes lifetimes would be even higher at higher frequencies. 

Nevertheless, the topological nature of the modes remains intact by these loss channels, which also agrees 

with recent studies of topological states in open and dissipative condensed matter systems4. 

The acoustic pressure field 𝑝 in a homogenous medium satisfies the wave equation5–7, (𝑘0
2 + ∇2)𝑝 = 0, 

where 𝑘0 = 𝜔/𝑐 − 𝑖𝛼(𝜔). Here, 𝜔 is the angular frequency, and 𝑐 is the speed of sound in the medium, 

which is proportional to the fluid density 𝜌, and 𝛼(𝜔) is the attenuation, caused by the viscosity and 

relaxation mechanisms in the viscous fluid. Attenuation in air  is assumed to be 1.42 × 10−11𝑓2 Np.m−1 

as a function of frequency 𝑓 (Ref. 5, page 302 and 306), which gives the value 𝛼 =0.24 Np.m-1 at 130 kHz. 

For water, this number is much lower 0.00092 Np.m-1 (or 8 dB/km).  

The interaction of the elastic wave with the viscous fluid is implemented by subjecting the boundaries 

between the fluid and elastic media to the following boundary conditions: 1) the continuity of the 

acceleration along the normal direction: −
1

𝜌
𝛁𝑝 ⋅ 𝐧⃗⃗ =

𝑑2

𝑑𝑡2  𝐮⃗⃗ ⋅ 𝐧⃗⃗ , where 𝐧⃗⃗  is the unit normal vector, and 2) 

the elastic traction on the boundary, instead of vanishing for a free boundary case, equals the fluid pressure 

𝐓 ⋅ 𝐧⃗⃗ = 𝑝𝐧⃗⃗ . 

First, we investigate the effect of fluid interaction on the bulk modes of our metacrystal. Supplementary 

Figure 7 shows the modified dispersion diagram of the bulk propagating modes due to the presence of air 

and water. The lifetime of the modes, defined as the ratio of the real part to the imaginary part of the 

eigenfrequency, is also plotted by color in log scale. As can be seen from Supplementary Figure 7a-b, when 

compared to the solid curves (corresponding to the ‘free boundary’ case), the dispersion diagrams are barely 

modified. The only change is that the quality factors acquire finite, but still very large values. We also 

investigated the role of loss at different frequencies by down scaling the structure. The results presented in 
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Supplementary Figure 8 show that role of loss diminishes as the fourth power of frequency and becomes 

barely noticeable when entering the MHz frequency range. 

Finally, we study the influence of the viscous fluid on the topologically robust edge modes. As can be seen 

from Supplementary Figure 9, the effect of water loading on the edge modes is only a change in their 

lifetime; their dispersion is barely altered. Nonetheless, the edge modes can propagate for tens of thousands 

of unit cells before dissipating away. 

 

 

Supplementary Note 5 | Surface Modes of Topologically Trivial Crystal 

As shown in shown in Fig. 4 of the main text, a line defect may be created by half-filling one of the rows 

in the topologically trivial crystal, given in Fig. 1 of the main text. Such a line defect supports topologically 

trivial surface modes, as shown by the red curves in Supplementary Fig. 5. These modes are topologically 

trivial as they do not connect the top and bottom propagation bands.  

 

Supplementary Note 6 | Topologically Trivial Surface Modes of Free and 

Clamped External Boundaries 

The domain walls between two topologically nontrivial crystals with opposite mass term signs support 

topologically robust edge modes. Investigation of the field profiles shows that there is a finite stress tensor 

(particularly its normal components) on the domain wall for all four edge modes. Indeed, removing one of 

the domains on either side of the wall renders the now external boundary stress free (𝑇̂ ⋅ 𝒏 = 0), hence, the 

boundary condition is not satisfied for the appearance of the same topologically robust edge modes. Left 

panel on Supplementary Figure 6 shows the edge modes residing on such free external edges. Similar 

outcome occurs for a clamped (𝒖 = 0) boundary (shown in the right panel). These surface modes whose 

dispersions are gapped are topologically trivial. 
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