Supplementary Materials for “IsoDOT Detects Differential RN A-isoform Usage
with respect to a Categorical or Continuous Covariate with High Sensitivity and
Specificity”

A Calculation of effective length

An RNA-seq fragment is a segment of RNA to be sequenced. Usually only part of an
RNA-seq fragment is sequenced: one end or both ends, hence single-end sequencing or
paired-end sequencing. All the discussions in this section are for paired-end reads, though
the extension to single-end reads is straightforward. The minimum fragment size is the
read length, denoted by d. This happens when the two reads of a fragment completely
overlap. We impose an upper bound for the fragment length based on prior knowledge of
the experimental procedure and denote the upper bound by lj;. Then the fragment length
[ satisfies d < I < lp;. We denote the distribution of the fragment length for sample i by

©i(1), which can be calculated using observed read alignment information.

For the i-th sample, the effective length of exon j of r; base pairs (bps) is
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If r; < d, the exon is shorter than the shortest fragment length, and thus the effective
length of this exon is 0. In other words, no RNA-seq fragment is expected to overlap and
only overlap with this exon. If r; > d, the effective length is r; +1 — [, i.e., there are
r; +1 — 1 distinct RNA-seq fragments that can be sequenced from this exon (Figure 1).
Then Z?;ig(rj’lM ) ©;i(1)(rj +1—1) is summation across all likely fragment lengths, weighted
by the probability of having fragment length .

In the following discussions, to simplify the notation, we skip the subscript of 7. For
two exons j and k (j < k) of lengths r; and 7y, which are adjacent in the transcript, the

effective length for the fragments that cover both exons is

Nk = Frj +red I, ©) = ngy — Mgy (1)



Figure 1: An illustration of effective length calculation for an exon of r; bps and RNA-
seq fragment of [ bps. The orange box indicates the exon, and the black lines above the
orange box indicate two RNA-seq fragments, while each RNA-seq fragment is sequenced
by a paired-end read. There are 7; + 1 — [ distinct choices to select an RNA-seq fragment
of [ bps from this exon, and thus the effective length is r; +1 —[.

For three exons j, h, and k (j < h < k) of lengths 7, r, and 7, which are adjacent in the

transcript, the effective length for the fragments that cover all three exons is

NGy = Fri+7rn+7rd ) = nGay — Mnky = MG,k — TG — Ty — Mk}

where 7¢; )} is the effective length in the scenario that the transcript covers consecutive

exons 7, h, and k, whereas the observed paired-end read only covers exons j and k.
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where Ry = {(rj,rp,71) : 75 < dorry < dorry,+2d> Iy}, and §; = min(r;,l —r, —
d) — max(d,l — rp — r) + 1. The above formula is derived by the following arguments.
Let I; and [}, be the lengths of the parts of the fragment that overlaps with exon j and
k, respectively. Given [, the restriction of I; and [}, are | = l; + I, + 7, d < 1; < 7}, and
d <l <1, and thus the range of I; is max(d,l — r, — ) < l; < min(rj,l —r, — d). For
more than 3 consecutive exons, the effective lengths can be calculated using recursive calls

to the above equations.

In practice, a few sequence fragments may be observed even when the effective length is
zero, which may be due to sequencing errors. To improve the robustness of our method, we

modify the design matrix X by adding a pre-determined constant eLenMin to each element

of X.



B Selection of candidate isoforms

For each gene, we select a set of candidate isoforms given the fragment counts at each exon
set. We define a start exon as an exon that is only connected to downstream exons and an
end exon as an exon that is only connected to upstream exons. An initial set of start and

end exons can be identified simply by examining the observed exon sets.

Next, we seek to find more start and end exons by identifying break points where the
read-depth of two adjacent exons are different. Specifically, suppose the gene of interest has
h exons. Let yg;y be the number of fragments overlapping the kth exon of this gene. We
apply a Pearson chi-squared test to assess whether the frequency distribution of y;_1y and
Yk} is significantly different from theoretical expectation based on their effective lengths.
For £k = 2, ..., h, there are h — 1 possible break points, which correspond to h — 1 p-
values: pBy, ..., pB;,. We order those possible break points by the corresponding p-values

in ascending order and select the top

h
min (maxBreaks, ZI(ka < pvalBreaks)>
k=2

break points, where I(-) is an indicator function, maxBreaks and pvalBreaks are two pre-
set parameters. maxBreaks is the maximum number of break points, with default value
5, and pvalBreaks is a p-value cutoff, with default value 0.05. If the k-th break points is
selected, the (k — 1)th exon is added to the set of start exons and the kth exon is added to
the set of end exons. After identifying all possible start and end exons, we can construct

all isoforms that have consecutive exons.

For each exon set, we assign a p-value to quantify whether it is expressed. Suppose there
are nr fragments for the gene of interest and among them n; fragments are from the jth
exon set. Then the expression p-value is pE; = pbinom(n;, nr,l;/Ir), where pbinom(-, n, )
is cumulative binomial distribution function with n trials and probability of success =, I;
is the effective length of the jth exon set, and [ is the total effective length of this gene.
We claim the jth exon set is expressed if
nilly.

