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Dear Editor: 
 
We are pleased to submit an original article entitled “Estimation of material parameters from slow and 
fast shear waves in an incompressible, transversely isotropic material” for review to the Journal of 
Biomechanics.  This paper describes a method to estimate mechanical properties of soft, anisotropic 
materials from measurements of shear waves consistent with magnetic resonance elastography (MRE). 
 
All five authors have made substantial contributions to all of the following: (1) the conception and 
design of the study and the analysis and interpretation of data, (2) drafting the article or revising it 
critically for important intellectual content, (3) final approval of the version to be submitted.   
 
The manuscript, including related data, figures and tables has not been previously published and is not 
under consideration elsewhere.   
 
Thank you for your consideration. 
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Dennis Tweten 
Ruth J. Okamoto 
John L. Schmidt 
Philip V. Bayly 
Joel R. Garbow 
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Response to review of Manuscript No. BM-D-15-00682: DJ Tweten et al. Estimation of material 

parameters from slow and fast shear waves in an incompressible, transversely isotropic material Journal 

of Biomechanics 

We thank the editor and reviewers for their thoughtful evaluation of our manuscript. We appreciate 

both their generally positive assessment and their constructive critiques and suggestions. Below we 

respond point-by-point to the reviewers’ comments, and indicate corresponding revisions to the 

manuscript. In particular, we added noise to all of the simulations and made a comparison between 

estimates with and without noise for the global approach.  The effects of damping in the FE simulations 

are addressed, and we discuss the general issue of damping in the material model.  The explanation of 

DFI is now improved with more detail and a new appendix is added (Appendix B) to discuss the details of 

the inversion approach.  Finally, we provide a comparison of our approach to the one introduced by Guo 

et al. 

Responses to Referees' Comments to Authors: 

Reviewer 1 

Comment 1: One major concern is that the majority of the performance analysis of the algorithm is 

based on noise-free data. With MRE data being inherently noisy, it would be more useful to see how well 

this algorithm performs in the presence of statistically well-quantified noise that is comparable in level to 

reality. 

Response: Agreed. We have added noise resulting in an SNR of 10 to all simulations.  A comparison 

between the noise free and noisy data for the global approach is made in Table 2.  We have quantified 

the noise in at the end of section 2.3 (line 196). 

 

Comment 2: To me, another major oversight is the lack of any mention of damping/viscous properties 

and their role in all of this. The simulation results suggest that damping was included; but, there is no 

discussion of this. As I'm sure the authors are aware, the choice and identification of appropriate 

rheological models is also critical and intertwined with the choice and identification of the purely elastic 

properties. In simulations without realistic damping one runs the risk of all kinds of standing wave 

patterns, mode conversions and propagating wave types that, in reality, won't be there or may become 

evanescent because of viscosity. What was done in these simulations? How does it compare to reality? 

Response: We agree that the effect of damping should be addressed in the manuscript.  We used an 

isotropic loss factor of 0.2 in all of the simulations which is now mentioned in the text.  A comparison 

between this value and loss factors calculated from MRE studies is also now included in the text 

(line 186):    “For all cases we used an isotropic loss factor of η=0.2, which is similar to ranges 

(0.23<η<0.93) found for the human brain using MRE (Bayly2014), (0.11<η<0.23) for gelatin using MRE 

(Okamoto2011), and qualitatively similar in turkey breast ex vivo using MRE (Schmidt2015 a,b).”     

 

In the text, we have also addressed the reason we chose not estimate the viscoelastic terms and how 

those terms could be estimated in the future (line 170):   “It should be noted that we did not attempt to 

estimate dissipative viscoelastic terms (complex moduli, loss factors, or damping ratios) in this study.  

These terms were neglected in order to focus on the underlying relationship between transversely 

isotropic elastic parameters and slow and fast shear waves.  This choice enabled us to use a simple, 

efficient wavelength estimation method: LFE. LFE-based methods are limited in that information on 

dissipation is not estimated without modification (Clayton2013).  In principle, the directionally filtered 

*Revision Notes
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approach could be combined with another method such as direct inversion (Oliphant2001) to estimate 

viscoelastic parameters in addition to µ, φ, and ζ.”   

 

Comment 3: (2: Methods section, Figure 2): <theta> is used to describe the angle between the shear 

wave propagation direction and the fiber orientation, and the angle between the slow shear wave 

displacement place and the xy plane. This should be two unique variables. Also, if the angle of the 

displacement plane of the slow shear wave has no effect on the slow shear wave speed, why show the 

variable at all? And, what about the fast shear wave displacement plane? Why does this not have an 

orientation angle from the xz plane if the slow shear wave does? Please clarify this by being more 

consistent or explaining that the displacement plane has no effect on the propagation speed. 

