TAL effectors mediate high-efficiency transposition of the *piggyBac* transposon in silkworm *Bombyx mori* L.

Lupeng Ye¹, Zhengying You¹, Qiujie Qian¹, Yuyu Zhang¹, Jiaqian Che¹, Jia Song¹ &

Boxiong Zhong¹*

¹College of Animal Sciences, Zhejiang University, Hangzhou 310058, P. R. China *Corresponding author. Tel:/Fax: +86-571-86971302; E-mail: bxzhong@zju.edu.cn

Supplementary Figure S1. Three-dimensional TALE-mediated transposition. (**a**) The occurrence of *PB* transposition within the same chromosome. (**b**) The occurrence of *PB* transposition between two different chromosomes. There are many "TTAAs" distributed throughout the genome, and the orange ellipses represent candidate "TTAAs" for transposition. TALE, transcription activator-like effector; *PB, piggyBac* transposon; *PBase, piggyBac* transposase.

Supplementary Figure S2. The target binding site of TALE. The target binding site of TALE is located on the first exon of the *Fibroin light chain* (*Fib-L*) gene (in the blue frame). The sequence in red is the recognition site of the engineered TALE; "TTAA" in the red frame is the candidate integration site of the *PB* transposon. The sequence above the blue dashed line is the first intron of the *Fib-L* gene (partial sequence).

Supplementary Figure S3. Amino acid sequence of the TALE-PBase fusion protein MAPKKKRKVGIHGVPMVDLRTLGYSQQQQEKIKPKGGRQSRSITKRWWVM GLHMPTSSLVAAPCSPWHGRRQVPGHDSALPEATHEAIVGVGKQWSGARALE ALLTVAGELRGPPLQLDTGQLLKIAKRGGVTAVEAVHAWRNALTGAPLNLTPE QVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETV QRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQV VAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQR LLPVLCQAHGLTPEQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAI ASNGGGKQAFGNRTTMLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLP VLCQAHGLTPEQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIAS HDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNGGGKQALETVQRLLPVL CQAHGLTPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDG GKQALETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQRLLPVLCQA HGLTPEQVVAIASNNGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNGGGRP **ALE**SIVAOLSRPDPALAALTNDHLVRWPASADDPPWMRLKKGLPHAPALIKRT NRRIPERTSHRVAGSMGCSLDDEHILSALLQSDDELVGEDSDSEISDHVSEDDV **QSDTEEAFIDEVHEVQPTSSGSEILDEQNVIEQPGSSLASNRILTLPQRTIRGKN** KHCWSTSKSTRRSRVSALNIVRSQRGPTRMCRNIYDPLLCFKLFFTDEIISEIVK WTNAEISLKRRESMTGATFRDTNEDEIYAFFGILVMTAVRKDNHMSTDDLFDR SLSMVYVSVMSRDRFDFLIRCLRMDDKSIRPTLRENDVFTPVRKIWDLFIHOCI QNYTPGAHLTIDEQLLGFRGRCPFRMYIPNKPSKYGIKILMMCDSGTKYMING **MPYLGRGTQTNGVPLGEYYVKELSKPVHGSCRNITCDNWFTSIPLAKNLLQE** PYKLTIVGTVRSNKREIPEVLKNSRSRPVGTSMFCFDGPLTLVSYKPKPAKMV YLLSSCDEDASINESTGKPQMVMYYNQTKGGVDTLDQMCSVMTCSRKTNR WPMALLYGMINIACINSFIIYSHNVSSKGEKVQSRKKFMRNLYMSLTSSFMRK RLEAPTLKRYLRDNISNILPNEVPGTSDDSTEEPVMKKRTYCTYCPSKIRRKAN ASCKKCKKVICREHNIDMCOSCF*

SV40 NLS TALE PBase

Supplementary Table S1. Statistical analysis of silkworm transposition efficiency

