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Figure S1. Construct and technical validation, related to Figure 1. A, left panel Nexcelom
cell counting software with maximum declustering settings versus A, right panel the same cells counted
with limited declustering. Edge cases tend to be called as a single cell with aggressive declustering. B-F
Steady state distributions of SSA1P-H-GFP, SSA1P-Y-GFP, single and double copy strains at 22◦C and
37◦C, and SSA1P-GFP at 22◦C as measured by flow cytometry. Black dashed lines are autofluorescence
in the GFP negative background strain, BY4743. Distributions are not deconvoluted from
autofluorescence. G Plotted are biological replicates of single copy SSA1P-GFP strains during heat shock
induction. Once induction was observed, cycloheximide was added (time zero) and plotted versus a
no-cycloheximide control. Fit of blocked samples assuming the same degradation rate for folded molecules
as unfolded yields a maturation rate of .0803± .0016min−1.
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Figure S2. Example RNA and protein decay curves for SSA1P-H-GFP and SSA1P-Y-GFP,
related to Figure 2. Each trajectory represents a biological replicate with: G=eGFP, S=single-copy
strain, D=double-copy strain, and numbers indicate specific replicates. Trends were fit to each line
separately and resulting parameter estimates averaged to generate the error bars in Figure 3, main text.
The shown trajectories are data conditioned on the largest forward scatter bin; this process was repeated
for all bins. A and B cyclohexamide block and heat-shock relaxation decay curves for SSA1P-GFP. C
and D cyclohexamide block and heat-shock relaxation decay curves for SSA1P-Y-GFP. E and F
cyclohexamide block and heat-shock relaxation decay curves for SSA1P-H-GFP.
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Figure S3. Modeling results for SSA1P-GFP at 37◦C, related to Figure 3. A ACES ensemble
solutions for each parameter, fitted to GFP distribution at 37◦C using only mean and variance but
constraining fits to measured degradation rates, dp = .0078min−1, dm = .033min−1. Hyperparameters
are Pon (probability that a promoter is active, ton/(ton + toff )), Sm (RNA synthesis rate, Ponkm), B
(burst size, number of RNAs produced per ON duration, km/toff ), 〈RNA〉 (average count of RNAs,
Sm/dm), kp/dp (ratio of average protein count to average RNA count), and S/dp (number of RNAs
produced per cell cycle if protein decay driven by dilution). B and C Comparison of extrinsic Km and
extrinsic Kp models versus measured skewness (B) and kurtosis (C).

0 20 40 60 80 100 120

0

0.05

0.1

0.15

Fluorescence per cell/bead (a.u.)

F
re

q
u
e
n
c
y

 

 Flocheck beads

SSA
P
−GFP

Figure S4

Figure S4. SSA1P-GFP expression at 37◦C versus Flow Check microspheres, related to
Figure 1. Distribution of fluorescence signal measured from Flow Check microsphere calibration beads
plotted against SSA1P-GFP expression at 37◦C.



Table S1. Intrinsic and extrinsic decomposition of SSA1P-Y-GFP and SSA1P-H-GFP
variance, related to Figure 1

Iv (prot2) Ev (prot2) fraction intrinsic Mean (prot/cell)

SSA1P-Y-GFP 37◦C 1.21E+06 9.81E+06 0.1100 4921.5

SSA1P-Y-GFP 22◦C 2.98E+06 4.97E+06 0.375 2796.1

SSA1P-H-GFP 37◦C 1.41E+06 9.04E+06 0.135 4170.4

SSA1P-H-GFP 22◦C 5.55E+06 6.78E+06 0.45 3114.2

SSA1P-GFP 37◦C 1.62E+08 1.93E+09 0.0775 81738

SSA1P-GFP 22◦C 1.52E+07 8.47E+07 0.1525 9745.6



Data S1. Degradation data for SSA1P-GFP, SSA1P-Y-GFP and SSA1P-H-GFP, related to

Experimental Procedures. Contains single exponential and double exponential fits for SSA1P-GFP,

SSA1P-Y-GFP and SSA1P-H-GFP RNA and protein degradation experiments.

Data S2. AIC ranking for arbitrary distributions fit to cytometry data, related to Exper-

imental Procedures. Spreadsheets contain AIC rankings of best statistical distribution fit to the

experimental distributions produced from the first plate of 96 random promoters in the strong, weak, and

no promoter library from Mogno et al, “TATA is a modular component of synthetic promoters.” Genome

Research, 2010.

Data S3. Model values across forward scatter, related to Figure 2. Contains measurements

(mean, intrinsic variance, extrinsic variance, dm, and dp) for synchronized slices across forward scatter,

along with the associated model-fit parameters. Sheet1 contains a detailed key.