Response: The concept of shear wave polarization we try to explain in Figure 2 is difficult to depict in a 

2D figure. However, we have taken the reviewer’s comments and modified the plot and caption to be 

clearer.  First, the annotation of the angle θ has been moved as suggested.  Secondly, the intent of the 

planes is to make the directions of the polarizations clear.  The displacement field due to shear waves 

travelling in an ITI material can be decomposed into slow and fast waves, which have different 

polarization directions which are orthogonal to each other and orthogonal to the propagation direction 

(note Eq. 1 & 3).  Each plane is completely defined by the polarization and propagation directions.  

Displacements in the direction of the fast polarization stretch the fibers (or more generally, stretch the 

material in its stiffest direction), which leads to faster wave speeds (relative to waves in which fibers are 

not stretched).  With this in mind, the planes have been labeled “Plane of Displacement.”  Finally, the 

caption has been changed to indicate that a single displacement field is analyzed, and the isolated slow 

and fast shear wave components are being displayed in the figures a) and b). 

 

CAPTION: “A displacement field with a single propagation direction, ���, at an angle theta from the fiber 

direction, ��, can be decomposed into two shear waves, (a) "slow" and (b) "fast" with different polarization 

directions. This is illustrated for the case in which the fiber direction is aligned with the x-axis. (a) The 

displacements of the slow shear wave are in the ����� polarization direction which lies in the shaded plane. 

(b) The displacements of the fast shear wave are in the  ����� polarization direction which lies in the shaded 

(xz) plane. Note that the wavelength of the fast shear waves is longer than that of the slow shear wave for 

the same frequency.” 

 

 

Comment 4: (2.2.1: Isolation of wave components section) Vector projection: how did you determine the 

polarization direction of the slow and fast wave? And if you use an arbitrary polarization direction for 

one of the waves (slow wave for example), did you use a perpendicular polarization direction for the 

other wave? 

Response: The polarization directions are completely defined by the fiber direction and propagation 

direction using equations 1 & 3.  We added the following statement to the text to help clarify this 

(line 113): 

“The polarization directions are determined using Eq. (1) and (3). While the arbitrary propagation 

direction, ���, may be selected, the fiber direction, ��, must be known a priori using diffusion tensor 

imaging (DTI) (Romano2012) or other suitable method.”  

 

Comment 5: (2.2.1: Isolation of wave components section) Directional filter in Fourier space: what are 

the cut off frequencies or how did you determine the cut off frequencies? From Figure 4, the wavelength 

ratio between the fast and slow shear waves looks like around 0.5; so, only if the slow and fast wave are 

already isolated, otherwise, you need to use a very narrow bandwidth of the spatial filter to isolate these 

two waves, and in that case, the result would be not that reliable. 
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Response: The slow and fast shear waves are isolated using a dot product between the total 

displacement field and the slow and fast polarization directions, respectively.   The filtering in Fourier 

space is used to isolate a particular direction, which can be performed after the slow and fast shear 

waves have been isolated.  The text was re-written to make this clear (line 110):   “The first step is vector 

projection, in which the slow and fast shear waves are isolated by performing a dot product between 

the displacement field and the normalized slow and fast polarization directions, respectively.”  

 

Comment 6: (2.2.1: Isolation of wave components section)  With what criteria or method did you 

determine the arbitrary set of propagation directions and how many directions in the set? Also, are these 

directions limited to one slice? This raises another question: is this approach workable on 2D data or 

restricted to 3D data only? 

Response:  We typically start with a set of propagation directions equally spaced in 3D that is dense 

enough to capture the energy in the wave field.  Then, a specialized set can be defined, which is limited 

to directions with large displacement amplitudes.  Neither method is currently guaranteed to be 

optimal.  In the future, we plan to explore the selection of these sets in more detail.  The method can be 

used in 2D, although we don’t present any of those results in this manuscript.  In light of these 

questions, we modified the text to include the following statement (line 118):    “In principle, any 

arbitrary set of propagation directions may be chosen for the analysis, such as an equally spaced 3D set 

or a set containing directions with large amplitudes such as the one shown in Fig 5d.  Creating a set of 

propagation directions with large amplitudes typically requires an iterative approach.”  

 

Comment 7: (2.2.2: Wave speed estimation)  What were the filter properties of the LFE that were used to 

estimate the wave speed? 

Response:  We added the following sentence to provide the LFE parameters (line 129): “We used the 

LFE parameters ρ0=1 for the center frequency and N=11 for the number of filters”  

 

Comment 8: (2.3: Simulation Approach)   What was the damping material properties applied to the 

COMSOL model? Table 1 only lists real valued material properties, which wouldn't produce the 

attenuated waves seen in the wave displacement images. How did you handle wave reflections at the 

outer boundary? It would also be nice to know some details about the mesh and model thickness. 