References (see last page)	Authors and publish time	Mating methods described in the papers	Transposition efficiency in the papers (%)	Transposition efficiency after calibration (%)
1	Tamura et	G0 moths are sibling	0.7 (3/424)	0.7
1	al., 2000	mated or backcrossed	3.9 (9/230)	3.9

in previous studies

	The second		25.8 (42/163)	12.9ª	
2	10mita et	G0 moths are	18.3 (24/131)	9.15ª	
	al., 2005	Intercrossed	27.6 (35/127)	13.8ª	
	T		2.7 (3/112)	1.35ª	
3		G0 moths are sibling	2.5 (3/121)	1.25ª	
	al., 2003	mated	11.2 (19/169)	5.06ª	
4	Adachi et	G0 moths are mated	19.2 (46/251)	0.14	
4	al., 2006	within the same family	18.3 (40/231)	9.1	
5	Hino et al.,	No description	12.4		
5	2006	No description	13.4	-	
6	Ogawa et	G0 moths are mated	7 88 (28/355)	3 00 ^a	
0	al., 2007	within the same family	7.88 (28/333)	3.33	
	Zhong et	C0 moths are	14.2 (46/324)	14.2	
7	21 2007	backgrossed	2.62 (7/267)	2.62	
	al., 2007	Udekelüsseu	1.72 (2/116)	1.72	
Q	Wen et al.,	G0 moths are mated	8.07 (13/161)	4.03ª	
0	2010	randomly	0 (0/112)	O^a	
	71	G0 moths are mated	1.47 (1/68)	1.47	
9	2010	with each other or	0.25 (1/400)	0.25	
	2010	backcrossed	6.58 (5/76)	6.58	
10	Zhuang et	G0 moths are	4.9 (18/367)	4.9	

	al., 2010	backcrossed	0 (0/32)	0
			18.5 (5/27)	18.5
11	Sato et al.,	G0 moths are mated	4.3 (7/162)	2.15ª
11	2012	with each other	23.4 (11/47)	11.7ª
			16.67 (1/6)	-
12	Jiang et al.,	GU moths are mated	20.00 (1/5)	-
12	2012	with each other of	61.54 (8/13)	-
		Dackerosseu	50.00 (1/2)	-
			17.20 (5/29)	8.60 ^a
	Jiang et al., 2013		5.88 (1/17)	2.94ª
12		G0 moths are sibling mated	7.69 (1/13)	3.85ª
15			7.17 (1/14)	3.59ª
			12.50 (1/8)	6.25ª
			8.33 (1/12)	4.17ª
			29.77 (39/131)	-
			18.49 (27/146)	-
	Liona et el	G0 moths are mated	27.50 (22/80)	-
14	2014	backcrossed to	13.56 (8/59)	-
	2014	nontransgenic moths	38.67 (29/75)	-
		nonuanogenie mouis	11.63 (5/43)	-
			9.68 (3/31)	-

			5.41 (2/37)	-	
15	Duan et al., 2013	G0 moths are backcrossed	5.3 (1/19)	5.3	
	W 1		42.9 (9/21)	21.4 ^a	
16	Wang et al.,	G0 moths are sibling	40.0 (8/20)	20.0ª	
	2015	mated	13.0 (3/23)	6.5ª	
17	Tan et al., 2013	G0 moths are backcrossed	12.6 (12/95)	12.6	
			57.61 (53/92)	57.61	
18	Ma et al., 2013	Female G0 moths are allowed to mate with uninjected male moths	21.21 (14/66)	21.21	
			2.00 (1/50)	2.00	
			32.28 (92/285)	32.28	
19	Deng et al., 2013	G0 moths are mated with each other	4.0 (5/126)	2.0ª	
	Truch a ta a t		8.9 (5/56)	-	
20	Tsubota et	No description	21.7 (13/60)	-	
	ul., 2014		11.4 (4/35)	-	
21	Xu et al.,	G0 moths are mated	25 (2/8)	12.5ª	
	2014	with each other			
22	Xu et al.,	G0 moths are mated	14.5 (16/110)	7.25ª	
22	2014	with each other	× -/	1.20	

|--|

Footnotes: ^a Transgenic G0 moths were mated with each other to generate G1 broods; the total G0 transgenic moths should include both male and female G0 moths, but in these studies, only G1 broods were counted (each G1 brood comes from a pair of male and female G0 moths) as the number of total G0 transgenic moths. Thus, the transposition efficiency is calibrated by halving the value.