S2 Supplemental Experimental Procedures

S2.1 Calibration of flow cytometry in absolute protein units

We quantified single-cell GFP counts and concentrations by performing flow cytometry, single-cell counting

by imaging cytometry, and fluorescence correlation spectroscopy on individual reference samples. Yeast

strain SSA1P-GFP was used for all reference calibration experiments because expression was relatively

stable during the preparatory steps. An autofluorescent control strain, BY4743 was grown in parallel. For

both strains, a single colony was inoculated into 5mL synthetic complete (SC) media and grown overnight

in a rotating drum (60 RPM, 37◦C). In the morning, optical density was measured and both SSA1P-GFP

and BY4741 were diluted to an optical density (OD600) of .025 in 50mL of SC in 250mL flasks and placed

on a floor shaker (300RPM, 37◦C). After 6 hours, optical densities were taken and generally found to be

in close agreement at an O.D. of .4, corresponding to a 90 minute division time at 37◦C.

The two cultures were spun down in 50mL falcon tubes at 3000RPM for 3 minutes, then resuspended

in 1 to 2 mL of water, depending on the application. At this point, each sample was split three ways, with

20µL going to cell counting, 100µL going to flow cytometry, and the remainder being split into technical

replicates for lysis and fluorescence correlation spectroscopy.

S2.1.1 Cell lysis

Cells were aliquoted into technical replicates. For the calibration experiments used for all cytometry

measurements reported, 250µL aliquots (Vload) were separated into microcentrifuge tubes and spun

down at 3000g. After discarding the supernatant, the cells were resuspended in lysis buffer. The most

reproducible lysis method in our hands was a chemical lysis kit, CelLytic Y (Sigma-Aldrich, C4482). We

used the kit protocol with the following proportions and additions. A mastermix was made immediately

prior to spinning the cells down to minimize the time between flow cytometry and lysis. A mastermix

consists of the following final concentrations 5mM DTT, >50U/mL Benzonase Nuclease (EMD Millipore,

70746-4), 1X cOmplete Mini, EDTA-free (Roche Applied Science, 11-836-170-001), and CelLytic Y to the

appropriate volume. Because of the various arbitrary units, and our deviation from exact specifications,

the following is an example mastermix: 54µL DTT (.1M), 2.5µL Benzonase, 154µL cOmplete Mini, and

870µL CelLytic Y for a final volume of 1080µL. We resuspended the pelleted cells in 120µL (Vlys) of lysis

mastermix, briefly vortexed each tube, and placed the microcentrifige tubes on a shaker (30◦C, 180RPM)



for 20 minutes. The cells were then spun down at 20,000g for 20 minutes, and 110µL of supernatant was

pipetted into new microcentrifuge tubes for protein quantification by fluorescence correlation spectroscopy

(FCS). The cell pellet and remaining supernatant were resuspended in 100µL, and the volume measured

to determine the pellet size and original volume.

S2.1.2 Fluorescence correlation spectroscopy (FCS)

Supernatants from cell lysis were kept on ice and measured by FCS the same day. Samples were loaded on

Nunc Lab-Tek Chambered Coverglass (Thermo Scientific, 155411) and imaged on a Zeiss Axiovert 200M

with ConfoCor 2 and LSM 510 modules (Carl Zeiss-Evotec, Jena, Germany) and a 40X water-immersion

objective. Excitation was with an argon laser line at 488nm and emission was monitored by bandpass

filter in the range 505nm to 530nm. All autocorrelation analyses were performed with the accompanying

commercial LSM 510 / ConfoCor 2 software (Carl Zeiss-Evotec, Jena, Germany). We assumed the simplest

autocorrelation model: diffusive motion for a single species with accounting for triplet states.

S2.1.3 Flow cytometry for calibration experiment

100µL of SSA1P-GFP and BY4741 were each taken and split into 4 samples of 25µL and diluted in

175µL of SC media. Each 200µL sample was loaded onto a Costar round bottom 96-well plate in

alternating fashion. We then loaded the GFP calibration protocol which, once set, was used for all

following experiments. See Methods: Flow cytometry for general equipment and running details. For the

calibration experiments, the wells were run for 120 seconds continuously and in parallel to cell lysis. This

allowed us to observe how much expression changes during the the processing. If there were even modest

changes in expression, we used the average fluorescence measured in the well closest in time to the point

of suspending the cells in lysis buffer.

S2.1.4 Cell counting

At the usual density of OD .4, cells were diluted into water at ratios 1:10 and 1:40 and loaded into

disposable 20µL Nexcelom Counting Chambers (Nexcelom Bioscience, CHT4-SD100-002). We measured

4 technical replicates at each dilution on an imaging cellometer (Cellometer X2, Nexcelom Bioscience) to

compute cell concentration (Cnex). Using the Nexcelom counting software (version 2.1.4.2) we implemented

the following custom parameters: cell diameter (2-9 microns), roundness (0.1), contrast enhancement



(0.4), decluster edge factor (0.1), decluster th factor (0.5), and background adjustment (1.0). These

settings tended to ‘decluster,’ i.e. separate joined cells only when there is a significant gap between cells.

