
   

 

Supplementary Figure 1 ON and OFF cell statistics during the absence and presence of a 

motion stimulus a) Our population average CV (red dot) is plotted against baseline firing rate, 

along with the average CV values of individual ON and OFF cells used in this study (dark grey; 



N = 31) and an additional 200 values (light grey) determined from 6 second clips of spontaneous 

spiking, randomly sampled from the population. b) Best fit exponential (baseline) or sum of 

exponentials (looming and receding) are shown for the population ISI histograms, where the bin 

size was chosen to minimize a cost function between the sample histogram and the unknown 

underlying probability density
1
. Note that here, and in Fig. 1a, the fit neglected the absence of 

ISIs smaller than the 3 ms refractory period. The discrete time-rescaling theorem was applied to 

test whether the underlying spiking could be described as a Poisson process – clearly the null 

hypothesis is rejected (both visually and by the p-values associated with the 99% confidence 

level, two-way Kolmogorov-Smirnov test. In particular, receding data is included for comparison 

with the looming and baseline results shown here and in Fig. 1a. c) Our looming and receding 

stimuli impart strong, positive temporal correlations to the successive ISIs. The insets show the 

population averaged ISIs within 60 intervals ( x = 1 mm) along the distance axis. This stimulus-

induced trend is reflected in the ISI serial correlation (SC) functions. Many pyramidal cells show 

a weak negative correlation in the absence of stimulation, reflected in the population averaged 

SC (grey bands represent 95% confidence intervals in all plots). The rescaled ISIs during 

looming and receding motion can be treated as a renewal point process with unit rate.  

 

 

 

 

 

 

 



 

 

Supplementary Figure 2 Identification of maximal FI with a nonparametric versus 

Poisson relationship The derived measure for locating the local FI  maxima ( Fi , Eq. [2])   was 

applied to the 1 - 4 cm/s looming population data, yielding a mean and standard deviation of 1.37 

+/- 0.01 cm, presented as *x  in the main text figures. The Poisson case (Eq. [1]) is noticeably 

worse at identifying a consistent maximum; the grey shading in the Poisson panels show three 

standard deviations about *x . A time interval of 10t  ms was used for v = 1 and 2 cm/s, 

whereas 8t  ms was used for v = 3 and 4 cm/s since the peak firing rates exceeded 100 Hz in 

these cases, causing Eq. [2] to become negative (Fig. 3a; Supplementary Note 2). The choice of 8 

versus 10 ms has a negligible effect on the location of maximal FI , where the spiking rates are 

still relatively low: the maximum shifts to and 1.39 cm for v = 3 cm/s and 1.37 cm for v = 4 cm/s. 

We chose to use the values for 8t  ms, since it respects the conditions of the theory, while 

giving even tighter estimates. Importantly, this choice does not impact the paper’s conclusions.   

 

 

 

 

 



 

 

Supplementary Figure 3 Discontinuous motion shifts the focal point for receding   When 

long pauses are inserted between looming and receding trials (looming, 7 second pause, receding 

10 second pause, repeat) the theory (left) predicts a focal point at 1.72 cm for receding motion. 

This is reflected in the shifted burst fraction measure to the (1.45, 1.65) cm interval (center) and 

the probability of a neuron in the population transitioning to the burst state as a function of object 

distance (right). Notice that this probability distribution is highly reminiscent of Fig. 4c in the 

main text, except there is now another pronounced maximum in the 22
nd

 interval (1.65, 1.85) cm, 

reflecting the extra bursty responses not present in the continuous motion trials.  