PE; > pvalExpress and
nr / lT

> foldExpress,

where pvalExpress and foldExpress are two pre-set parameters, with default values 0.01

and 1/5, respectively.



Finally, we select all the expressed exon sets that harbor at least on exon-skipping
event, and order them by the pE; in a descending order. Then for each of these ordered
exon sets, we construct new RNA-isoforms by inserting this exon set into each existing
isoform if this exon set is compatible with the isoform. We stop adding more isoforms if
either

q/m > pMaxRel or q > pMaxAbs

where ¢ is the number of isoforms, pMaxRel and pMaxAbs are pre-set parameters with de-
fault values 10 and 2000, respectively. In oder words, we allow the number of isoforms to
be at most 10 times the number of exon sets and the total number of isoforms to be at
most 2000. Users can change these default values. Our penalized regression can handle
the situation pMaxRel=100 and pMaxAbs=100,000; however it may significantly reduce the

computational efficiency.

C Model fitting of the penalized negative binomial regression
Let f(ys; pi, @) be the density function for a negative binomial distribution with mean y;

and dispersion parameter ¢ (hence variance p; + ¢u?):

oo Twi+1/9) 1 1/¢ o\ Y
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As ¢ — 0, f(yi;pi, ) converges to Poisson distribution with mean p;. While all the

following discussions focus on negative binomial distribution, they can be easily extended
to Poisson situation and we omit the details here. Using negative binomial distribution,
the log likelihood is

Uy pd) — ;[log (P} wwtos (2 ) = Slos1+ o] . @

where y = (21,...,2,) ", = (i1, ..., i) T, and n indicates sample size. We further assume

i = 25-121 x;jb;, where b; > 0, and maximize the penalized log likelihood

j=1

where ¢q(bj) = Alog(b; + 7), and A and 7 are two tuning parameters. In contrast to

conventional penalized GLM, we employ a non-canonical link function, does not use an



intercept, and impose a set of constraints that b; > 0 for j = 1,2,...,J. We maximize
the likelihood by iteratively updating regression coefficients b; and dispersion parameter
¢. Following Friedman et al. [1], we approximate the likelihood part in equation (4) by a

quadratic approximation:

2
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where w; = 1/ (4 + ¢i?), and f; is the estimate of y1; in the previous iteration. Then to

solve b, we just need to solve the following penalized least squares problem.
2
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subject to the constraints of b; > 0 for 1 < j < J. We employ a modified Iterative Adaptive
Lasso (IAL) algorithm [2] to solve this problem. Given estimates of b; (1 < j < p), ¢ can

be re-estimated by maximizing the conditional likelihood of ¢.

Specifically, the implementation includes the following four levels of loops:

e OUTER LOOP: Iterate across all combinations of tuning parameter A\, and 7,.

e MIDDLE LOOP 1: This corresponds to the loop of iteratively update b; (1 < j < p)
and ¢. For each given ¢, we carry out the next two nested loops to estimate b; and

then re-estimate ¢.

e MIDDLE LOOP 2: This corresponds to the loop of IRLS (Iterative Re-weighted Least

Squares). Update the quadratic approximation lg using current estimate of b; (1 <
J <p)and ¢.

e INNER LOOP: Run the modified IAL to re-estimate b; (1 < j < p) on the penalized

weighted least squares problem.

The modified TAL algorithm is as follows. It is different from the IAL [2] in that
the regression coefficients need to be non-negative and we remove the step of estimating

residual variance to improve the computational efficiency and robustness.



1. INITIALIZATION: initialize b; with zero’s or estimate from previous IRLS iteration,
and initialize k; = (bj + 7)/A, where 1 < j <p.

2. Iterative Updates:

(a) For j =1,...,p, update b;,

)

where

(b) Update k;: k; = (bj +7)/A.

This IAL algorithm is converged if the coefficient estimates 131, o l;p have little change.

Tuning parameter selection is a crucial step for any penalization method. We select the
tuning parameters A and 7 by a two-dimensional grid search. By default, we search across
10 values of A and 3 values of 7, which are 30 tuning parameter combinations. Larger A
and smaller 7 leads to stronger penalty, and thus we first choose the ratio \/7’s so that
they are uniformly distributed in log scale and the largest A/7 is large enough to penalize
all coefficients to 0. Then 7’s are chosen so that they are uniformly distributed in log scale
with largest 7 being 0.1. Finally for each ratio r = A/7 and for each 7, A can be calculated
as r7. Simulations show that the results are similar if we carry out grid search for 500 or

50 tuning parameter combinations.