Thus, higher concentrations tended to underestimate the actual cell count. When significant disagreement

arose, we accepted the lower dilution replicates’ estimate of cell count. We favored minimal declustering

because we sought to maximize agreement between what the flow cytometer counts as a cell, and what the

cellometer counts as a cell. With high declustering settings, the cellometer often calls not-quite-divided

cells as separate, whereas our flow cytometer counts as one cell any unit that passes across the laser. See

Fig. S1A for a comparison of declustering settings.

S2.1.5 Absolute count calibration analysis

The previous experiments generate the following quantities:

1. A - distribution of autofluorescence from BY4743 (flow cytometry)

2. AG - distribution of GFP expression with autofluorescence (flow cytometry)

3. Cnex - concentration of cells per mL (imaging cellometer)

4. Vload - volume of cells loaded

5. Vlys - volume of lysis solution

6. Villum - microscope beam illumination volume (fluorescence correlation spectroscopy)

7. Nfcs - number of fluorescent molecules per illumination volume (fluorescence correlation spectroscopy)

The assumption underlying all fluorescence measurements is that a linear factor kct relates protein

count to fluorescence.

kct =
〈# proteins/cell〉
〈fluorescence/cell〉

(S1)

That is, measurements of mean protein count per cell, and the mean fluorescence per cell from the same

population is sufficient to compute kct. With the conversion factor in hand, the ith cell with fluorescence

fi is expected to have kctfi proteins.

From our protocol and values listed above, kct can be computed. The denominator of Eq. S2,

mean population fluorescence is measured by subtracting mean autofluorescence from total fluorescence:



〈F 〉 = 〈AG〉 − 〈A〉. The numerator can be further decomposed into 〈N〉 = Nfcs/(VillumClyse), where

Villum is the beam illumination/detection volume, and Clyse is the final concentration of cells lysed. By

performing FCS on rhodamine 6G (Sigma-Aldrich, R4127) of known concentration Villum was determined

to be .25fL ± .02. Lysed cells per volume was computed by combining the initial cell concentration

ascertained by imaging cellometry (Cnex) with loading volume Vload and resuspension volume Vlys, so

that Clyse = CnexVload/Vlys. Together we get:

kct =
〈N〉
〈F 〉

=
1

〈AG〉 − 〈A〉
NfcsVlys

VillumVloadCnex
(S2)

S2.1.6 Quantitative Western blot validation of FCS

We validated our FCS measurements by quantitative Western blot analysis. Two GFP-positive technical

replicates were prepared as above with the samples split immediately after cell counting. Four samples

were also taken from the autofluorescent control. These samples were used to generate a standard curve in

the blot. Specifically, we spiked in known quantities of purified GFP (Clontech Laboratories, 632502) into

the autofluorescent cell samples immediately before lysis. Post-lysis, we spun down at high velocity as

above and extracted the supernatant. The GFP-positive samples were split, with one fraction measured

by FCS, and the other fraction used for the Western.

With the standard curve samples, the remaining GFP-positive samples, and matched resuspensions

of the insoluble debris, we performed two Western blots. Samples were boiled with 4X SDS loading

buffer (0.2M Tris/HCl, pH 7, 8% SDS, 40% glycerol, 20% β-mercaptoethanol) and then analyzed by SDS-

PAGE and immunoblotting. Immunoblots were developed with SuperSignal West Pico Chemiluminescent

Substrate (Thermo-Scientific, Rockford, IL) and exposed to autoradiography film. To detect GFP, we

used rabbit polyclonal antibody (ab6556, Abcam, Cambridge, MA) and goat anti-rabbit HRP-conjugated

secondary antibody (A0545, Sigma-Aldrich, St. Louis, MO).

Bands were quantified using pixel densitometry estimates obtained from ImageJ following recommended

practices [1], with the exception that the lack of dynamic range in pixel density led us to integrate total

band intensity. We found that arbitrary choices of background level cutoff, image exposure, and band

bounding box size heavily influenced the shape of the curve and values of the density, but had little impact

on the final interpolated value.



S2.2 Treatment of autofluorescence

Solutions for isolating mean expression from background autofluorescence include spectral compensation [2],

chemical treatment [3], and/or usage of a reporter-negative control. With live cells, we ruled out chemical

treatment, and two-wavelength (510nm, 600nm) emission spectral decomposition was deemed inappropriate

since applying it resulted in a significant number of cells with negative expression. This latter observation

is likely because the tail of the GFP emission spectrum extends past 600nm [4]. We therefore used

autofluorescent controls in all experiments and subtracted out the autofluorescent component to mean

expression.

Autofluorescent contribution to variance was more troublesome than accounting for mean effects. Close

examination of autofluorescence reveals that the exact treatment, and associated assumptions, significantly

affects estimation of intrinsic and extrinsic noise for lower expressing constructs SSA1P-H-GFP and

SSA1P-Y-GFP. We find that autofluorescence likely correlates with expression with ρ = .2± .1. We used

ρ = .2 for all analyses (manuscript in preparation).

