Supplementary material:

Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson's disease

Harriet Keane[†], Brent J. Ryan[†], Brendan Jackson, Alan Whitmore and Richard Wade-

Martins^{*}

Supplementary Figure 1: Expression of network targets is unaltered following MPP⁺ exposure.

Expression of networks targets was unaltered following MPP⁺ exposure. (**a**-**c**) Protein levels of network targets was assessed by western blot following MPP⁺ treatment (48 h, 100 μ M) (**d**) RNA was harvested from control and MPP⁺ treated cells and analysed using Human Gene 2.0 ST Arrays. Probe signal correlates with gene expression. mRNA expression of network targets was unaltered. (**e**-**g**) The effect of MPP⁺ on protein levels of network targets was quantified by western blots with band intensities normalised relative to actin. Bars represent mean ± SEM (n=3).

Supplementary Figure 2: MPP⁺ induces cell death in a time and dose dependent manner via mitochondrial membrane depolarisation.

Cellular viability following MPP⁺ treatment. (**a**) Cell viability was assessed by the MTS assay following MPP⁺ treatment. (**b** and **c**) Cell death was assessed by counting the number of morphologically normal cells in bright field images following MPP⁺ treatment. (20 x magnification, scale bar is 100 μ m). (**d**) MPP⁺ (100 μ M, 5h) increases lysosomal pH as assessed by neutral red accumulation. The vacuolar-type H⁺-ATPase inhibitor bafilomycin A1 (50 nm, 5h) was used as a positive control for lysosomal deacidification. (**e**) Cell viability was assessed by neutral red in normal or low glucose media following MPP⁺ treatment (100 μ M). (**f**) Cellular ATP was also measured in normal or low glucose media following MPP⁺

treatment (100 μ M). In low glucose, high galactose media there is no net release of ATP from glycolysis and energy production is entirely dependent on oxidative phosphorylation as evidenced by potentiation of MPP⁺ toxicity in low glucose conditions. (g) Mitochondrial membrane polarisation was measured using TMRM fluorescence following MPP⁺ treatment (5 or 100 μ M). Data points represent mean values normalised to untreated control cells ± SEM (n=3), *= P ≤0.05, ***=P ≤0.001 compared to untreated controls.

Supplementary Figure 3: Overexpression of GABARAP subfamily proteins.

Cells were transfected with GABARAP-EGFP subfamily fusion protein constructs. (**a**) Cells were imaged 72 h after transfection with either individual constructs or the combination of GABARAP, GBRL1 and GBRL2 (20 x magnification, scale bars are 70 μ m). (**b**) Fluorescent cells were counted and the proportion of fluorescent cells was calculated. Bars represent mean \pm SEM (n=3). (**c**) Extended blots (originally shown in *Figure 3b*) demonstrating both endogenous and GFP fusion forms of the GABARAP proteins 72 h after indicated transfection.

Supplementary Figure 4: MPP⁺ causes autophagosome accumulation associated with failed degradation.

Autophagic flux following MPP⁺ treatment measured using LC3B lipidation and pulse-chase assay. (**a** and **b**) Cells treated with MPP⁺ and/or bafilomycin were harvested 48 h after treatment. LC3B levels were measured by western blot and the ratio of LC3B-II to LC3B-I calculated. Bars represent mean \pm SEM (n=3), *= P ≤0.05. (**c**) The rate of protein degradation in 14C labelled cells was measured following treatment with MPP⁺ (100 µM) or rapamycin (1 µM), linear regression was performed and lines plotted.

Supplementary Table 1: Mitochondrial seed proteins.

Proteins which have independently been experimentally shown to contribute to mitochondrial dysfunction in an MPP⁺ model.

Supplementary Table 2: Autophagy seed proteins.

Proteins which have independently been experimentally shown to contribute to alterations in autophagy following MPP⁺ treatment.

Tables

Supplementary Table 1

Protein	Function
Heat shock protein 75 kDa	Phosphorylated by PINK1, mitochondrial analogue of Hsp90, binds to TNF type 1 receptor associated protein ⁴³ .
Dynamin-1-like protein	A key mediator of mitochondrial fission ⁴⁴ .
Transcription factor A, mitochondrial	Mitochondrial transcription factor. Pro-survival. Decreases ROS production ⁴⁵ .
Bax	Proapoptotic, cytosolic protein which insets into membranes upon apoptotic stimuli. Regulated by p53 ⁴⁶
Parkin	Ubiquitin ligase. Removes abnormally folded proteins. Downstream of PINK1. Important for mitochondrial fission ⁴⁷⁻⁴⁹ .
DJ-1	Removes reactive oxygen species. Involved of regulation of mitochondrial dynamics though DLP ^{50,51} .
HTRA2	Mitochondrial serine protease, relocates to cytosol leading to initiation of apoptosis ⁵² .
VDAC1	Voltage-gated anion channel, regulates ion transport between mitochondria and cytosol ⁵³ .
PINK1	A kinase important for the activation of parkin-mediated mitophagy, in addition to parkin-independent roles in mitochondrial dynamics ^{8,54}

Supplementary Table 2

Protein	Function
Microtubule-associated proteins 1A/1B light chain 3B (LC3b)	Lipidated upon the induction of autophagy and a key component of the autophagasome membrane ⁵⁵ .
LAMP2A	Lysosomal membrane glycoprotein, interacts with HSC70 to facilitate chaparone-mediataed autophagy (CMA) of substrates including α -syn. Post-translationally modified or mutant forms of α -syn impair CMA ^{56,57} .
Hsc70-interacting protein	An adaptor protein which facilitates the transport of CMA subtrates through LAMP2a. Hsc70 recognises a pentapeptide sequence to on CMA substrates ⁵⁸ .
Ambra1	Activator of autophagy stabilized by autophagic stimuli by disrupting cullin-4 interaction ⁵⁹
Beclin-1	An Atg6 orthologue important for initiation of autophagy. Beclin-1 has several domains facilitating its interaction with pro- autophagy/pro-apotosis molecules indicating its role in determination of cell fate ⁶⁰
UCHL1	Ubiquitin carboxy-terminal hydrolase L1, an enzyme abundant in neurons which catalyses the hydrolysis of C-terminal ubiquitin adducts, facitlitating ubiquitin monomer formation and hence ubiquitin dynamics ⁶¹
P35	Neuronal-specific CDK5 activator, regulation of protein activity occurs primarily through post-translational calpain cleavage ⁶²

Suplementary Figure 1