"-", inappropriate for statistical analysis, because these studies did not clearly indicate how many G0 moths were mated with each other or backcrossed to wild-type moths.

Transgenic	Positive individual	Transgenic	Positive individual	
silkworm strains	number in broods	silkworm strains	number in broods	
ESNT-PB-HSA1	33	PB-HSA1	4	
ESNT-PB-HSA2	26	PB-HSA2	4	
ESNT-PB-HSA3	31	PB-HSA3	8	
ESNT-PB-HSA4	1	PB-HSA4	15	
ESNT-PB-HSA5	2	PB-HSA5	2	
ESNT-PB-HSA6	73	PB-HSA6	20	
ESNT-PB-HSA7	10	PB-HSA7	13	
ESNT-PB-HSA8	15	PB-HSA8	7	
ESNT-PB-HSA9	4	PB-HSA9	15	
ESNT-PB-HSA10	33	PB-HSA10	2	
ESNT-PB-HSA11	8	PB-HSA11	2	
ESNT-PB-HSA12	2	PB-HSA12	20	
ESNT-PB-HSA13	6	PB-HSA13	11	
ESNT-PB-HSA14	11	PB-HSA14	9	
ESNT-PB-HSA15	14	PB-HSA15	2	
ESNT-PB-HSA16	7	PB-HSA16	1	
ESNT-PB-HSA17	53	PB-HSA17	72	
ESNT-PB-HSA18	34	PB-HSA18	7	

Supplementary Table S2. The number of positive silkworms in each brood

ESNT-PB-HSA19	2	PB-HSA19	3
ESNT-PB-HSA20	8	PB-HSA20	2
ESNT-PB-HSA21	6	PB-HSA21	35
ESNT-PB-HSA22	1		
ESNT-PB-HSA23	1		
ESNT-PB-HSA24	41		
ESNT-PB-HSA25	5		
ESNT-PB-HSA26	8		
ESNT-PB-HSA27	2		
ESNT-PB-HSA28	75		
ESNT-PB-HSA29	3		
ESNT-PB-HSA30	2		
ESNT-PB-HSA31	9		
ESNT-PB-HSA32	3		
ESNT-PB-HSA33	1		
ESNT-PB-HSA34	20		
ESNT-PB-HSA35	5		
ESNT-PB-HSA36	1		
ESNT-PB-HSA37	75		
ESNT-PB-HSA38	28		
ESNT-PB-HSA39	12		

ESNT-PB-HSA40	4	
ESNT-PB-HSA41	32	
ESNT-PB-HSA42	18	
ESNT-PB-HSA43	2	
ESNT-PB-HSA44	23	
ESNT-PB-HSA45	5	
ESNT-PB-HSA46	10	
ESNT-PB-HSA47	11	
ESNT-PB-HSA48	45	
ESNT-PB-HSA49	92	
ESNT-PB-HSA50	4	
ESNT-PB-HSA51	4	
Average number		
of positive	18 1	12.1
individuals in	10.1	12.1
broods		

Supplementary	7 Table S3	. Insertion sites	of ESNT-PB	-200a and E	SNT-PB-20)b series tran	sgenic strains