S2.3 Flow cytometry

Flow cytometry was performed with a Cytomics FC500 MPL (Beckman Coulter, Brea, CA). The MPL

extension on our cytometer enabled 96-well plate reads. Excitation was with a uniphase argon ion 488nm

20mW laser, and emission was ultimately recorded via a 510nm bandpass filter. Flow rate was set to

medium, limiting measurement to at most 3000 cells/second. Before every experiment, two calibration

measurements were obtained by flowing Flow-Check Flourospheres (Beckman Coulter, 6605359) which

excite with the same 488nm laser and emit at a wavelength capturable by the same bandpass filter.

These checks allowed us to assess instrument drift, which could affect our FCS-based calibration. As

we developed the method we found that only the yearly cytometer maintenance significantly affected

calibration readings, after which we re-calibrated absolute counts by FCS.

Flow cytometry data was exported via FlowJo (Tree Star, Ashland OR) to tab delimited text files.

All analysis was done via MATLAB (v2011a, The MathWorks, Inc., Natick, MA) using custom code.

Cytometry data post-processing was limited to outlier removal. To accomplish this, we fit a lognormal

distribution to the data. With the best fit parameters, we calculated PDF values of the lognormal

distribution corresponding to the cutoff P (F > f) = 4× 10−6 on either extreme. This setting comes from



the following thought experiment. In the largest single experiment we did, we measured approximately 4

million cells. This cutoff admits that at most one cell in that experiment should be beyond the cutoff.

Any additional cells must be outliers. We found that most outliers likely arose from either cells sticking

together (as indicated by unusually high forward scatter), or contamination from the previous well (<.1%).

S2.3.1 Steady state measurements

The following protocol was used for steady state expression measurements of all strains. In late morning,

colonies were picked and inoculated into 5mL Synthetic Complete media (US Biological, #D9515) in 15mL

falcon tubes and placed in a rotating drum (60 RPM) at either 22C or 37◦C. 10-12 hours later, optical

densities were measured for all cultures and diluted to OD600=.025 in 5mL SC media, and replaced on

same rotator. The following morning, optical densities were assessed again, and diluted into 30mL SC

media at OD600=.025 in 250mL baffled flasks and placed on a floor shaker (300RPM) at 22◦C or 37◦C.

For 37◦C cultures, optical densities were taken 6 hours later and were usually ~OD600=.4, corresponding

to a division time of 90 minutes at 37◦C. At 22◦C, we observed OD600=.4 reached after 11-12 hours,

corresponding to a ~170 minute division rate. We generally saw close agreement among optical densities

between replicates. Outliers with an optical density differing by more than a factor of 2 were discarded.

Steady state was confirmed by taking two flow cytometry measurements spaced 20-40 minutes apart.

Close agreement in expression between these technical replicates was taken as an indication of steady

state.

S2.3.2 Cycloheximide block experiments

To cultures initially at 22◦C or 37◦C steady state we added 1µL of 50mg/mL cycloheximide (Sigma-Aldrich,

C7698) per 1mL culture [5]. We marked this as time zero. Culture flasks were maintained on their shakers

at their initial temperatures for the duration. Flow cytometry time points were taken for several hours

until fluorescence leveled out.

S2.3.3 Induction experiments

We initiated all induction experiments after cultures attained 22◦C steady state. SC media was pre-warmed

to 40◦C. To heat shock, we added 5mL culture to 25mL 40◦C media in new pre-warmed 250mL baffled

flasks, which we estimated should immediately bring the resulting culture to ~37◦C. Inoculation into the



warmer media was taken as time zero. Flasks were then placed on a floor shaker also pre-warmed to

37◦C (300RPM), and measurements were taken immediately, and every 15-25 minutes after. To minimize

exposure to room temperature, flasks were removed two at a time, 100µL of culture was taken for each

sample, and then the flasks were quickly replaced. Time values for each observation were taken as the

flow-cytometry reported time-zero for each well read, thus accounting for the few minutes it takes to read

6-12 wells.

S2.3.4 In vivo maturation of GFPmut3

Reporter maturation influences investigators ability to interpret stochastic expression. We sought to

minimize the impact of maturation by selecting a rapidly folding fluroescent protein. Although GFPmut3

maturation has been measured in vitro [6], we wondered how well it folds in vivo. To measure maturation

in live cells we performed the following experiment.

Massive transcriptional upregulation of SSA1 during heat shock (22◦C to 37◦C) provides an excellent

opportunity to study maturation. We followed gene expression of SSA1P-GFP over time during heat shock.