Through the two-dimensional grid search, we choose the combination of A and 7 that
minimizes BIC or extended BIC [3] if n > p or n < p, respectively. If we only study
the expression of known RNA isoforms, p is often smaller than n (e.g., see Supplementary
Figure 4), and thus BIC is used. In contrast, if we detect de novo RNA isoforms, p is
often larger than n (e.g., see Supplementary Figure 5), and thus extended BIC is used. For
hypothesis testing of the isoform usage, the rule (BIC or extended BIC) is chosen based
on the alternative model and the same rule is applied to the null model. More specifically,
BIC is defined as

BIC = —2I(0) + slog(n),



where l(é) is log likelihood given parameter estimates O, s is the number of non-zero
coefficients after variable selection, and n is sample size. Following Chen and Chen (2012)
[3], the extended BIC is defined as

extBIC = —2[(0) + slog(n) + 2vlog p,

where 0 <y < 1—1/(2k) given p = O(n"). In our simulation and real data studies, since
we restrict the number of covariates p < 10n, we set kK = 1 and choose v = 1/2. Tuning
parameter selection is an active research area and we do not claim our approach is optimal.
However our hypothesis-testing framework rely on parametric bootstrap to resample RNA-
seq read counts to calculate p-values. This resampling-based p-value calculation is robust
to bias due to suboptimal tuning parameters because any bias that influences the null
distribution of the test statistic can be captured through resampling. On the other hand,

optimal tuning parameter selection may improve the power of our method.



D Mouse haploperidol treatment experiment

Ethics Statement. All animal work was conducted in compliance with the “Guide for

the Care and Use of Laboratory Animals” (Institute of Laboratory Animal Resources, Na-
tional Research Council, 1996) and approved by the Institutional Animal Care and Use

Committee of the University of North Carolina.

Animals. The mice used in this study were N=2 inbred C57BL/6J females (one placebo
treated, one drug treated) and N=2 (12951Sv/ImJ x PWK/PhJ)F1 females (one placebo
treated, one drug treated). All animals were bred at UNC from mice that were less than
6 generations removed from founders acquired from the Jackson Laboratory (Bar Harbor,
ME). Animals were maintained on a 14 hour light, 10 hour dark schedule with lights on at
0600. The housing room was maintained at 20-24C with 40-50% relative humidity. Mice
were housed in standard 20cm x 30cm ventilated polysulfone cages with laboratory grade
Bed-O-Cob bedding. Water and Purina Prolab RMH3000 were available ad libitum. A

small section of PVC pipe was present in each cage for enrichment.

Drug treatment. Slow release haloperidol pellets (3.0 mg/kg/day; Innovative Research

of America; Sarasota, FL)[4] were implanted subcutaneously with a trocar at 8 weeks of
age. Blood plasma was collected via tail nick for a drug concentration assay after 30 days
of exposure to haloperidol. Steady-state concentration of haloperidol within the clinically
relevant range (10-50 nanomoles/L, nM, or 3.75-19 ng/ml)[5] was achieved for both drug
treated animals (C57BL/6J: 19nM, (129S1Sv/ImJ x PWK/PhJ)F1: 24 nM).

Tissue collection. Mice were sacrificed at 12 weeks of age (following 30 days of drug
or placebo treatment) by cervical dislocation without anesthesia to avoid its confounding
effects on gene expression. Mice were removed from their home cages at 9:00 AM and sac-
rificed between 10:00 AM and 12:00 PM. Whole brain was rapidly collected, snap frozen
in liquid nitrogen, and pulverized to a fine powder using a BioPulverizer unit (BioSpec
Products, Bartlesville, OK).

RNA extraction. Total RNA was extracted from ~25 mg of tissue powder using auto-
mated instrumentation (Maxwell 16 Tissue LEV Total RNA Purification Kit, Promega,

Madison, WI). RNA concentration was measured by fluorometry (Qubit 2.0 Fluorometer,

Life Technologies Corp., Carlsbad, CA) and RNA quality was verified using a microfluidics



platform (Bioanalyzer, Agilent Technologies, Santa Clara, CA).

RNAseq methods. A multiplex library containing all four samples was prepared us-

ing the Illumina (San Diego, CA) TruSeq mRNA Sample Preparation Kit v2 with unique
indexed adapters (GCCAAT, ACAGTG, CTTGTA, CAGATC). One microgram of total
RNA per sample was used as input and the resulting libraries were quantitated using fluo-
rometry. An Illumina HiSeq 2000 instrument was used to generate 100bp paired-end reads

(2x100) in one lane of a flow cell.