Response:  We agree that the finite element details are important to include in the manuscript, and 

details have been added about the isotropic loss factor used in the finite element model as well as the 

Young’s modulus, Poisson’s ratios, dimensions, mesh details, and boundary conditions (line 190).  The 

directional filter approach (Fourier-space filter) separates reflections from waves travelling in the 

opposite direction, so there are no overlapping displacements.   

 

Comment 9: (line 106)   Can you provide a reference for the wavelet analysis in estimating wave speeds? 

Response:  We added the reference to Kingsbury2001 which describes an approach for complex 

wavelets which could be used to estimate the wavenumber of shear waves (line 126). 

 

Comment 10: (2.2.4: Material parameter estimation)   "material parameters can be estimated from Eq 

(2) and Eq (4)". There are three unknown parameters, but two equations, and you mentioned "valid 

speed estimates for both types of shear waves must be available for a range of propagation directions". 

So, did you use iterative substitution to estimate the parameters or use a curve fitting? 

Response:  Ideally, multiple wave speeds and directions will be used to estimate the three material 

parameters which is an over-constrained problem, as the reviewer points out.  We have chosen a 

weighted least squares (WLS) approach to take advantage of multiple estimates.  The details of this 
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approach, including how Eqs. 2 & 4 are implemented with WLS, is now added in the new Appendix B (pg. 

19). 

 

Comment 11: (2.3: Simulation Approach)   Can you add what software you use for the simulation? You 

mention Comsol in the caption of figure 5, but it'll be better to have it in the manuscript body. 

Response:  We now mention in the text that Comsol was used for the simulations (line 179). 

 

Comment 12: (2.3: Simulation Approach)   The <mu> defined in the simulation, is it the shear modulus? If 

yes, shouldn’t it be a complex number considering the attenuation?  What value of Poisson's ratio did 

you use for the simulation? 

Response:  We agree that we should include the implementation of the material parameters in the finite 

element model and regret the omission of these details.  We used a real shear modulus and an isotropic 

loss factor (η=0.2) so that the complex modulus is effectively µ*=µ(1+iη).  Other moduli are also 

complex as defined by the shear anisotropy and tensile anisotropy ratios. The Young’s moduli and 

Poisson’s ratios (see below) are now in the text. (line 190) 

E1 = µ*(4*ζ +3);   E2 = E1 /(1+ζ) 

ν12 = 0.49;  ν21 = ν12*E2 /E1 ;   ν23 = 1 − ν21 − 0.01 

 

Comment 13: (3. Results)   Please explain why local material parameter estimates were only presented 

for case 1. 

Response:   

The local approach tends to limit the range of propagation directions (available information) that is used 

in the inversion.  For a homogeneous region, using the entire volume is the best practice, since it 

includes data from the greatest possible number of directions. Great care should be taken in a local 

approach to ensure that both slow and fast shear waves of sufficient amplitude (good SNR) in multiple 

propagation directions are present.  For this reason, we have focused on the global approach in this 

manuscript and included local results for only a single case.  The results for case 1 are typical of the 

other cases (we now mention this in the manuscript – line 214).  Also, we agree that the paper should 

mention why only one case was selected for the local approach.  The text now includes the following 

statements: 

“The results highlight the effect of the typical limited number of directions in a relatively small kernel, 

which reduces the accuracy of the inversion.  For a homogeneous region, increasing the kernel size to 

the total volume will typically give the best results.  Great care should be taken in a local approach to 

ensure that both slow and fast shear waves of sufficient amplitude (good SNR) in multiple propagation 

directions are present. Therefore, we have chosen to focus on the global approach in this paper and 

have only included results for the local approach for Case 1.” (line 222) 

“Adding multiple experiments with different modes of excitation or fiber directions to the estimation 

process should increase the available information and lead to more accurate estimates especially in the 

local approach in which information tends to be more limited than the global approach.” (line 286) 

 

Comment 14: (3. Results)   Figure 6: Why is there no case 2 shown? 

Response:  Since case 2 has the same analytical curve as case 1, we originally had chosen not to include 

it for clarity.  We agree it makes sense to include the intermediate results for all four cases.  After some 

experimentation with symbols, figure 6 now includes case 2 with a reasonable amount of clarity. 

 

Comment 15: (3.2. Local Parameter Estimates)   I would suggest adding noise to the local case as well; 

this would give a better idea of how well the algorithm will work. Also, I would suggest presenting 

spatially averaged µ, ϕ, and ζ values for comparison to the model input parameters. 
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Response:  We agree that adding noise to the local case is more realistic.  We added the same level of 

noise (SNR=10) as the global case.  Fig. 7 now includes a comparison of the W-Disp. field with and 

without additive noise to give an intuitive idea of the level of noise.  We also agree that spatially 

averaged material parameters for the local case would add to the text.  These values are μ=986±56, 

φ=0.92±0.23, and ζ=1.57±0.23, and are now included in the text (line 221). 