During the initial rapid rise in expression, and before transcriptionally-mediated repression sets in, we

added cycloheximide to block translation. We subsequently tracked expression of cycloheximide blocked

samples, with the hypothesis being that any continued appearance of protein will be due to maturation of

our reporter. Fig. S1G demonstrates that blocked cultures completely level out approximately 30 minutes

after cycloheximide addition. The following model was used to fit these traces.

dU

dt
= −(kf + dp)U (S3)

dP

dt
= kfU − dpP (S4)

Here, U represents unfolded protein and P represents visible protein. We assumed both protein

forms degrade at rate dp, and that folding is a first order process. Fitting this model yields the traces

shown in Fig. S1G, and yields an in vivo maturation rate of .0803± .0016min−1. This corresponds to a

half-maturation time of ~8.63 minutes, consistent with the in vitro measurement of ~7.5 minutes.



S2.4 Modeling for parameter estimation

For the purposes of parameter estimation, we fit experimental data to the first moments of a simple

stochastic model

dP (NM , NP )

dt
= kmP (NM − 1, NP ) (S5)

+ kpNMP (NM , NP − 1) (S6)

+ dm(NM + 1)P (NM + 1, NP ) (S7)

+ dP (NP + 1)P (NM , NP + 1) (S8)

− (km + kpNM + dMNM + dpNP )P (NM , NP ) (S9)

where NM and NP represent the numbers of mRNA and protein, respectively. Here, km represents

constant transcription, kp represents the translation rate, and dm and dp capture mRNA and protein

unimolecular decay rates. The first moments of this stochastic model represent average cell behavior.

d〈NM 〉
dt

=km − dm〈NM 〉 (S10)

d〈NP 〉
dt

=kp〈NM 〉 − dp〈NP 〉 (S11)

Units of all rate constants are min−1.

S2.4.1 Estimating protein degradation rates

The principle enabling protein degradation rate measurement is that blocking translation decouples RNA

from protein dynamics. Setting kp to zero and solving Eq. S11 yields a single exponential:

〈NP 〉t = 〈NP 〉0e−dpt (S12)

We also considered a two-step degradation process. Let NP1 represent the number of destabilized

reporter molecules degrading at rate d1, NP2 represent the more stable form which degrades at rate d2,



and allow their conversion at rate c12. If both forms are visible, then degradation proceeds as:

〈NP1〉t + 〈NP2〉t =
e−d2t

(
c12〈NP1〉0et(−d1−f)+d2t − d1〈NP2〉0 + d2〈NP2〉0 − c12〈NP2〉0 − c12〈NP1〉0

)
−d1 + d2 − c12

(S13)

+ 〈NP1〉0et(−d1−c12) (S14)

Using the cycloheximide block protocol above, we obtained decay curves for all three constructs at

37◦C (example trajectories in Fig. S2A-F). Consistent with other reports, we observed inefficient active

degradation of untagged GFP. With a single-exponential model, we saw acceptable fits with a degradation

rate of 4.76 × 10−4 ± 4.73 × 10−5min−1. This corresponds to a ~1400 minute GFP half-life. However,

the average growth rate estimated during this experiment yielded 7.4× 10−4 ± 3.08× 10−4min−1, which

overlaps the estimated degradation rate. We conclude that the dominant mode of decay for GFP is

dilution. At 37◦C we typically observed a ~90 minute doubling time, and a ~170 minute doubling time at

22◦C.

SSA1P-H-GFP and SSA1P-Y-GFP strains demonstrated remarkably accelerated decay, however, our

reporters did not degrade as a single exponential process. This was consistent with two modes of decay.

Although biphasic decay is necessary to fit the cycloheximide traces for SSA1P-H-GFP and SSA1P-Y-GFP,

the actual second decay mode should, as above, be determined by the growth rate. We also fit both

constructs’ decay curves’ first few data points to a simple exponential decay model under the hypothesis

that initial decay will be less influenced by the global, reactive effects of cyclohexamide. These experiments

yielded two estimates for the decay constants for both SSA1P-Y-GFP and SSA1P-H-GFP tagged GFPs.

Both are reported in Data S1.

The initial dp for SSA1P-Y-GFP was .01085± .00085min−1 and the double exponential decay fast-mode

parameter was .022± .0038min−1. For SSA1P-H-GFP, the initial dp was .0394± .00437min−1 and the

fast-mode decay constant from the double exponential model was .095± .0053min−1.

S2.4.2 Estimating RNA degradation rates

To measure RNA decay rates we fit to the full temporal solution of Eq. S11.



〈NP 〉t =
dpkpkm − dmkpkm
d2pdm − dpd2m

(S15)

+〈NP 〉0
dpe

dmt − dmedmt

dpedpt+dmt − dmedpt+dmt
(S16)

+〈NM 〉0
kpe

dpt − kpedmt

dpedpt+dmt − dmedpt+dmt
(S17)

+
dmkpkme

dmt − dpkpkmedpt

d2pdme
dpt+dmt − dpd2medpt+dmt

(S18)

In the case that complete shutoff is achieved, km is set to zero and Eq. S18’s first and fourth summands

denoted become zero. If shutoff is incomplete, better estimates of RNA decay would be obtained by

allowing for partial shutoff (non-zero km).