For the C57BL/6J inbred mice, the mm9 reference was used for alignment. For the
F1 animals, we developed a customized RNAseq alignment pipeline tailored to this exper-
iment. Our approach considered these mice as diploid and included two separate align-
ments that were subsequently merged. This has the advantage of incorporating all known
strain-specific genetic variants into the alignment reference sequence to improve alignment
quality and to minimize bias caused by differences in genetic distance between the parental
genomes to the reference sequence. First, reads from the F1 hybrids were aligned to the
appropriate 'pseudogenomes’ representing each of the parental genomes using TopHat[6]
(v1.4, default parameters including segment length 25 bp, 2 mismatches allowed per seg-
ment, 2 mismatches total allowed per 100 bp read, and maximum indel of 3 bases). Pseu-
dogenomes are approximations constructed by incorporating all known SNPs and indels
into the C57BL/6 genome (mm9)[7]. We included all variants reported by a large-scale se-
quencing effort that included 12951Sv/ImJ and PWK/PhJ[8] (June 2011 release). Second,
we mapped coordinates from the pseudogenome aligned reads to mm9 coordinates. This
involved updating the alignment positions and rewriting the CIGAR strings of each aligned
read[9]. This was necessary as indels alter the pseudogenome coordinates relative to mm9.
Third, we annotated each aligned read to indicate the numbers of maternal and paternal
alleles (SNPs and indels) observed in a given read and its paired-end mate. Considering
the paired-end mates allowed the use of more paired-end reads for ASE. Finally, alignments
to maternal and paternal pseudogenomes were merged by computing the proper union of
the separate alignments (i.e., the two alignments were combined such that a read aligning

to the same position in both alignments was counted once).



E Massively Parallel Computing for ISODETECTOR

In practice, the penalized estimation in ISODETECTOR is performed on a grid of A and
7 and the best estimate is chosen according to certain model selection criterion such as
BIC. For hypothesis testing purpose, this tuning process has to be done on thousands
of bootstrap samples for each gene, which incurs formidable computation burden in real
applications. Massively parallel computing based on graphical processing units (GPUs)
provides a promising solution. However the coordinate descent based algorithm does not
particularly suit the massively parallel computing architecture. Here we propose an algo-
rithm based on the minorization-maximization (MM) principle. Like EM algorithm, MM
algorithm always increases the objective value and thus is numerically stable. Furthermore,
MM algorithm tends to separate variables, making massively parallel computing feasible

in high dimensional optimization problems [10].

Consider the log likelihood of a negative binomial model with response vector y € N”
and design matrix X € R™"*P

n —1
{0,613 %) =3 [1og 1 4y log(oxTb) — (i + 6~ log(1 + 6xT)|.

i=1
where ¢ is the overdispersion parameter of negative binomial distribution, and (gf)_l)(yi)
denotes the rising factorial HZ":_OI(¢*1 +k)=¢ Yot +1)..(¢7t +yi — 1). We assume
that entries of X are nonnegative which is true for isoform estimation problem. To simul-
taneously achieve isoform selection and estimation, ISODETECTOR relies on log penalized
estimation due to its attractive properties. In particular we seek to maximize the penalized

objective function

f(b,¢) =l(b,¢ |y, X) =) Alog(b; + 1), (5)

J=1

where A and 7 are two tuning parameters, subject to the nonnegativity constraint b; > 0.

The derivation of MM algorithm for maximizing (5) relies on simple inequalities [11].

The strategy is to minorize term by term. By concavity of log function,

log(xb) = log Z xijb§t) > Z wg) log b; + ¢!V,
J J

10



where the superscript ¢ indicates iteration number and c¢(*) is a constant irrelevant to

optimization, and
(t
0 _ _ Tib
] )"
22 ijb;

By the convexity of negative log function, we apply supporting hyperplane inequality to

obtain minorizations

¢X3b

b;
—log(b; + 1) > —I—c()
’ b(t) +7

Combining above pieces, we obtain an overall minorization function to the objective func-

tion (5)

(blb, 60)
1 + (o)t b (1)
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b] + 7
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It is easy to check that

g(bb® M) < f(b,¢) forallb
g(b(t)|b(t), ¢(t)) — f(b(t), ¢(t))‘

Therefore maximizing the minorizing function g(b|b(®), () always increases the objective

function
F(bHD 61y > g(bHDBb® ¢®)) > g(b®|b®) 1) = f(b®), 1),

Setting derivative of g(b]b(t), (b(t)) to zero yields an extremely simple update

(t)
(t+1) _ > Yiw o
b] - Z x”(yzqﬁ( >—|—1) A ) J = 1?"'7p7 (6)
I 1+Ox bO 04
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involving only trivial algebra. All parameters b; are separated and thus updated simulta-
neously, matching perfectly with the massively parallel architecture of GPUs. The nonneg-
ativity constraints b; > 0 are also preserved in the update (6). Whenever b;o) are positive,
all subsequent iterates bg-t) will always be nonnegative. Effects of the tuning parameters A
and 7 are clear: large A and small 7 cause more shrinkage and vice versa. Furthermore,
the log penalty penalizes small b; more heavily than large b;, a desired property the lasso

penalty lacks.

The update (6) always increases the objective value. However, it does not update the
overdispersion parameter ¢. In practice, we update ¢ after every a few (e.g., five) updates
of b by (6). Updating of ¢ can be done by either Newton’s steps or by invoking MM
algorithm again. Both are simple because it is a smooth univariate optimization problem.

For brevity the details are omitted here.