 

 

 

 

 

 

 

 

 

 



BF FI  measure ΔT1 = 0.1/v ΔT2 = 0.15/v ΔT3 = 0.2/v i

i

x    Theory 

v = 0.5 cm/s 49/60 32/40  24/30 [1.33, 1.35] - 

v = 1 cm/s 49/60 33/40* 24/30 [1.25, 1.3] 1.36 

v = 2 cm/s 50/60* 32/40 24/30 [1.3, 1.45] 1.37 

v = 3 cm/s 51/60* 32/40 24/30 [1.3, 1.45] 1.37 

v = 4 cm/s 48/60 33/40* 24/30 [1.35, 1.45] 1.35 

Small (2 cm/s) 51/60* 33/40 24/30 [1.25, 1.3] - 

Recede 0/0  
(2 cm/s)  

49/60* 32/40 24/30 [1.3, 1.45] 1.39 

 

Supplementary Table 1 Assessing BF results for varying window lengths    To assess 

how window length impacted our findings, and to determine which window length was most 

congruent with the theory, BFs were computed as a function of object distance for three fixed 

spatial intervals ( 1x  = 1 mm, 2x = 1.5 mm and 3x  = 2 mm). Each entry in the table records 

the distance interval found just before the BF threshold (0.3) as a ratio of the total number of 

intervals in which the 6 cm trajectory is subdivided. To avoid underestimating the BF (Fig. 3b), 

and to account for some discrepancy between the population subsets used for each stimulus 

condition, the mean was measured for the first third (2 cm) of the approach, where the stimulus 

is undetectable, and then adjusted to match the mean population BF for its specific time window,

/ | |T x v   , determined from all 31 cells used in the study (Methods).  Determining where the 

BF exceeds our threshold for these three different spatial intervals allowed us to compute their 

intersection and narrow down the predicted location of the FI maxima ( *x  ) for each condition, 

for comparison with the theory. For the cases in which Eq. [2] was applied (1-4 cm/s looming 

and 2 cm/s receding), we found that the BF value lying just before the hard threshold of 0.3 

contains the theoretically identified focal point consistently. The burst fraction intervals 

produced identical results for the 0.5 cm/s looming stimulus, which is in agreement with strong 

electromotor response behavior at slow speeds
8
. For the finer resolution (1 and 1.5 mm), the time 

windows grow shorter and underestimation appears to weaken the fidelity of our BF measure. In 

particular, the instances marked with a red star were omitted from the intersection operation as 



they generate the null set and stand at odds with the theory and behavior. Since 1 and 1.5 mm 

appear less reliable, we chose 2 mm as our distance interval for the BF analysis in Figs. 3 and 4 

of the main text. In the case of the small sphere, both 1 and 1.5 mm predict that the sphere’s 

focal point is actually a bit closer to the skin but still in the range [1.25, 1.35] cm (discrediting 

the 1 mm interval as per above), just like the v = 1 cm/s case. The results for the 1 and 1.5 mm 

interval may be due to chance, due to underestimation of the BF, to the potential under-

stimulation due to more difficult RF alignment (see Methods), or to the limitations of using a 

hard threshold as opposed to more sophisticated synaptic decoding, hypothesized to occur in 

vivo. However, the result may also be meaningful since the d = 0.64 cm object is the absolute 

smallest size for which electromotor motion tracking was observed – gymnotiform fish appear 

uninterested in or unable to continuously track smaller inanimate objects. Therefore, the small 

object’s focal point may be beginning to shift, accompanied by the diminishing behavioral 

response. Whether a FI  maximum is still important for even weaker stimuli is a question for 

future work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Note 1 ON/OFF cell spiking is memoryless during motion processing   

 

 ON and OFF pyramidal cell spiking is highly irregular, which can be seen in the raster 

plots of Fig. 1a. Supplementary Fig. 1a shows a scatterplot of the coefficient of variation (CV) of 

each cell’s ISIs as a function of their baseline firing rate. Note the mean of the population (0.95), 

with many cells having a CV near one.  This suggests that the spiking of many ON and OFF cells 

might be reasonably described as a Poisson process (with dead time, that is, no spiking during 

the action potential refractory period < 3 ms). In the absence of a stimulus (or baseline 

conditions), histograms of inter-spike intervals (ISIs) recorded from the entire population 

(Supplementary Fig. 1a) were pooled for ON and OFF cells and are very nearly fit by 

exponential distributions on the range of observed ISI times, (0.003,0.62) seconds (Figs. 1a, 

Supplementary Fig. 1b). These facts suggest that treating the baseline spiking of a pyramidal cell 

population as a Poisson processes is reasonable. 

 However, the individual ON and OFF cells have a CV that ranges from as low as 0.5 to just 

over 1.5, indicating that spiking is non-Poisson for many ON and OFF pyramidal cells. 