Upon temperature shift from 22◦C to 37◦C, SSA1 exhibits a large pulse of expression [7]. Both the

initial rise in expression and subsequent shutoff are likely mediated by increases and decreases in active

heat shock transcription factor (HSF) [7–9], suggesting that the SSA1 promoter should confer a similar

response on our reporter gene. Young et al. observed an initial rise in RNA expression within minutes of

temperature shift [9], followed by RNA decay starting ~20 minutes after induction.

Taking advantage of this, and using the protocol above we measured induction and subsequent falloff

of expression in response to heat shock. Starting from the first decrease in slope during induction, we

modeled decay as above. Fits obtained were excellent (Fig. S2B,D,F) and resulted in RNA degradation

rates in close agreement with each other, despite very different protein degradation rates. Bulk RNA

degradation rates are reported in Data S1.

S2.5 RNA and protein degradation rates across forward scatter

These analyses were performed as described in the main text with the following additional details. To

make estimated degradation rates within a forward scatter interval comparable, the same forward scatter

bins were used for all experiments. This necessitated ensuring a sufficient number of observations (cells)

were present in all forward scatter bins for all experiments. The 8 bins shown in the main text figure (Fig.

2A) correspond to 8 bins that in all experiments contain at least 500 cells.

For each bin within each experiment, the models above were fit as above and recorded separately

for each biological replicate. Fitting was with MATLAB’s FIT() function. Averaging and error was



determined subsequent to each replicates’ fitting to generate the error bars in Figure 3, main text. Example

trajectories and fits for one forward scatter bin for each degradation experiment are shown in Fig. S2.

The values obtained for each replicate are represented in Data S3. RNA data were pooled for better

accuracy given their similarity in average rates.

S2.5.1 Estimation of intrinsic and extrinsic noise by 1- and 2-copy reporter strains

The one- versus two-copy fluorophore method for decomposing total expression variance into intrinsic and

extrinsic components depends on the following relationship [10]. For Var(F1 + F2) where F1 and F2 are

identical copies of the same fluorescent reporter gene in every cell, Var(F1 +F2) = 2Var(F )+2Cov(F1, F2).

Using the 1-copy variance with the two-copy variance then, intrinsic (Iv) and extrinsic variability (Ev)

are, respectively:

Iv = 4Var(F )−Var(F1 + F2)/2 = Var(F )− Cov(F1, F2) (S19)

Ev = Var(F )− Iv = Cov(F1, F2) (S20)

Stewart-Ornstein et al. observed this approach was significantly more error-prone than the two-color

method for decomposing noise [11]. Our initial findings agreed: if we computed Iv and Ev from biological

replicates, then held out one observation, estimates of both noises changed significantly. This was

particularly troublesome with the SSA1P-GFP constructs.

We reasoned that variability in the estimate could arise from two different sources of error. On one

hand, error could be technical shot noise from the instrument or from slightly different biological conditions

experienced by the replicates. In that situation, the only solution would be to make more measurements

and average. Alternatively, we reasoned that since mean expression is related to expression variance

both genome-wide and within promoter context [12–14], perhaps differences between biological replicates

corresponds to a conserved perturbation in mean and variance simultaneously.

Plotting mean versus variance for the SSA1P-H-GFP constructs revealed essentially shot noise; but

here, the holdout strategy has the smallest effect on estimates of intrinsic and extrinsic noise. Alternatively,

the same plot drawn from SSA1P-GFP construct replicates demonstrates a remarkably linear relationship

between mean and variance for one-copy and two-copy constructs. Therefore, high error introduced by



the hold-out strategy for this experiment is essentially explained by local excursions away from the true

steady state mean, which has an equally concerted, and much larger impact on variance.

This local mean-variance relationship suggests a way to reduce error in the intrinsic-extrinsic decom-

position. First, we could simply draw a line connecting the two-copy genes (Eq. S21), and a similar line

for one-copy mean vs. variance (Eq. S22). Assaying the resulting line fits at SM = X and DM = 2X

should alleviate the effect of slightly different means causing large differences in estimated variances.

Dv = aDM + b (S21)

Sv = cSM + d (S22)

However, more statistical power can be obtained by combining the regression into a single dataset.

This is achieved by remapping the double-copy observation of variance, Dv by D∗
v = Dv/k, and mean

double-copy measurements Dm by D∗
m = Dm/2. This remapping captures the essential features we already

know relate single copy to double copy mean and variance observations. Namely, bulk mean expression

of the double copy variants is on average exactly two times greater than single copy expression, after

autofluorescence correction. For variance, an unknown coefficient k relates variance of the double copy

observations to single copy observations.

In fact, k represents the balance of intrinsic and extrinsic noise; double copy variance can be at most

four times single copy variance, and at least two times single copy variance.