12



F Supplementary Figures
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Figure 2: A summary of simulated data. We first simulated ~2 million 76+76bps paired-
end reads for data set 1 and data set 2, based on the transcriptome annotation of chromo-
some 1 and 18 of mouse genome. The expression of any gene/transcript are independent
between data set 1 and data set 2. Then as illustrated in (a), a case and a control sample
were generated as follows. For chromosome 1, the sequence fragments of simulation set 1
were randomly split into the case and control samples. For chromosome 18, half of the
sequence fragments from set 1 were selected for case and half of the sequence fragments
from set 2 were selected for control. Therefore, comparing case and control, all the tran-
scripts in chromosome 1 were equivalently expressed and all the transcripts in chromosome
18 were differentially expressed, either in terms of total expression (b) or isoform usage
(c). (a) Comparison of the total number of fragments per transcript cluster between the
case and the control samples. (c) Comparison of isoform usage of each transcript between
the case and the control samples. Here isoform usage is quantified by the ratio of the
number of sequence fragments of one transcript over the total number of fragments of the
corresponding transcript cluster.
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Figure 3: Upper panel shows the distribution of the lengths of non-overlapping exons.
Lower panel shows the distribution of the number of exons overlapped by each paired end
read. A paired-end read overlaps an exon if at least one base pair of either end of the read
overlap with the exon. About 46%, 27%, and 18% of the reads overlap with only one, two,
or three exons.
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Figure 4: The relation between the effective length of an exon set (divided by the total
effective length of the transcript cluster to which the exon belongs) and the proportion of
RNA-seq fragments mapped to this exon set in our simulated data. The correlation between
them is 0.88. Because different transcript clusters have different expression abundance,
we compared read count and effective length as the proportions over the corresponding
transcript cluster. Note that the effective length is calculated while assuming all the exons
in an exon set are contiguous, which may not be true. Therefore the results here can only
be viewed as an approximation.
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Figure 5: An illustration of the dimension of the isoform selection problem when we use
known transcriptome annotation. For each transcript cluster, we consider a variable selec-

tion problem where sample size n is the number of expressed exon sets, and the number of
covariates p is the number of (candidate) isoforms. The solid line indicates p = n.
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Figure 6: An illustration of the dimension of the isoform selection problem when there is no
isoform annotation. For each gene (or transcript cluster), we consider a variable selection
problem where sample size n is the number of expressed exon sets, and the number of
covariates p is the number of (candidate) isoforms. The solid line indicates p = n, and the
broken line indicates p = 10n. In our implementation, we choose the number of candidate
isoforms so that p < 10n approximately. Users can loose this restriction with price of
increasing computational cost. Our experience is that IsoDetector runs well for p < 100n.
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Figure 7: An illustration of the correlation among the isoforms of each transcript cluster
when we use known isoform annotation. Each point indicates a transcript cluster where
x-axis is the number of isoforms and y-axis is the proportion of variance explained by the
first principal component.
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Figure 8: An illustration of the correlation among the isoforms of each transcript cluster
when there is no isoform annotation. Each point indicates a transcript cluster where x-axis
is the number of isoforms and y-axis is the proportion of variance explained by the first
principal component.
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Figure 9: An illustration of the number of isoforms selected by IsoDetector when we choose
the candidate isoforms based on the known isoform annotation.
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Figure 10: An illustration of the number of isoforms selected by IsoDetector when we
choose the candidate isoforms without using any isoform annotation.
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Figure 11: Compare the type I error of IsoDOT and Cuffdiff2 for detesting genes with dif-
ferential isoform usage (a-b) or differential expression (c-d), while transcriptome annotation
is known (a,c) or not (b,d). For the case of differential isoform usage, cufflinks provides
results for “isoform” and “promoter”, where the former is for isoform sharing a TSS, and
the latter is for differential usage of TSSs. For the “isoform” case, we have collapsed the
p-values of multiple tests of a gene by taking minimum, thus it leads to an over-estimate
of type I error.
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Figure 12: Compare the results of IsoDOT and Cuffdiff2 by ROC curves. The ROC curves
compare two methods across a wide range of p-value cutoffs. If one method has a calibration
issue (e.g., p-value is larger than it should be) but still ranks the genes correctly, it would
perform well judged by ROC curve. The results shown here demonstrate that the IsoDOT
still performs better than Cuffdiff2 even if we allow the results of Cuffdiff2 to be calibrated.

Category Term Count List Total Pop Hits Pop Total Bonferroni
GOTERM_CC_FAT G0:0043005~neuron projection 12 71 245 12504 1.78E-05
GOTERM_CC_FAT GO0:0042995~cell projection 14 71 575 12504 2.66E-03
GOTERM_CC_FAT G0:0030424~axon 6 71 107 12504 5.53E-02

Figure 13: DAVID functional category enrichments for DIU genes (with transcriptome
annotation).

Category Term Count List Total Pop Hits Pop Total Bonferroni
GOTERM_BP_FAT G0:0006470~protein amino acid dephosphorylation 5 75 114 13588 9.18E-01
GOTERM_BP_FAT G0:0016311~dephosphorylation 5 75 141 13588 9.95E-01
GOTERM_MF_FAT G0:0004721~phosphoprotein phosphatase activity 5 74 152 13288 8.95E-01
GOTERM_MF_FAT G0:0004725~protein tyrosine phosphatase activity 4 74 101 13288 9.85E-01
GOTERM_MF_FAT G0:0016791~phosphatase activity 5 74 238 13288 1.00E+00

Figure 14: DAVID functional category enrichments for DIE genes (with transcriptome
annotation).