Transgenic	Hit chromosome	Hit scaffold	Insertion	5'-flanking genomic DNA	Vector	3'-flanking genomic DNA
strains	position	position	position	sequence	vector	sequence
ESNT-PB-200a1	Chr25	144	Intergenic	ATTCGATGTACC <u>TTAA</u>	piggyBac	<u>TTAA</u> ACTTTTATGTATT
ESNT-PB-200a3	Chr19	36	Intron	AGACAATTTACA <u>TTAA</u>	piggyBac	<u>TTAA</u> CATTCTTTTTAA
ESNT-PB-200a4	Chr18	2	Intergenic	AGTTTTTTATACT <u>TTAA</u>	piggyBac	TTAAATAAATGGCTCT
ESNT-PB-200a5a	Chr3	63	Exon	GCAGGTCCTCAA <u>TTAA</u>	piggyBac	TTAAAAGCCGTATCG
ESNT-PB-200a5b	Not clear	293	Intergenic	GCTATTTACGAAT <u>TTAA</u>	piggyBac	<u>TTAA</u> AATAATTATTCG
ESNT-PB-200a6a	Chr7	45	Intergenic	CAGTTTTTGCT <u>TTAA</u>	piggyBac	<u>TTAA</u> TTTTGTACGTAT
ESNT-PB-200a6b	Chr9	87	Intron	AAATCTGGTTTT <u>TTAA</u>	piggyBac	<u>TTAA</u> AGAAGATACG
ESNT-PB-200a7a	Chr22	69	Intergenic	GTGTGAAGTAG <u>TTAA</u>	piggyBac	TTAAATAAAAATGTC
ESNT-PB-200a7b	Chr18	2	Intergenic	GTTTTGATGTTA <u>TTAA</u>	piggyBac	TTAAGGCTGTCCGC

ESNT-PB-200a8	Chr18	2	Intron	TAAACATTGACA <u>TTAA</u>	piggyBac	TTAA TACCTAGTCGA
ESNT-PB-200a9a	Chr11	16	Intron	ACGTCAGCTATG <u>TTAA</u>	piggyBac	TTAACGATGGATTTG
ESNT-PB-200a9b	Chr4	5	Intergenic	ACACTTAAGTATC <u>TTAA</u>	piggyBac	<u>TTAA</u> GGTAGCGTCA
ESNT-PB-200a10a	Chr11	24	Intergenic	AGCTTATCTATATA <u>TTAA</u>	piggyBac	<u>TTAA</u> TACGTGGCAA
ESNT-PB-200a10b	Chr13	1	Intergenic	ATGCCAAATACC <u>TTAA</u>	piggyBac	<u>TTAA</u> ATAAAACATAC
ESNT-PB-200a12 —	Not clear	317	Intron	CACTACTCACCT <u>TTAA</u>	piggyBac	TTAAGGATGAAGCCA
	Chr25	89	Intron	GATCTATCTTATC <u>TTAA</u>	piggyBac	<u>TTAA</u> ATTAGATTGAA
ESNT-PB-200a13	Chr3	17	Intergenic	ACAGTTTTCATAT <u>TTAA</u>	piggyBac	<u>TTAA</u> CTAGATTTTTA
ESNT-PB-200a14	Chr23	31	Exon	TGTTCCAACCGA <u>TTAA</u>	piggyBac	TTAA ATATTCTCTTC
ESNT DD 2000150	Chr9	41	Intergenic	TCGCTGAATAATT <u>TTAA</u>	piggyBac	TTAA TCATCTAAGATA
ESINT-PB-2008158	Chr11	16	Intergenic	CCATAGTTGCAT <u>TTAA</u>	piggyBac	TTAAAGACATCTATC
ESNT-PB-200a16	Not clear	165	Intron	ATAAAAACAACA <u>TTAA</u>	piggyBac	<u>TTAA</u> ATTTGTACAGTT