Pyramidal cell ISIs may actually arise from a Gamma process
2
 (with a scale parameter k that 

varies from cell to cell); this would account for the observed range of CVs, given by
1( )ISIk 
, 

where ISI is the ISI sample mean. Despite this fact, the best fits of Gamma distributions were 

unsatisfying. Furthermore, at baseline, the average serial correlation function between successive 

ISIs shows a weak, yet significant negative correlations(Supplementary Fig. 1c), violating the 

renewal assumption that is implicit to both Poisson and Gamma processes. It thus appears that 

baseline pyramidal cell spiking in the ELL, as a whole, cannot be described by common 

parametric distributions. Therefore, we sought to use survival analysis
2
 to develop a simple 



connection between our empirical firing rates and Fisher’s information, as previously done for 

Poisson spiking neurons (Eq. [1])
3
 .  

During stimulus presentation, population ISI distributions show compound exponential 

behavior (Supplementary Fig. 1b). To demonstrate that individual pyramidal cell spiking is also 

non-Poisson during stimulation, we applied the discrete time-rescaling theorem
4, 5

. This 

technique effectively detrends the spiking response. Instead of using the stimulus dependent 

spike likelihood obtained from a model distribution of spiking (e.g. Poisson or Gamma) 
4
, we 

used the population averaged, stimulus induced instantaneous firing rate as a measure of the 

spike likelihood in a small interval of time. Through this population averaging of spike trains, 

intrinsic temporal correlations between spikes are removed. When analyzing the spike trains of 

individual cells, this population-derived conditional likelihood was used to transform the 

inhomogeneous point process (i.e. a process with time-varying instantaneous rate) into a 

homogenous point process with unit rate (Supplementary Fig. 1c, insets)
4, 5

. Note, in the absence 

of the stimulus, six second long sequences of ISIs were transformed into a point process with 

unit rate for each cell using the reciprocal of the average ISI obtained from entire baseline 

recordings (typically 1-2 minutes). The same procedure, outlined below, was applied for the 

baseline data, simulated Poisson data, and our looming/receding data. The resulting time series 

allowed us to explore the statistical characteristics of pyramidal cell spiking. 

 

Procedure 

The application of the continuous time rescaling theorem
5
 has one major drawback for 

neural data: it relies on the assumption of truly instantaneous events. Since action potentials 

actually have a 1-2 ms time course, and since data collection/analysis discretizes time, false 



rejection of the null hypothesis (
0 :H ON and OFF cell spiking is not significantly different than 

realizations of a Poisson point process) is inevitable. When applied to our data, we observed the 

exact same spurious rejection previously reported
4
 (see Fig. 1 within reference). To avoid 

potentially false conclusions that the neurons could not be described as a Poisson process, we 

applied the more recently published revised methods for discrete time
4
. The steps taken to obtain 

the rescaled ISIs are explicitly written out in Haslinger et al.
4
(see Section 2.4: Discrete Time 

Version of Time Rescaling Theorem, Procedure for Analytic Correction.) After the rate-rescaling 

step, if the Poisson description of ON and OFF cell spiking is valid, then our empirical ISIs ( k ) 

are now exponentially distributed and arise from a homogenous point process with unit rate.  

Next, we followed the exact steps outlined in section 2.2 of the original time-rescaling 

paper
5
. Briefly the rescaled ISIs ( k ) are further transformed as 1 k

kz e


 , which yields 

independent, uniform random variables on the interval (0, 1), assuming the Poisson process 

description is valid. Next, the kz are sorted according to length, smallest to largest, and then 

plotted against the corresponding value of the cumulative distribution function for the uniform 

distribution, defined as 
0.5

k

k

n
b


  for 1,...,k n , where n is the total number of ISIs. If the 

process is indeed Poisson, then the n  points should lie along the 45-degree line, contained within 

the confidence intervals constructed as 1.36 /k nb   and 1.36 /k nb  , a suitable approximation 

of the distribution for the Kolmogorov-Smirnov (KS) statistic for a 95% confidence level (α = 