 

Comment 16: (3.3. Global Parameter Estimates) Figure 8: Why was noise only applied to case 1? Why 

not also test the other cases with noise since adding noise makes the simulation more representative of 

noisy MRE data? It is also very difficult to see what are the actual estimated values. Please add a table 

with the precise estimated parameter values and their standard deviations. 

Response:  We agree that adding noise to all cases for the global approach is more realistic and have 

done so.  Also, we have replaced Fig. 8 with Table 2 which gives the values of the estimated values more 

precisely.  Table 2 compares the actual values, estimated values without noise, and estimated value with 

noise for each case. 

 

Comment 17: (4. Discussion, Line 230) What is meant by comparable? Looking at Figure 8 it seems that 

the noise case is not as accurate as the case of noise-free. Please, give a more specific statement in 

regards to how well the noise case is as compared to the noise-free case. 

Response:  This statement has been removed from the text.  We have now added Table 2 which 

provides a detailed comparison of all four cases with and without noise.   

 

Comment 17: (Appendix A, Line 280) Eq. (A.?), it is not clear which equation is being referenced. 

Response:  This typo has been fixed, and the reference is now properly included as Eq. A.2 (line 329). 
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Reviewer 2 

Comment 1: Does your method require a-prior information on the fiber direction? You say on lines 96ff 

that you select the fast and slow component which is defined relative to the fiber direction. However, 

how would you know the fiber direction in reality? Would you need DTI information on the fiber direction 

similar to Romano et al? 

Response:  This is a good point.  The fiber direction must be known a priori, and in practice this would 

require using DTI to determine the fiber direction.  We now mention this explicitly in the text along with 

a reference to Romano et al. (line 113). 

 

Comment 2: How do you decide if a wave speed recovered by LFE corresponds to the fast or slow 

component? Do you use different filters for both wave speed components? Overall, the information on 

the LFE procedure is very sparse and should be better provided within the manuscript. 

Response:  We agree that the manuscript should provide more details regarding the DFI approach, and 

have added a number of changes in Section 2.  In particular, section 2.2.1. has been improved to make a 

clearer explanation of how components are separated.  Slow and fast shear waves are isolated using a 

dot product between the total displacement field and the slow or fast polarization direction, 

respectively.  The polarization directions are determined knowing the fiber direction, picking a 

propagation direction, and using Eqs. 1 & 3.  To isolate the direction, the Fourier-space filter is applied to 

the result of either dot product.  The Fourier-space filter is not used to distinguish between the slow and 

fast shear waves.   

 

Comment 3: How do you calculate three parameters from two wave speeds? Please give more 

information on this. Do you combine information of neighbored pixels or of multiple directions? 

Response:  The reviewer is correct. Multiple wave speeds and directions must be used to estimate the 

three material parameters, which leads to an over-constrained problem.  We have chosen a weighted 

least squares (WLS) approach to take advantage of multiple estimates.  The details of this approach, 

including how Eq. 2 & 4 are implemented with WLS, is now added in the new Appendix B.  Section 2.2.4. 

describes two possible implementations for including voxels in the WLS approach.  In the global 

approach, any subset of voxels in a homogeneous volume may be used, while in the local approach all 

voxels within a specified radius of a center voxel are used.   

 

Comment 4: Did you add noise to the simulated wave fields? If not, the validation of your approach is 

questionable and should be revised by adding noise. If yes, give the SNR in table 1. 

Response:  We agree that noise should be added to the simulations for comparison.  We have added 

noise resulting in an SNR of 10 to all simulations.  A comparison between the noise free and noisy data is 

made in Table 2.  We have quantified the noise in section 2.3 (line 196). 

 

Comment 5: What is the advantage of your method as compared to the curl-based three-parameter 

inversion of Guo et al? Please discuss! 

Response: The recent paper by Guo is in agreement with our general approach- that three elastic 

parameters are necessary and sufficient to describe an ITI elastic material. The current paper focuses on 

(1) the physical phenomena of slow and fast shear waves, (2) the implications for measurement and 

inversion, and (3) a directional filter-based approach that has a less stringent requirement for 

incompressibility and requires fewer numerical derivatives.    

(1) Most importantly, both the approach of Guo et al. and the one we present in the manuscript 

require the presence of both slow and fast shear waves in the displacement field to accurately 

estimate all three material properties.  However, in some cases, there may not be enough 



Manuscript BM-D-15-00682, Tweten et al. 