ESNT-PB-200a17a	Chr25	144	Intergenic	ATTCGATGTACC <u>TTAA</u>	piggyBac	<u>TTAA</u> ACTTTTATGTAT
	Chr12	6	Intron	ACCCCCCGACA <u>TTAA</u>	piggyBac	<u>TTAA</u> TACTCACAATA
ESNT-PB-200a17b	Chr3	17	Intergenic	TAAAAGCATTT <u>TTAA</u>	piggyBac	TTAA TTATGATTCTTA
	Chr25	89	Intergenic	ATTTGATATTAT <u>TTAA</u>	piggyBac	TTAAGTAGCAACGCT
ESNT-PB-200a18	Chr7	136	Intron	ATATTGCTTTGC <u>TTAA</u>	piggyBac	TTAA GGCTTCGTCAA
ESNT-PB-200a19	Chr16	124	Intron	CACTGTAGCTCT <u>TTAA</u>	piggyBac	TTAATTATAAACACAC
ESNT-PB-200a20	Chr21	7	Intergenic	TTTGGCTTCGTAA <u>TTAA</u>	piggyBac	TTAACGAAGAGTCCT
ESNT-PB-200a21	Chr26	34	Intergenic	TCATTGCACCTA <u>TTAA</u>	piggyBac	TTAA TAGCCCGGTAC
ESNT-PB-200a23	Chr5	54	Exon	GTAAATAGTTTG <u>TTAA</u>	piggyBac	<u>TTAA</u> ATAAATGTTATT
ESNT-PB-200a24	Chr7	15	Intron	AGTTTTTTTTTTT <u>TTAA</u>	piggyBac	<u>TTAA</u> TGAATAGAGAC
ESNT-PB-200a25	Chr12	6	Intergenic	TAAAGTGTTGT <u>TTAA</u>	piggyBac	TTAA TGGTCTTAAAAA
ESNT-PB-200a26	Chr14	81	Intergenic	AACAATAATAT <u>TTAA</u>	piggyBac	<u>TTAA</u> CAAAAGCATTTA

ESNT-PB-200a27	Chr22	133	Intron	GTAAAGCTGCT <u>TTAA</u>	piggyBac	<u>TTAA</u> CGTGTATTCAGA
ESNT-PB-200a28	Chr18	2	Intergenic	AATGCGCTACT <u>TTAA</u>	piggyBac	<u>TTAA</u> TGACTTATAATAT
ESNT-PB-200a29a	Chr16	4	Intergenic	ACCATGTGTAAC <u>TTAA</u>	piggyBac	TTAAAAACACTCTTGT
ESNT-PB-200a29b	Chr6	49	Intergenic	ACTCAGGGAGT <u>TTAA</u>	piggyBac	TTAA TGGAGAAGGTAG
ESNT-PB-200a30	Chr2	27	Intergenic	TTATAATGTGATA <u>TTAA</u>	piggyBac	TTAA TGAATTTTGTTTT
ESNT-PB-200a31	Chr19	60	Intergenic	TTTCCTTATTAT <u>TTAA</u>	piggyBac	TTAAACTGCGTCAGAC
ESNT-PB-200a32a	Chr28	47	Intergenic	TGGCATTTGCTC <u>TTAA</u>	piggyBac	TTAAAGAAAGGCCGT
ESNT-PB-200a32b	Not clear	228	Intergenic	ATATTATTTACTT <u>TTAA</u>	piggyBac	TTAAAGACACGGACG
ESNT-PB-200a33	Chr22	18	Intergenic	CTAAACATGGC <u>TTAA</u>	piggyBac	<u>TTAA</u> ATAAATAAGGGT
ESNT-PB-200a34a	Chr24	43	Intergenic	TAATTCACGTAT <u>TTAA</u>	piggyBac	<u>TTAA</u> ACAAGTTATTTA
ESNT-PB-200a34b	Chr12	119	Intron	GAGACTGTTCTT <u>TTAA</u>	piggyBac	TTAAATTCTAAATAAT
ESNT-PB-200a35a	Chr1	26	Intergenic	TAACAATTTTGT <u>TTAA</u>	piggyBac	TTAAAGAAATCGGCT