0.05). To generate actual p-values (included in Fig. 1b and Supplementary Fig. 1b) we performed 

a more stringent two-way KS test between our transformed ISIs and the uniform distribution 

(99% confidence, α = 0.01). As an illustration of the method and for the sake of comparison, 

simulated realizations from a Poisson process (three seconds, the same duration as our in vivo 



recordings for v = 2 cm/s) were included (Fig. 1b, Supplementary Fig. 1b): in this case, the null 

hypothesis that spiking was Poisson could not be rejected. This is an important demonstration, 

since we are analyzing spiking over small intervals of time (on the order of a few seconds) and 

thus need to ensure that rejection of the null hypothesis obtained for baseline, looming and 

receding is not related to an under-sampling of the spiking process (previous studies
4, 5 

used very 

long recording samples). 

 

ISI serial correlation and renewal spiking  

The rescaled ISIs further permitted us to examine potential intrinsic temporal correlations 

(as observed under baseline conditions) of spike timing during stimulation by removing the 

confounding temporal correlations induced by our looming and receding stimuli (Supplementary 

Fig. 1c; top, insets). Importantly, the ON and OFF cell population average loses fine temporal 

information and is a reflection of the stimulus-induced spike likelihood only; thus, any potential 

history-dependent effects (i.e. memory) in the individual ISI sequences should remain intact after 

rescaling. The serial correlation was computed for the rescaled ISIs of each stimulus trial and 

then averaged (Fig. 1c and Supplementary Fig. 1c, bottom). Note the insets, showing the rescaled 

ISIs with unit rate. The averaged serial correlation function indicates that ON and OFF cell 

spiking can be treated as a time-inhomogeneous renewal point process (memoryless). This 

indicates that, for an interval of time it t t   , the chance of observing a spike at time 
1it 
  

depends simply on the current value of the stimulus and the timing it  of the last spike. The 

renewal assumption is important to the derivation of a relationship to identify the stimulus value 

that maximizes the Fisher information of non-Poisson rate coding neurons (Supplementary Note 

2).  



Supplementary Note 2 Application of Fisher Information to Spiking Neurons 

The Cramér-Rao bound, the reciprocal of the Fisher information (
FI ), is a lower bound 

on the variance of an observed random variable, in our case the timing of action potentials, 

conditioned on a stimulus feature ( x )
3
. By finding where 

FI  is maximal along the transverse 

distance axis ( ( )x x t ), we seek to identify where a decoder of ON and OFF cell firing rates 

may, in theory, achieve the best possible estimation of changes in object distance from the 

observed spiking activity. 

 

The FI  of Poisson spiking neurons: 

The following is a well-known result, explained without proof in the classic text of 

Dayan and Abbott
3
. We provide a proof here since the Poisson case is important for 

understanding our subsequent extension to non-Poisson spiking neurons.  

Assume that the discrete probability density ( f ) of observing n  spikes in a given 

interval of time ( )t  is conditional on the value of a stimulus feature ( x  ) and follows the 

Poisson distribution: 

 
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;
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where the rate parameter λ is interpreted as the firing rate. The score of the likelihood, with 

respect to the stimulus feature x , can be determined as follows: 
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where '
d

dx
  . Starting with the alternative definition of FI  provided in Dayan and 

Abbott
3
and using ( )x t   , the mean of the Poisson process, we obtain: 
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where 
2

 is the spike count variance over t . Since spiking is assumed to be Poisson here, its 

spike count variance is equal to its mean spike count in the interval t  and we have an 

expression for FI   in terms of the firing rate and its spatial derivative: 
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It’s clear that a large change in the firing rate, starting from low frequency spiking, is a more 

reliable indicator of a stimulus feature than when the same rate of change occurs during high 



levels of spiking activity.  This expression allows for the direct calculation of the Poisson
FI , 

referred to in the main text and shown in Supplementary Fig. 2. 