Category Term Count List Total Pop Hits Pop Total Bonferroni
GOTERM_MF_FAT G0:0030955~potassium ion binding 65 118 13288 3.77E-01
GOTERM_BP_FAT G0:0006813~potassium ion transport 68 160 13588 9.97E-01
GOTERM_MF_FAT G0:0005249~voltage-gated potassium channel activity 65 99 13288 9.00E-01

GOTERM_BP_FAT GO0:0015672~monovalent inorganic cation transport
GOTERM_MF_FAT G0:0031420~alkali metal ion binding
GOTERM_MF_FAT G0:0022843~voltage-gated cation channel activity

68 303 13588 1.00E+00
65 206 13288 9.64E-01
65 128 13288 9.90E-01

o bhuwum

Figure 15: DAVID functional category enrichments for DIU genes (without transcriptome
annotation).
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Figure 16: DAVID functional category enrichments for DIE genes (without transcriptome

annotation).
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Figure 17: DAVID functional category enrichments for the results from Cuffldiff.
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Figure 18: Differential isoform usage of gene Grin2b between two C57BL/6 mice with
haloperidal or placebo treatment. Note Grin2b belongs to a transcript cluster with four
genes. However, the other three genes are short and contribute little if any signal of
differential isoform usage.
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Figure 19: Change of overt chewing movements for three inbred strains between day 0
and day 30 after haloperidol treatment. See Crowley et al. [12] for more details of the
experiment and the results of other phenotypic outcomes.
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Figure 20: An example to show that negative binomial distribution can provide ade-
quate fit to RNA-seq fragment count data whereas Poisson distribution assumption leads
to severe underestimate of variance. The RNA-seq data used in this example are the
RNA-seq fragment count for gene VPRBP (Vpr (HIV-1) binding protein, ensembl ID:
ENSG00000145041) from 50 HapMap CEU samples [13]. The MLE of the two distribu-
tions were obtained using R function glm and glm.nb, respectively, after correction for
read-depth.
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Figure 21: Compare type I error and power when we use the Lasso penalty or the Log
penalty in IsoDOT. (a) Type I for DIU test. (b) Type I error for DIE test. (c) Power for
DIU test. (d) Power for DIE test. In panel (a) and (b), the y-axis is type I error ratio,
which is the ratio of observed type I error rate divided by the corresponding p-value cutoff

(x-axis), which is the expected type I error rate.
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Table 1: Read depth of the RNA-seq data in mouse haloperidol treatment study. Each
sequence fragment was sequenced on both ends by 93-100bp. The first four rows show the
information of four mince and the last four rows are for allele-specific RNA-seq reads from
the two F'1 mice.

Sample  Genetic Treatment  Total number Number of fragments
ID background of mapped reads passed QC and mapped
to exonic regions

BB1050 C57BL/6J placebo 21,482,924 8,337,872
BB1068 C57BL/6J haloperidol 27,178,749 10,486,170
CG0069 129xPWK placebo 24,014,041 10,476,460
CG0077 129xPWK haloperidol 20,365,336 8,871,864
CG0069 129 @ 129xPWK placebo 4,667,545 1,953,335
CG0069 PWK @ 129xPWK placebo 4,605,879 1,931,791
CGO0077 129 @ 129xPWK haloperidol 3,993,348 1,668,243
CG0077 PWK @ 129xPWK haloperidol 3,957,371 1,654,705

Table 2: Top 100 genes identified from differential isoform

usage (DU only) analysis comparing two C57BL/6J mice with

haloperidol or placebo treatments.
Ensembl ID symbol name
ENSMUSG00000040537 Adam22 a disintegrin and metallopeptidase domain 22
ENSMUSG00000020431  Adcyl adenylate cyclase 1
ENSMUSG00000049470  Aff4 AF4/FMR2 family, member 4
ENSMUSG00000061603  Akap6 A kinase (PRKA) anchor protein 6
ENSMUSG00000040407  Akap9 A kinase (PRKA) anchor protein (yotiao) 9
ENSMUSG00000069601  Ank3 ankyrin 3, epithelial
ENSMUSG00000071176  Arhgefl0 ~ Rho guanine nucleotide exchange factor (GEF) 10
ENSMUSG00000059495 Arhgefl2  Rho guanine nucleotide exchange factor (GEF) 12
ENSMUSG00000002343  Armc6 armadillo repeat containing 6
ENSMUSG00000020788  Atp2a3 ATPase, Ca++ transporting, ubiquitous
ENSMUSG00000003604 Aven apoptosis, caspase activation inhibitor
ENSMUSG00000048251  Bclllb B-cell leukemia/lymphoma 11B
ENSMUSG00000049658 Bdpl B double prime 1, subunit of RNA polymerase III tran-

scription initiation factor I11B

ENSMUSG00000042460 Clgaltl core 1 synthase, glycoprotein-N-acetylgalactosamine 3-

beta-galactosyltransferase, 1

Continued on next page
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Table 2 — Continued from previous page