We hypothesized that there exists a value k such that the remapping of double copy variances causes

M∗
v and D∗

v to trace the same line. That is, D∗
v = cD∗

m + d. Functionally this corresponds to the

assumption that the local mean (and variance) excursions can affect the magnitude of both types of

variance but not their relative contribution to total variance. Code that minimized a linear regression

r2 by iteratively testing values of 2 ≤ k ≤ 4 generated excellent estimates of intrinsic and extrinsic

decompositions that were robust to 2-fold hold out–see SEM for intrinsic (Iv) and extrinsic (Ev) variance

in Data S3 for untagged GFP.



S2.6 Exploratory modeling

S2.6.1 Variance normalization reduces the information in stochastic measurements

Absolute protein expression level adds concrete information to our understanding of stochastic gene

expression. If we consider Pi to be a random variable representing protein stochasticity, mean expression

scales with constant kct, since E[kctFi] = kctE[Fi], while variance scales with k2ct, since Var(kctFi) =

k2ctVar(Fi). To ameliorate this discrepancy, investigators commonly normalize variance using the coefficient

of variation, CV =
√
k2ctV ar(Fi)/(kctE[Fi]) or CV 2, as this eliminates the pesky protein count conversion

factor. A side effect of this practice is to reduce the predictive power of stochastic models, since CV

measurements are not independent of mean expression effects.

To illustrate this fact, one need only to study how relative fluorescence impedes the use of an

elegant, mechanistic solution to a simple stochastic model of protein distributions. The Friedman et

al. analytical solution to protein stochasticity enables investigators to link CV 2 = dp/km and Fano

noise (F = σ2/µ = kp/dm) to mechanistically relevant parameter ratios [15]. However, use of relative

fluorescence in these calculations yields:

k2ctVar(Pi)

(kctE[Pi])2
=

dp
km

(S23)

k2ctVar(Pi)

kctE[Pi]
=
kctkp
dm

(S24)

The result is that only the dp/km ratio can be abstracted without a measure of absolute protein count;

the kp/dm parameter is inaccessible. This motivated us to measure protein stochasticity in units of protein

count.

S2.6.2 Models incorporating extrinsic noise

Intrinsic and extrinsic contributions to total variance are often written as a formula [13,16]:

σ2
tot = σ2

intr + σ2
extr (S25)



However, this representation obscures the relationship between the two quantities. The full version of the

Law of Total Variance is:

Var(X) = E[Var(X|e)]︸ ︷︷ ︸
Intrinsic variance

+ Var(E[X|e])︸ ︷︷ ︸
Extrinsic variance

(S26)

where e corresponds to a set of environmental variables that jointly vary with a random variable X.

We can use this relationship to analytically separate intrinsic and extrinsic noise for simple models.

We start with the simplest model of gene expression with no ON and OFF states. Mean and variance for

this model are:

E[NP ] =
kmkp
dmdp

(S27)

Var(NP ) =
kmkp(dm + dp + kp)

dmdp(dm + dp)
(S28)

Since the parameters are constants, mean and variance are also constant for a given set of parameters.

This represents biochemical intrinsic noise only.

If we instead postulate that km is itself a random variable with distribution Km, then Eqs. S27 and

S28 become distributions themselves. Using the definitions of noise decomposition from Eq. S26 we arrive

at the equations shown in the main text, and reproduced here:

E[NP ] =
kp
dpdm

E[Km] (S29)

Iv(NP ) =
kp(dp + dm + kp)

dpdm(dp + dm)
E[Km] (S30)

Ev(NP ) =
k2p
d2pd

2
m

Var(Km) (S31)

where Np is the random variable representing the number of proteins in the basic model.

If we instead let kp be a random variable Kp, Eqs. S27 and S28, and again invoke the law of total

variance, we obtain:



E[Np] = E[E[Np|Kp]] =
km
dmdp

E[Kp] (S32)

Varintr = E[Var[Np|Kp]] =
km

dmdp(dm + dp)
(Var[Kp] + E[Kp]

2 + (dm + dp)E[Kp]) (S33)

Varextr = Var[E[Np|Kp]] =
k2m
d2md

2
p

Var[Kp] (S34)

S2.6.3 Km as a Generalized Extreme Value distribution

Although a number of distributions come close to capturing stochastic expression shape, the only

distribution that captures tail behavior well was the Generalized Extreme Value Distribution. Fits

generally gave scale parameter values of very close to zero. Setting the scale value to zero results in

a Gumbel-type extreme value distribution with parameters µGEV and σGEV . With the measurements

obtained, we can solve for both parameters along with kp:

µGEV = −
dmdpE[Np]

(
(dm + dp)E[Np](−Iv + E[NP ])φ+ γ

√
Ev
√

(dm + dp)2(Iv − E[NP ])2φ
)

(dm + dp)2(Iv − E[NP ])2φ
(S35)

σGEV =
dmdp

√
EvE[NP ]√

(dm + dp)2(Iv − E[NP ])2φ
(S36)

kp =
(dm + dp)(Iv − E[NP ])

E[NP ]
(S37)

where Iv(NP ) and Ev(NP ) were shortened to Iv and Ev respectively, φ = π
6 , and γ is the Euler-Mascheroni

constant (~.5772). Although the Gumbel distribution is supported on (−∞,∞), parameter estimations

for µGEV and σGEV showed MATLAB-computed density values of zero at all x-values of Km = 0 or less.