 

Assessing 
FI  extrema for general spiking statistics: 

 The goal of the following is to generalize the applicability of 
FI  to electrophysiological 

data by ridding ourselves of the Poisson assumption, which is unsatisfactory in many important 

brain regions displaying irregular spike train statistics. In order to describe general, continuous 

spiking distributions, we turn to survivor analysis and the hazard rate
2
. The likelihood of 

observing the thi  action potential at time t  is a continuous random variable with an event (spike) 

density function
1

( | ) Pr[ ]| ,i if t x t t tx


  , conditioned on the time-dependent stimulus feature x  

(object distance in our study). The associated cumulative distribution

1

1

1 1 , { }( | ) Pr ( , )[ ]i

i i i n ntt x t t t t xF




     gives the probability that the next spike will have occurred 

by time 1it t  , for a given time course of x  and any history-dependent effects in the spiking 

dynamics generated by the n  previous spike times 1}{ ( , ]n it t   . The complement of ( | )t xF , 

the ‘survivor’ function ( | )( | ) 1 t xS t x F  , describes the probability that a spike will not have 

occurred by time t . The hazard rate,  , is formally defined as the rate of spike occurrence in a 

small interval ( 0t  ) and is written as 
|

|

( )
( , )

( )

f t x
x t

S t x
  . This relationship can be well 

approximated over the short intervals of time ( t ) associated with synaptic transmission, 

relative to the much longer timescales of motion.  

 When the probability distributions of ISIs are known, one can use the conditional 

intensity (the trial averaged instantaneous firing rate) to compute ( | )f t x directly and then, in turn, 



compute the hazard rate
2
. However, the underlying ISI statistics of neurons in vivo cannot be 

characterized by a closed form distribution (e.g. Poisson, Gamma or inverse Gaussian), limiting 

the applicability of this approach. Furthermore, when determining the conditional event density 

function we are posed with a serious challenge: smooth motion results in sampling ISIs around 

instantaneous values of object distance, making it impossible to obtain sufficient numbers of ISIs 

to properly characterize ( | )f t x  as a continuous distribution. Note that if we were to leave the 

stimulus at a fixed position, in an attempt to gather large numbers of ISIs, spike-rate adaptation 

would largely impact the observed patterns of spiking activity and the resulting hazard would not 

be applicable to natural motion tracking.   

To circumnavigate this experimental difficulty, we average the ISIs obtained in many 

repeated trials as a function of distance, which is the population averaged instantaneous firing 

rate. In neural spike train analysis, the hazard function for a neuron becomes its theoretical 

instantaneous firing rate for infinitesimally small intervals
6
. Note that over very small time 

windows ( t ), the change in position of the stimulus is negligible, and the spiking statistics can 

be considered stationary with respect to stimulus-induced effects. In other words the timescales 

associated with spike generation far exceed those of our motion stimuli.  This approximation of 

the hazard rate provides us with a simple and direct connection to our in vivo experiments.   

After rate-rescaling the ISIs to remove the stimulus-induced correlations, ON and OFF 

cell spiking can be characterized as a renewal process, that is, the discharge probability depends 

only on the current stimulus value and the timing of the last spike ( 1it  ; Fig. 1c and 

Supplementary Fig. 1c). This implies that the aforementioned cumulative likelihood, determined 

over the entire history 1( , )it  , is reduced to 1 1 1,( | ) ( , )Pr[ ]i i i it x t t t t x tF      .  For some 

sufficiently short interval 1it t t    , for which only one spike should occur, the cumulative 



density collapses to the likelihood of observing a single spike, allowing us to approximate it as

( | ) ( , )t x x ttF   , provided t is sufficiently small such that ( , ) 1x tt     ,x t .  This 

approximation for small t  implicitly satisfies the definition of the hazard rate defined in the 

previous paragraph and is used to simplify the following expression for FI .  

Efron and Johnstone have demonstrated a direct connection between the hazard rate and

FI  for arbitrary, real-valued probability distributions
7
. Letting x denote the partial derivative of 

the hazard rate with respect to x , they showed that 
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Their expression holds for all regular conditional probability densities ( | )f t x  on the real line, 

with corresponding well-defined hazard rates and existing partial derivatives. In order to 

characterize the ability of a system to encode a stimulus, up until a given moment in time, we 

assess FI  on the observation interval ( , )t- ¥ . Using the approximating relationship between the 

hazard rate and the survivor function, we see that 
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Provided t is sufficiently small as required above, the integrand of ( )F tI  is a strictly positive 

function ,x t R and unimodal, implying that the value of x  for which the integrand is maximal 

is also where ( )F tI  is maximal. Simply put, when searching for the FI  maximum of a neuron’s 

tuning curve, we can locate a focal point by identifying the value of the stimulus for which the 

integrand achieves a maximal value – in our case, object distance along the transverse body axis 

[0.25, 6.25] cm. This expression contains the same important relationship found for Poisson 

spiking but is further modified by the approximated survivor function.  