ESNT-PB-200a35b	Chr12	6	Intergenic	CTATTAGGTACT <u>TTAA</u>	piggyBac	TTAAATAATCGTTTTC
ESNT-PB-200a36	Chr15	64	Intergenic	CCTCCTGATCCA <u>TTAA</u>	piggyBac	<u>TTAA</u> CGGTGCTTTTA
ESNT-PB-200a37	Chr20	99	Intergenic	TGTTTCGCTTCTG <u>TTAA</u>	piggyBac	<u>TTAA</u> TGAAAATAACC
ESNT-PB-200b1	Chr13	1	Intergenic	TTCATTATATGT <u>TTAA</u>	piggyBac	TTAAATACAAAGACTC
ESNT-PB-200b2	Chr15	42	Intron	ACAGTGCCAATT <u>TTAA</u>	piggyBac	<u>TTAA</u> AAAAAATGTATT
ESNT-PB-200b4	Chr20	99	Intergenic	ATTCTGGCAGCT <u>TTAA</u>	piggyBac	TTAA TAACAATTGTAT
ESNT-PB-200b5	Chr18	2	Intron	GGATCTACACTA <u>TTAA</u>	piggyBac	TTAAATTAATAGGGTT
ESNT-PB-200b6	Chr9	77	Intron	CCTTTAATATTGC <u>TTAA</u>	piggyBac	<u>TTAA</u> TTGAATGCGAA
ESNT-PB-200b7	Chr19	60	Intergenic	TTTCCTTATTAT <u>TTAA</u>	piggyBac	TTAAACTGCGTCAGAC
ESNT-PB-200b8	Chr8	58	Intergenic	ACGTGAACTACT <u>TTAA</u>	piggyBac	TTAATTATTCACAGTC
ESNT-PB-200b10	Chr15	3	Intergenic	ATCGTGAAAAGC <u>TTAA</u>	piggyBac	<u>TTAA</u> AGCATAAACTA
ESNT-PB-200b11	Chr11	16	Intergenic	ACCGTTAACGCCA <u>TTAA</u>	piggyBac	TTAACACAGAATCTT

ESNT-PB-200b12	Chr1	142	Intergenic	TTACAAAACCATC <u>TTAA</u>	piggyBac	TTAAAGCCAATATGG
ESNT-PB-200b13	Chr8	19	Exon	TTATGATATTTGTT <u>TTAA</u>	piggyBac	<u>TTAA</u> GTTTGTAAT
ESNT-PB-200b14	Not clear	192	Intergenic	TGATAAAACTGTA <u>TTAA</u>	piggyBac	<u>TTAA</u> AATATTTTTGAC
ESNT-PB-200b15	Chr15	3	Intergenic	CTTGATAACTTGT <u>TTAA</u>	piggyBac	TTAAAGGATTCTTTAG
ESNT-PB-200b16 —	Chr18	2	Intron	TATGCATACATAC <u>TTAA</u>	piggyBac	TTAAGGTCAATCGGG
	Chr21	7	Intergenic	CAACTAACCGCT <u>TTAA</u>	piggyBac	<u>TTAA</u> AGACACAACAA
ESNT-PB-200b17	Chr22	61	Intergenic	GTTGTGTTGTTT <u>TTAA</u>	piggyBac	<u>TTAA</u> AACGGTTTTTT
ESNT-PB-200b18	Chr14	81	Intergenic	TTAAAACATTTTT <u>TTAA</u>	piggyBac	TTAAATAAGTAATTTC
ESNT-PB-200b19	Chr17	114	Intergenic	CAACAATGTCGC <u>TTAA</u>	piggyBac	TTAAACTTAATAGCCT
ESNT-PB-200b20	Chr21	181	Intergenic	AATCACTATTATG <u>TTAA</u>	piggyBac	<u>TTAA</u> TTGGTGTTGGAT
ESNT-PB-200b21	Chr15	64	Intron	CGGTACGTTTGTG <u>TTAA</u>	piggyBac	TTAACTAGTTCGCGC
ESNT-PB-200b22	Chr17	154	Exon	ATGCAAAACACT <u>TTAA</u>	piggyBac	<u>TTAA</u> TGAGTATTGATA

ESNT-PB-200b23a	Chr9	14	Intergenic	TCAAAGGCAACA <u>TTAA</u>	piggyBac	TTAAGGGAACGTACC
ESNT-PB-200b23b	Chr4	13	Intergenic	CAGTGTTTGTTT <u>TTAA</u>	piggyBac	<u>TTAA</u> AAAAAAAAAAAA