 

7 of 8 

 

information to estimate all three parameters.  This could occur when one of the shear waves is 

missing (e.g. the cylinder excitation example given below in the response to comment 9, in 

which the fiber direction is in the xy-plane), or if the number of estimates for one shear wave far 

exceed the number of the other type of shear wave (e.g. 95% of the shear wave estimates are 

the slow variety).   

 

The previous work of Guo et al. does not provide a way to explicitly check that both slow and 

fast shear waves propagating in multiple directions contribute to the displacement field.  In the 

approach we present in the manuscript, however, we explicitly require that there are 

contributions from both slow and fast shear waves from multiple directions in every estimate, 

which is necessary to make sure there is enough information to accurately estimate all three 

parameters. Any estimate which does not have a specified minimum percentage of either shear 

wave component can be rejected.  

 

We note that this capability can certainly be added to the approach of Guo et al., but that this is 

a specific contribution of the present study. 

 

(2) The derivation by Guo et al. assumes incompressibility, a priori, in the derivation of the 

equations used for direct inversion. This may be limiting because the range of parameters (e.g. 

bulk modulus) for which the incompressible assumption is valid cannot be determined.  In 

contrast, for the method we present in the manuscript, we develop the acoustic equations first 

(Eq. A.8.) and then apply the incompressibility assumptions.  This allows us to evaluate the 

effect of bulk modulus κ on the speed of the slow and fast shear waves (Fig. 3).  Knowing this 

relationship allows us to determine the range of bulk modulus for which the incompressibility 

assumption is reasonable (κ/µ > 100; line 100). 
(3) The approach presented by Guo et al. works on the curl field which requires an extra derivative, 

which typically makes a method more sensitive to noise and choice of filter parameters.  The 

approach we present in the manuscript is applied directly to the displacement field. 

(4) Finally, our approach has been characterized by estimating parameters from data generated by 

simulations in which the parameters are known (i.e., a “gold standard” is available).  To our 

knowledge the approach used by Guo et al.  has not yet been validated on simulated data, nor 

on a material with known parameters, so its accuracy is not yet known. 

 

We have updated the text to take into account items (1) through (3) above.  In addition, we have added 

a reference to the full paper by Guo et al. (line 27): 

“Guo et al (2015) have recently published a method to estimate three material parameters for an ITI 

material from the curl of a displacement field measured by MRE. In their material model, Guo et al. 

(2015) assume incompressibility, a priori, in the derivation of the equations used in the inversion. The 

estimation approach introduced by Guo et al. (2015) requires taking the curl of the displacement field 

and does not explicitly require that both slow and fast shear waves are included for inversion.  The 

paper of Feng2013 et al. includes the derivation of inverse equations before applying the 

incompressibility assumption, which can be used to determine ranges of the bulk modulus for which the 

approach is valid.  Feng2013 et al. demonstrate how the compliance tensor with the incompressibility 

approximation can be used to find expressions for Young's moduli, shear moduli, and Poisson's ratios.”  

 

 “The proposed method explicitly requires both slow and fast shear waves for a valid material parameter 

estimate and can be performed directly on the displacement field.” (line 58) 
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Comment 6: (Abstract) say that you aim at three-parameter inversion 

Response:  We agree that the abstract should clearly indicate we are estimating three parameters.  We 

have modified the following line in the text: “A three-parameter estimation approach based on 

directional filtering and isolation of slow and fast shear wave components (directional filter inversion, or 

DFI) is introduced.” 

 

Comment 7: (Abstract) MRE is already 20 years old which is not 'recent' 

Response:  Agreed. We have removed ‘recent’ from this line. 

 

Comment 8: (Introduction) you say on line 34ff that Romano et al used the most complete TI-model, 

however, in the cited paper the full orthotropic tensor is deduced and TI-properties are revealed by 

redundancies in the tensor elements. 

Response:  Agreed.  We have updated the text to include the following line (line 41): “A nine-parameter, 

orthotropic material model is assumed, and the five independent components of the transversely 

isotropic material model are revealed through redundancies.”   

 

Also we have modified the sentence pointed out to now state (line 44): “This material model used by 

Romano et al. (2012) captures both shear and pressure waves and does not require the assumption of 

near-incompressibility.”  

 

Comment 9: (Methods) you say on line 73 fast shear wave stretches the fibers. However, at θ = 0, the 

fast shear wave propagates along the fibers (without stretching them) with the same speed as the slow 

wave. 

Response:  The θ=0 condition is the degenerate case in which only the slow shear wave is present.  This 

is an important point, since it is possible to set up an experiment in which only slow shear waves are 

present.  If the cylinder setup used in the manuscript had a fiber direction constrained to the xy-plane 

(β=0°), only slow shear waves would be present.  In such a case the parameter ζ could not be estimated. 