Applying this formula for 1, 2, 3 and 4 cm/s motion yielded clear estimates of the focal 

point location. As a validation of the new formula, we compared these responses to the 

relationship for Poisson spiking neurons (Eq. [1]). Supplementary Fig. 2 shows that the Poisson 

spiking assumption smears the estimate of FI  and makes it difficult to identify one clear 

maximum. The Poisson formula is relatively more sensitive to slope, which continues to grow 

rapidly after the onset of bursting and is speed dependent. For example, when applied to 2 cm/s 

looming data, Eq. [1] still recognizes a local maximum near 1.37 cm but the global maximum on 

[0.25,6.25]x  now occurs at 0.81 cm.  

 

Supplementary Note 3 A simple threshold for burst fraction demarcates the focal point  

Bursts are often referred to as “informative” without precise meaning; here we explore 

their direct contribution to stimulus estimation. Both looming and receding motion are marked 

by prominent burst spiking, which is noted to occur in the near vicinity of our theoretically 

identified FI  maximum (Fig. 1a). Thus, we sought to better pinpoint the onset of bursting 

relative to the focal point, and further test the idea that a downstream decoder could establish a 

focal point based on a simple bursting criteria.  



According to previous work
8
 the baseline burst probabilities for ON and OFF cells have a 

mean and standard deviation of 0.25 +/- 0.014 and 0.22 +/- 0.012 respectively. We started by 

simply picking a threshold (0.3) significantly greater than these asymptotic estimates (see Fig. 

3b) of ON/OFF cell burst fraction (BF). Our reasoning was as follows: first, a BF value of 0.3 

infrequently occurs in the ON/OFF cell populations under baseline conditions (Fig. 4c); 

secondly, extensive bursting across a population of ON or OFF cells could be rapidly detected at 

this threshold value. With respect to the downstream circuitry, the exact choice of 0.3 is slightly 

arbitrary but it was inspired by an obvious trend in the data: the burst fraction shoots up after 

crossing through the focal point region (1.25, 1.45) cm. We looked for a refined BF threshold 

value that was compatible with our theoretical predictions for 1-4 cm/s (shown in Supplementary 

Fig. 2), described below.  

 

Burst fraction 

In order to determine when bursting became significantly activated, individual spike 

trains were separated into tonic (ISI > 10 ms) or burst (3 < ISI < 10 ms) spikes
9
. Burst fraction is 

computed as the number of burst spikes, divided by the total number of combined tonic and burst 

spikes. In previous work, BF was either determined in the absence of a stimulus or during 

presentation of stationary signals (e.g. sinusoidal EOD amplitude modulations), and thus the 

proportion of burst spikes was determined over the entire duration of a recording (on the order of 

seconds to minutes); for obvious reasons (see Fig. 3b) we refer to this as the asymptotic BF. The 

estimates of our population asymptotic BF were determined from entire baseline recordings for 

each cell ( T = 60-120 s) and yielded a mean and standard deviation of 0.15 +/- 0.11 for ON 



cells and 0.22 +/- 0.12 for OFF cells, consistent with in vitro measurements for the centrolateral 

map of the ELL
10

 and reflecting a good representative sample of ELL pyramidal cells.  