Ensembl ID symbol name

ENSMUSG00000039983  Ccdc32 coiled-coil domain containing 32

ENSMUSG00000033671 Cep350 centrosomal protein 350

ENSMUSG00000021097 Clmn calmin

ENSMUSG00000060924 Csmd1l CUB and Sushi multiple domains 1

ENSMUSG00000048796 Cybb61d1l cytochrome b-561 domain containing 1

ENSMUSG00000017999 Ddx27 DEAD (Asp-Glu-Ala-Asp) box polypeptide 27

ENSMUSG00000037426 Depdch DEP domain containing 5

ENSMUSG00000024456 Diapl diaphanous homolog 1 (Drosophila)

ENSMUSG00000045103 Dmd dystrophin, muscular dystrophy

ENSMUSG00000041268 Dmx12 Dmx-like 2

ENSMUSG00000039716 Dock3 dedicator of cyto-kinesis 3

ENSMUSG00000036270 Edc4 enhancer of mRNA decapping 4

ENSMUSG00000028760 Eif4g3 eukaryotic translation initiation factor 4 gamma, 3

ENSMUSG00000039167  Eltd1 EGF, latrophilin seven transmembrane domain contain-
ing 1

ENSMUSG00000004267 Eno2 enolase 2, gamma neuronal

ENSMUSG00000032314 Etfa electron transferring flavoprotein, alpha polypeptide

ENSMUSG00000010517  Fafl Fas-associated factor 1

ENSMUSGO00000025262 Faml120c  family with sequence similarity 120, member C

ENSMUSG00000025153  Fasn fatty acid synthase

ENSMUSG00000070733  Fryl furry homolog-like (Drosophila)

ENSMUSG00000039801  Gmb906 RIKEN c¢DNA 2410089E03 gene

ENSMUSGO00000031210  Gprl65 G protein-coupled receptor 165

ENSMUSG00000020176  Grb10 growth factor receptor bound protein 10

ENSMUSG00000030209  Grin2b glutamate receptor, ionotropic, NMDA2B (epsilon 2)

ENSMUSGO00000031584  Gsr glutathione reductase

ENSMUSG00000006930 Hapl huntingtin-associated protein 1

ENSMUSG00000029104 Htt huntingtin

ENSMUSG00000009828  Ick intestinal cell kinase

ENSMUSG00000023830 Igf2r insulin-like growth factor 2 receptor

ENSMUSG00000042599  Jhdm1d jumonji C domain-containing histone demethylase 1 ho-
molog D (S. cerevisiae)

ENSMUSG00000024410 K100 RIKEN ¢cDNA 3110002H16 gene

ENSMUSG00000016946 Kctd5 potassium channel tetramerisation domain containing 5

ENSMUSG00000063077  Kiflb kinesin family member 1B

ENSMUSG00000027550 Lrrecel leucine rich repeat and coiled-coil domain containing 1

ENSMUSG00000028649 Macfl microtubule-actin crosslinking factor 1

ENSMUSG00000036278 Macrodl ~ MACRO domain containing 1

Continued on next page
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Table 2 — Continued from previous page

Ensembl ID symbol name

ENSMUSGO00000008763 Manla?2 mannosidase, alpha, class 1A, member 2

ENSMUSG00000059474  Mbtd1 mbt domain containing 1

ENSMUSG00000020184 Mdm?2 transformed mouse 3T3 cell double minute 2

ENSMUSG00000024294 Mibl mindbomb homolog 1 (Drosophila)

ENSMUSG00000038056  MI13 myeloid /lymphoid or mixed-lineage leukemia 3

ENSMUSG00000022889  Mrpl39 mitochondrial ribosomal protein L.39

ENSMUSG00000033004 Mycbp2 MYC binding protein 2

ENSMUSG00000030739 Myh14 myosin, heavy polypeptide 14

ENSMUSG00000034593 Myoba myosin VA

ENSMUSGO00000027799 Nbea neurobeachin

ENSMUSG00000020716  Nf1 neurofibromatosis 1

ENSMUSG00000038495 Otud7b OTU domain containing 7B

ENSMUSG00000021140  Pcnx pecanex homolog (Drosophila)

ENSMUSG00000002265 Peg3 paternally expressed 3

ENSMUSG00000028085 Pet1121 PET112-like (yeast)

ENSMUSG00000039943  Plcb4 phospholipase C, beta 4

ENSMUSG00000032827 Ppplr9a protein phosphatase 1, regulatory (inhibitor) subunit 9A