We have updated the following line in the text (line 94): “Note for the degenerate cases of θ=0° and 

θ=90°, only the slow shear wave is present.”  

 

Comment 10: (line 143) 'each each' 

Response:  This typo is now fixed. 

 

Comment 11: (Appendix A) in your equation of motion (A6) div(sigma) is on the left hand side. Do you 

mean gradient(sigma)? 

Response:  We apologize for the confusion regarding this term. The text has been updated indicating 

that sigma is a second order stress tensor, so that is now clear that div(sigma) is the appropriate term 

for this case. (line 320) 
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material parameters.

Keywords: MR elastography, shear waves, anisotropy, transversely isotropic material, inversion
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1. Introduction1

Magnetic resonance elastography (MRE) is an innovative method for non-invasive estimation of2

material parameters of living biological tissue, including in human subjects. In MRE, shear waves3

are introduced by external vibration at a specific frequency and the resulting displacement fields4

are visualized by motion-sensitive MR imaging sequences. Material parameters are estimated from5

the wavelengths (hence speed) of shear wave components in the tissue. Recent studies using MRE6

have been performed to estimate the material properties of a wide range of tissue including the7

liver (Klatt et al. (2010a); e.g.), skeletal muscle (Klatt et al. (2010b); Papazoglou et al. (2006);8

e.g.), and brain (Green et al. (2008); Clayton et al. (2011); e.g). While in many studies an isotropic9

material is assumed, biological tissue is often anisotropic, which requires more sophisticated material10

models.11

Recently, researchers have proposed anisotropic material models with two (Qin et al., 2013;12

Sinkus et al., 2005), three (Guo et al., 2015; Feng et al., 2013; Namani and Bayly, 2009; Papazoglou13

et al., 2006), and five or more (Romano et al., 2012) elastic parameters. Each of these models14

assumes a transversely isotropic or orthotropic material undergoing small elastic or viscoelastic15

deformations, which are appropriate assumptions for MRE of many soft anisotropic tissues. For16

both two-parameter models (Qin et al., 2013; Sinkus et al., 2005), the material is assumed to be17

nearly incompressible, which simplifies the model so that analytical expressions for wave speed can18

be found. As a further simplification, only shear anisotropy is considered, in which the effect of19
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stretching the fiber is ignored. The two-parameter model implies a single shear wave mode (slow)20

whose speed varies with direction.21

For the three-parameter models (Guo et al., 2015; Feng et al., 2013), both shear and tensile22

anisotropies are taken into account. Tensile anisotropy accounts for the effect of fiber stretching and23

is the basis of the distinction between slow and fast shear waves. While the three-parameter model is24

unable to describe pressure waves in a material, for nearly incompressible materials such as many soft25

tissues, the assumption of incompressibility allows accurate predictions of isochoric deformations.26

Guo et al. (2015) have recently published a method to estimate three material parameters for an27

ITI material from the curl of a displacement field measured by MRE. In their material model,28

Guo et al. (2015) assume incompressibility, a priori, in the derivation of the equations used in29

the inversion. The estimation approach introduced by Guo et al. (2015) requires taking the curl30

of the displacement field and does not explicitly require that both slow and fast shear waves are31

included for inversion. The paper by Feng et al. (2013) includes the derivation of inverse equations32

before applying the incompressibility assumption, which can be used to determine ranges of the33

bulk modulus for which the approach is valid. Feng et al. (2013) demonstrate how the compliance34

tensor with the incompressibility approximation can be used to find expressions for Young’s moduli,35

shear moduli, and Poisson’s ratios.36

Romano et al. (2012) introduced a spatial-spectral filter in order to identify five viscoelastic37

material parameters from MRE data. Combined with Helmholz Decomposition (Romano et al.,38

2012, 2005), shear and pressure waves are separated within a waveguide in which fibers follow a39

known path. Wave speeds estimated in a local reference frame relative to the waveguide are then40

used to estimate material properties. A nine-parameter, orthotropic material model is assumed, and41

the five independent components of the transversely isotropic material model are revealed through42
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redundancies.43

This material model used by Romano et al. (2012) captures both shear and pressure waves and44

does not require the assumption of near-incompressibility. However, the model is described in terms45

of the stiffness tensor rather than the compliance tensor which greatly increases the complexity of46

the estimation problem. In a nearly incompressible material, the speed of the pressure waves tend47

to be orders of magnitude larger than the speed of the shear waves; corresponding elements of the48

stiffness matrix may also differ by orders of magnitude.49

A phenomenon specific to anisotropic elastic or viscoelastic media is the concurrent existence50

of slow and fast shear waves, which can be exploited to estimate material properties. The three-51

parameter model (Feng et al. (2013), e.g.) is the simplest approach that captures both shear52

waves. In this paper, we develop and demonstrate a method to identify the three incompressible,53

transversely isotropic (ITI) material parameters using a directional filter inversion (DFI) approach.54