S2.6.4 Km as an inverse Gaussian distribution

Among common two-parameter distributions, the inverse Gaussian distributions generally appeared in

either the second or third positions among rankings of distributions by Akaike Information Criterion.

Moments of the inverse Gaussian were much easier to work with. Unlike the Gumbel distribution above,

the inverse Gaussian is correctly supported on [0,∞). An intrinsic-extrinsic model with Km being inverse

Gaussian distributed KM = IG(µIG, σIG) yields the following relationships:



µIG =
dpdmE[NP ]2

(dp + dm)(Iv − E[NP ])
(S38)

σIG =
dpdmE[NP ]4

(dp + dm)Ev(Iv − E[NP ])
(S39)

kp =
(dp + dm)(Iv − E[NP ])

E[NP ]
(S40)

We found this model reliably underestimates distribution skewness which is likely why it consistently

underperforms the Gumbel distribution (above) in terms of AIC.

S2.7 Simulations to validate hybrid model against experimental data

S2.7.1 Extrinsic Km model

The following steps enabled determination of model-predicted higher moments. For each parameter set

(forward scatter bin), we randomly drew 100,000 values from a Gumbel distribution with parameters µk

and σk. Each number can be thought of as km for a single cell. We then employed analytical moment

solutions for the model above for each hierarchical parameter set (km,i ∈ Km,kp,dm,dp) to obtain 100,000

“single-cell” moment sets for the first four central moments [17]. These distributions represent E[Np|e],

Var(Np|e), Skew(Np|e) and Kurt(Np|e), where e corresponds to the specific condition, the set of rates

km,i ∈ Km, kp, dm, and dp.

These moment distributions, conditioned on Km, were further analyzed using the law of total variance

to verify variance estimates matched with the input. Higher order moments were analyzed as follows. Like

variance (Eq. S26), skewness (third central moment) and kurtosis (fourth central moment) can also be

decomposed into intrinsic and extrinsic components:

Skew(Np) =E[Skew(Np|e)] + Skew(E[Np|e]) + 3Cov(E[Np|e],Var(Np|e)) (S41)

Kurt(Np) =E[Kurt(Np|e)] + Kurt(E[Np|e]) + 4Cov(E[Np|e],Skew(Np|e))

+ 6Cov(E[Np|e],E[Np|e]Var(Np|e))− 6E[Np]Cov(E[Np|e],Var(Np|e)) (S42)

These terms represent moments of the simulated moment distributions E[Np|e], Var(Np|e), Skew(Np|e)



and Kurt(Np|e), and were thus calculated directly to generate the moments across forward scatter plots

(Fig. S3B and C). Note again, skewness and kurtosis refer to 3rd and 4th central moments.

S2.7.2 Extrinsic Kp model

The same intrinsic and extrinsic moments of skew and kurtosis also hold for the extrinsic Kp model. We

first solved the experimental data for the Gumbel hyperparameters for Kp assuming km was fixed using

Eqs. S32-S34. Then using the same analytical moment solutions as above we simulated the hierarchical

parameter set (kp,i ∈ Kp,km,dm,dp) to obtain 100,000 “single-cell” moment sets for the first four central

moments. Both the extrinsic Kp and extrinsic Km model yielded similar moment predictions despite

having different forms of the intrinsic variance equation (Fig. S3B and C).

S2.8 Analysis of RNA count distributions from Gandhi et al.

Following the same steps in the main text, the extrinsic Km model for RNA posits a distribution of

transcription rates Km with a constant degradation rate. The various parameters can be solved using

intrinsic and extrinsic moments and a measurement of dm.

E[Nm] =
E[Km]

dm
(S43)

Varintr =
1

d2m
Var[Km] (S44)

Varextr =
1

dm
Var[Km] (S45)

Therefore, the mean and variance of the extrinsically distributed transcription rate Km is:

E[Km] = E[Nm]dm (S46)

Var[Km] = d2m(Var[Nm]− E[Nm]) (S47)



Finally, substituting the GEV parameters σkm and µkm and solving, we get:

σkm =

√
6Var[Km]

π2
(S48)

µkm = E[Km]− σkmγ (S49)

where γ is the Euler-Mascheroni constant. For each RNA distribution depicted in Fig. 7 (main text)

from Gandhi et al. [18], the mean and variance was calculated (Var[Nm] and E[Nm]). RNA degradation

rates were obtained from Wang et al. [19]. Resulting fits were produced by drawing 10,000 km values

from GEV (σkm, µkm) and dividing by the corresponding dm.
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