For non-stationary ON/OFF cell responses to motion, we are dealing with a BF 

conditioned on a time-dependent stimulus; therefore we must count spikes within small intervals 

of distance ( x ). For our different experimental conditions, this resulted in different time 

windows (each one calculated as / | |T x v   , where v is object velocity). Figure 3b shows that 

the estimated baseline BF changes as a function of the time window. Not surprisingly, as 

0T   the chance of observing a burst event (i.e. multiple spikes) becomes very unlikely and 

the BF rapidly becomes underestimated compared to the asymptotic estimates. Therefore, when 

choosing a spatial interval, there is a trade-off to consider. A small x  gives great spatial 

resolution but moves T  into a range that grossly underestimates the BF. The other extreme is a 

large T , such that even for the 4 cm/s looming stimulus the estimated BF is somewhat near its 

asymptotic value (Fig. 3b). This results in poor spatial resolution and quickly begins to defeat the 

purpose of our analysis – precisely determining the location of an FI maxiumum. For Figures 3b, 

3c and 4b in the main text, 2x  mm was chosen as the minimal interval that, when divided by 

our top speed, gave an acceptable T  while maintaining good spatial resolution. As shown in 

Supplementary Table 1, 2x  mm gave results that were very compatible with Eqs. [1] and [2], 

whereas shorter intervals of 1 and 1.5 mm were less reliable. However, when in agreement with 

the theory, these shorter spatial intervals were useful as they allowed us to compute the 

intersection of the different x  and obtain improved spatial resolution for the identification of 

the focal point. 

 Note that 2x   mm is a reasonable spatial resolution given the standard deviation for 

the position of optimal behavioral performance (1.7 mm; Fig. 2b). For each time window T , 



used in our analysis, a population BF was computed for each of the populations associated with 

the eight different stimulus conditions, using the first (last) 2 cm of the looming (receding) 

stimuli, where there are no discernible stimulus effects. These different BF values were then 

averaged giving a population average BF and standard deviation as a function of the time 

window. This average value was used to align each stimulus condition’s population BF, so that it 

could be accurately compared with the other cases. This counteracts the drift due to different 

windows of time associated with each stimulus condition and the fixed spatial interval, as well as 

any small discrepancies based on the slightly different, though largely overlapping, ON/OFF cell 

populations obtained for our various stimulus conditions. Our hard threshold of 0.3 was given a 

small buffer zone of +/- 0.005 for cases, as in a few cases BF values were practically on 0.3. In a 

concerted effort not to overestimate the BF, we did not adjust the baseline mean of the stimulus 

condition if it was a standard deviation (ranging from 0.02-0.04 as a function of T ) below the 

population mean from all conditions for that particular time window. This is important because 

the dependence of the BF estimate on the time window is further influenced by the stimulus 

distance and the degree of burst activation. In the more activated state, BF is less susceptible to 

underestimation. This can result in inflated values of the BF near the focal point. 

The burst fraction plots for the different stimulus conditions are presented in Figs. 3c and 

4b. Note that the 24
th

 BF interval spans from 1.25 to 1.45 cm along the distance axis. We found 

that the 24
th

 interval is consistently just shy of the threshold and that from the 25
th

 interval 

onward, there are substantial, speed-dependent increases in the BF. From the figures it is clear 

that bursting activity is increasing and is detectable in the 24
th 

interval, but clearly the majority of 

the population has not fully transitioned to the burst state (Fig. 4c). Based on our improved 

Fisher information criterion, this is where we find *x , indicating that optimal estimation is 



achieved if the animal can maintain a distance near the location of a bifurcation to bursting in the 

population, where approximately half the units have transitioned to bursting (Fig. 4c).  

Our simple burst criterion is used as a means of assessing the relationship between 

bursting and optimal stimulus estimation, in addition to extending our analysis to stimulus 

conditions that cause significantly weaker firing rates (slower speeds or smaller spheres), where 

the theoretical analysis becomes less practical. This BF threshold of 0.3 was chosen based on our 

particular sample of the ON/OFF cell population under study and the choice of the burst fraction 

interval. In reality, we expect that downstream synapses in the midbrain are adapted to baseline 

burst statistics for a given decoding timescale ( t ) and that, unlike the hard-threshold used in 

our analysis, a soft dynamic threshold is more likely utilized in freely swimming fish. In addition 

to BF, encoding BF slope is also likely important. Stimulus intensity could be encoded as 

relative changes in BF, where the tonic and burst spikes are extracted by facilitating and 

depressing synaptic dynamics
11, 12

. However, these speculative ideas will require extensive 

further study and are beyond the scope of this paper. 
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