The DFI method separates the slow and fast shear waves by projecting onto the corresponding55

polarization vectors and using directional filters similar to the spatial-spectral filters introduced by56

Romano et al. (2012). However, in the DFI approach, arbitrary propagation directions are used57

with the separated slow and fast shear waves to isolate specific components. The proposed method58

explicitly requires both slow and fast shear waves for a valid material parameter estimate and can59

be performed directly on the displacement field. In this study, we analyzed simulated data to assess60

the ability of DFI to estimate shear wave speeds and material properties.61

2. Methods62

We first demonstrate that, in general, harmonic excitation at frequencies typical of MRE in an63

ITI material results in both slow and fast shear waves. Next, we present the DFI method which64
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uses both slow and fast shear waves to estimate the three ITI material parameters. We describe the65

simulation approach, based on a motivating physical experiment, and show how it is used to assess66

the accuracy and reliability of this approach.67

2.1. Theory of Shear Waves in an Incompressible, Transversely Isotropic Elastic Material68

This section presents the basic concepts underlying shear wave behavior in a fibrous material.69

(Appendix A includes a derivation of the equations described below.) We start with a linear, elastic,70

ITI material model (a fiber reinforced isotropic substrate), as shown in Fig. 1. Typically, both the71

tensile modulus in the fiber direction and the shear modulus in planes parallel to the fibers are72

stiffened, as highlighted in Fig. 1b and Fig. 1d, respectively. Rather than seeking the elements73

of the elasticity matrix, it is convenient to use the substrate shear modulus µ, shear anisotropy74

φ = µ1/µ − 1, and tensile anisotropy ζ = E1/E2 − 1 as the three material parameters.75

Consider a shear wave traveling in an ITI material with an arbitrary propagation direction ~n at76

an angle θ from the fiber direction ~a such as the one shown in Fig. 2. The displacement of this shear77

wave can be polarized into independent slow and fast shear wave components. The polarization78

direction of the slow shear wave is given by (Appendix A)79

~ms = ~n× ~a , (1)

which occurs in a direction perpendicular to both the propagation direction and the fiber direction.80

The normalized vector is given by m̂s = ~ms/|~ms|, which is used for all dot products. Because the81

slow shear wave does not stretch the fibers, the speed of the slow shear wave only depends on the82

shear anisotropy and is given by83

c2s =
µ

ρ

(
1 + φ cos2(θ)

)
, (2)
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On the other hand, from the polarization direction of the fast shear wave given by84

~mf = ~n× ~ms , (3)

and the speed of the fast shear wave given by85

c2f =
µ

ρ

(
1 + φ cos2(2θ) + ζ sin2(2θ)

)
. (4)

The normalized vector is given by m̂f = ~mf/|~mf |, which is used for all dot products. It is clear that86

the fast shear wave stretches the fiber and that its speed is dependent on the tensile anisotropy.87

The result is two independent shear wave components traveling in the same direction at different88

speeds.89

To illustrate the differences between the slow and fast shear wave speeds due to tensile anisotropy,90

consider the plots in Fig. 3 of wave speed versus tensile anisotropy. The slow shear wave speed in91

Fig. 3a is independent of ζ, since the slow shear wave speed does not depend on tensile anisotropy.92

However, the speed of the fast shear wave does increase for larger values of tensile anisotropy as93

shown in Fig. 3b. Note for the degenerate cases of θ = 0o and θ = 90o, only the slow shear wave is94

present.95

One of the critical assumptions of an ITI material model is incompressibility, in which the bulk96

modulus κ approaches infinity. To see the effects of this assumption, consider Fig. 3 in which the97

fast shear wave and pressure wave speeds in a nearly-incompressible transversely isotropic (NITI)98

material are plotted versus bulk modulus, κ, and tensile anisotropy, ζ. Figure 3c shows that for99

even a relatively small ratio of bulk modulus to shear modulus (κ/µ = 100), the speed of the fast100

shear wave is already approaching the incompressible case. The slow shear wave speed is unaffected101

by the bulk modulus. In addition, in this nearly-incompressible material, the pressure wave speed102

cp is much larger than the speed of either shear wave as shown in Fig. 3d.103
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2.2. Directional Filter Inversion104

For an ITI material with a known displacement field, the three parameters can be estimated if105

the slow and fast shear waves in multiple directions can be isolated and the speeds of the waves106

estimated. This is the fundamental concept behind the DFI method. Figure 4 outlines the steps107

used in DFI to identify the speed of slow and fast shear waves.108

2.2.1. Isolation of wave components109

The input to DFI is a harmonic displacement field such as one generated in MRE. The first step110

is vector projection, in which the slow and fast shear waves are isolated by performing a dot product111

between the displacement field and the normalized slow and fast polarization directions, respectively.112