ENSMUSGO00000038976 Ppplr9b  protein phosphatase 1, regulatory subunit 9B

ENSMUSGO00000003099 Ppp5c protein phosphatase 5, catalytic subunit

ENSMUSG00000039410 Prdm16 PR domain containing 16

ENSMUSGO00000030465 Psd3 pleckstrin and Sec7 domain containing 3

ENSMUSG00000038764 Ptpn3 protein tyrosine phosphatase, non-receptor type 3

ENSMUSGO00000053141  Ptprt protein tyrosine phosphatase, receptor type, T

ENSMUSG00000068748 Ptprzl protein tyrosine phosphatase, receptor type Z, polypep-
tide 1

ENSMUSG00000037098 Rabllfip3 RABI11 family interacting protein 3 (class II)

ENSMUSG00000027652 Ralgapb Ral GTPase activating protein, beta subunit (non-
catalytic)

ENSMUSG00000075376 Rc3h2 ring finger and CCCH-type zinc finger domains 2

ENSMUSG00000042453 Reln reelin

ENSMUSG00000050310 Rictor RPTOR independent companion of MTOR, complex 2

ENSMUSG00000020448 Rnfl185 ring finger protein 185

ENSMUSG00000038685 Rtell regulator of telomere elongation helicase 1

ENSMUSG00000021313  Ryr2 ryanodine receptor 2, cardiac

ENSMUSGO00000075318  Scn2al sodium channel, voltage-gated, type II, alpha 1

ENSMUSG00000028064 Semada sema domain, immunoglobulin domain (Ig), transmem-

brane domain (TM) and short cytoplasmic domain,
(semaphorin) 4A

Continued on next page
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Table 2 — Continued from previous page

Ensembl ID symbol name

ENSMUSGO00000005089  Slcla2 solute carrier family 1 (glial high affinity glutamate
transporter), member 2

ENSMUSG00000023032  Slc4a8 solute carrier family 4 (anion exchanger), member 8

ENSMUSG00000019769 Synel synaptic nuclear envelope 1

ENSMUSG00000062542  Syt9 synaptotagmin IX

ENSMUSG00000053580 Tanc2 tetratricopeptide repeat, ankyrin repeat and coiled-coil
containing 2

ENSMUSG00000023923 Tbcld5 TBC1 domain family, member 5

ENSMUSG00000039230 Thcd tubulin-specific chaperone d

ENSMUSGO00000032186 Tmod2 tropomodulin 2

ENSMUSG00000009470 Tnpol transportin 1

ENSMUSG00000019820 Utrn utrophin

ENSMUSG00000046230 Vpsl3a vacuolar protein sorting 13A (yeast)

ENSMUSG00000045962 Wnk1 WNK lysine deficient protein kinase 1

ENSMUSG00000047694  Yipf6 Yipl domain family, member 6

ENSMUSG00000020812 RIKEN cDNA 1810032008

ENSMUSG00000053081 RIKEN ¢cDNA 1700069B07

ENSMUSG00000072847 RIKEN c¢cDNA A530017D24
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Table 3: 23 genes with differential isoform usage (DU only p-value < 0.01) between the two
alleles of the haloperidol treated F1(129xPWK) mouse, but no differential isoform usage
(DU only p-value > 0.1) comparing the two alleles of the placebo treated F1(129xPWK)
mouse.

Ensembl ID symbol name

ENSMUSG00000006638 Abhd1 abhydrolase domain containing 1
ENSMUSG00000005686 Ampd3  adenosine monophosphate deaminase 3
ENSMUSG00000004446 Bid BH3 interacting domain death agonist
ENSMUSG00000022617 Chkb choline kinase beta
ENSMUSG00000026816  Gtf3ch general transcription factor IIIC, polypeptide 5
ENSMUSG00000031787 Katnbl  katanin p80 (WD40-containing) subunit B 1
ENSMUSGO00000058740 Kentl potassium channel, subfamily T, member 1
ENSMUSG00000039682  Lap3 leucine aminopeptidase 3
ENSMUSG00000026792 Lrsaml  RIKEN ¢DNA 4930555K19
ENSMUSG00000024085 Man2al mannosidase 2, alpha 1
ENSMUSG00000029822  Osbpl3 oxysterol binding protein-like 3
ENSMUSG00000021846 Peli2 pellino 2
ENSMUSG00000033628 Pik3c3 phosphoinositide-3-kinase, class 3
ENSMUSGO00000005225 Plekha8  pleckstrin homology domain containing, family A
(phosphoinositide binding specific) member 8
ENSMUSG00000026035 Ppil3 peptidylprolyl isomerase (cyclophilin)-like 3
ENSMUSG00000036202  Rifl Rapl interacting factor 1 homolog (yeast)
ENSMUSG00000001054 Rmnd5b required for meiotic nuclear division 5 homolog B
(S. cerevisiae)
ENSMUSGO00000052656 Rnfl03  ring finger protein 103
ENSMUSGO00000027273 Snap25  synaptosomal-associated protein 25
ENSMUSG00000043079 Synpo synaptopodin
ENSMUSG00000040389 Wdr47 WD repeat domain 47
ENSMUSG00000001017 RIKEN ¢DNA 2500003M10
ENSMUSG00000044600 RIKEN ¢DNA 9130011J15
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