References

- 1 Tamura, T. *et al.* Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. *Nat Biotechnol* **18**, 81-84 (2000).
- 2 Tomita, M. *et al.* Transgenic silkworms produce recombinant human type III procollagen in cocoons. *Nat Biotechnol* **21**, 52-56 (2003).
- 3 Imamura, M. *et al.* Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. *Genetics* **165**, 1329-1340 (2003).
- Adachi, T., Tomita, M., Shimizu, K., Ogawa, S. & Yoshizato, K. Generation of hybrid transgenic silkworms that express Bombyx mori prolyl-hydroxylase alpha-subunits and human collagens in posterior silk glands: Production of cocoons that contained collagens with hydroxylated proline residues. *J Biotechnol* **126**, 205-219 (2006).
- Hino, R., Tomita, M. & Yoshizato, K. The generation of germline transgenic silkworms for the production of biologically active recombinant fusion proteins of fibroin and human basic fibroblast growth factor. *Biomaterials* 27, 5715-5724 (2006).
- Ogawa, S., Tomita, M., Shimizu, K. & Yoshizato, K. Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. *J Biotechnol* 128, 531-544 (2007).
- Zhong, B., Li, J., Chen, J., Ye, J. & Yu, S. Comparison of transformationefficiency of piggyBac transposon among three different silkworm Bombyx

mori Strains. Acta Biochim Biophys Sin (Shanghai) 39, 117-122 (2007).

- 8 Wen, H. *et al.* Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. *Mol Biol Rep* **37**, 1815-1821 (2010).
- Zhao, A. C. *et al.* New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm.
 Transgenic Res 19, 29-44 (2010).
- 10 Zhuang, L., Wei, H., Lu, C. & Zhong, B. The relationship between internal domain sequences of piggyBac and its transposition efficiency in BmN cells and Bombyx mori. *Acta Biochim Biophys Sin (Shanghai)* **42**, 426-431 (2010).
- Sato, M. *et al.* Production of scFv-Conjugated Affinity Silk Powder by
 Transgenic Silkworm Technology. *PLoS One* 7 (2012).
- Jiang, L. *et al.* Resistance to BmNPV via Overexpression of an Exogenous
 Gene Controlled by an Inducible Promoter and Enhancer in Transgenic
 Silkworm, Bombyx mori. *PLoS One* 7 (2012).
- Jiang, L. *et al.* Identification of a midgut-specific promoter in the silkworm
 Bombyx mori. *Biochem Bioph Res Co* 433, 542-546 (2013).
- Jiang, L. *et al.* Postintegration stability of the silkworm piggyBac transposon.
 Insect Biochem Molec 50, 18-23 (2014).
- Duan, J. P. *et al.* Novel female-specific trans-spliced and alternative splice
 forms of dsx in the silkworm Bombyx mori. *Biochem Bioph Res Co* 431,
 630-635 (2013).
- 16 Wang, F. et al. An optimized sericin-1 expression system for mass-producing

recombinant proteins in the middle silk glands of transgenic silkworms.

Transgenic Res 22, 925-938 (2013).

- Tan, A. J. *et al.* Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori. *P Natl Acad Sci USA* 110, 6766-6770 (2013).
- 18 Ma, S. Y. *et al.* Genetic marking of sex using a W chromosome-linked transgene. *Insect Biochem Molec* **43**, 1079-1086 (2013).
- Deng, D. J. *et al.* The promoter of Bmlp3 gene can direct fat body-specific expression in the transgenic silkworm, Bombyx mori. *Transgenic Res* 22, 1055-1063 (2013).
- Tsubota, T. *et al.* Establishment of transgenic silkworms expressing GAL4
 specifically in the haemocyte oenocytoid cells. *Insect Molecular Biology* 23, 165-174 (2014).
- Xu, H. F. *et al.* Overexpression and functional characterization of an
 Aspergillus niger phytase in the fat body of transgenic silkworm, Bombyx
 mori. *Transgenic Res* 23, 669-677 (2014).
- Xu, H. F. *et al.* Overexpression of recombinant infectious bursal disease virus (IBDV) capsid protein VP2 in the middle silk gland of transgenic silkworm.
 Transgenic Res 23, 809-816 (2014).