The polarization directions are determined using Eq. (1) and (3). While the arbitrary propagation113

direction, ~n, may be selected, the fiber direction, ~a, must be known a priori using diffusion tensor114

imaging (DTI) (Romano et al., 2012) or other suitable method. Next, the propagation direction,115

~n, is isolated by filtering the polarized data in Fourier space (Manduca et al., 2003). The resulting116

directionally filtered dataset consists of an independent displacement field for either the slow and117

fast shear wave in an arbitrary propagation direction. In principle, any arbitrary set of propagation118

directions may be chosen for the analysis, such as an equally spaced 3D set or a set containing119

directions with large amplitude contributions such as the one shown in Fig. 5d. Creating a set of120

propagation directions with large amplitudes typically requires an iterative approach. The process121

is repeated for all propagation directions in the set, for both slow and fast shear waves.122

2.2.2. Wave speed estimation123

We use the well-established local frequency estimation (LFE) (Knutsson et al., 1994) method124

to estimate wave speeds. However, other approaches to estimate wave speeds such as wavelet125
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analysis (Kingsbury, 2001) can also be used. In addition to wave speed, LFE also provides a126

measure of the variance of the speed estimate at each voxel (Okamoto et al., 2014; Knutsson et al.,127

1994), which they call “certainty.” This value may be useful for assessing confidence in wave speed128

estimates for parameter identification. We used the LFE parameters ρ0 = 1 for the center frequency129

and N = 11 for the number of filters (Okamoto et al., 2014).130

2.2.3. Inclusion criteria131

The main complication in estimating wave speeds for each direction is that a displacement field132

may not include significant slow and fast shear wave components at every location. For example,133

consider the filtered displacement fields in Fig. 4, which highlight directionally filtered wave fields134

that fill a subset of the domain. LFE and other techniques return wave speed estimates for the135

entire domain, including regions with little displacement. In addition, directional filters are not136

ideally narrow or selective. Therefore, wave speed estimates must be carefully selected before being137

included in parameter identification. In this study, we use three selection criteria: (i) amplitude of138

the corresponding shear wave component, (ii) LFE “certainty,” and (iii) rejection of outlying wave139

speed estimates.140

(i) For the amplitude threshold, the magnitude of the filtered displacement at a particular voxel141

must be larger than a specified fraction of the median amplitude of the unfiltered field. The142

resulting mask eliminates voxels in which the amplitude of the specified shear wave is too low143

for an accurate wave speed estimate.144

(ii) The certainty threshold results in a mask in which the variance of wave speed estimates is145

relatively low, based on LFE. A certainty of one corresponds to a low variance, and a certainty146

of zero corresponds to a large variance.147
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(iii) The mean and standard deviation of the remaining wave speeds are then calculated in order to148

create a mask that eliminates wave speeds one standard deviation above and below the mean.149

This final step is a simple approach that is effective in removing artifacts from imperfect150

directional filtering.151

2.2.4. Material parameter estimation152

Next, material parameters can be estimated from Eq. (2), Eq. (4), and the wave speed. To153

estimate all three parameters, valid speed estimates for both types of shear waves must be available154

for a range of propagation directions. Therefore, estimates of material properties are improved by155

combining multiple voxels that include waves with a variety of propagation directions. For a local156

inversion, which results in an estimate centered at each voxel, a kernel or sphere of voxels is selected157

to be included in the fitting process. The estimated material properties are then assigned to the158

voxel at the center of the kernel. For a global inversion, all voxels within a region are assumed to159

have uniform material properties, and consequently, any subset of the voxels may be used for the160

inversion.161

In this paper, we use the weighted least squares approach to estimate the material parameters162

for both local and global inversion methods (see Appendix B for more details). The weights are163

the relative displacement amplitudes at each voxel for a particular propagation direction and po-164

larization. At least two propagation directions with different angles θ from the fiber direction are165

required for a valid inversion. Parameter estimates are retained using a selection criteria based on166

the coefficient of determination or R value. For the local inversion, voxels with a R value greater167

than the mean of the non-zero R values are kept. For the global inversion, only estimates above 0.95168

of the mean of the non-zero R values are included in the average estimated material parameters.169
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It should be noted that we did not attempt to estimate dissipative viscoelastic terms (complex170

moduli, loss factors, or damping ratios) in this study. These terms were neglected in order to171

focus on the underlying relationship between transversely isotropic elastic parameters and slow172

and fast shear waves. This choice enabled us to use a simple, efficient wavelength estimation173

method: LFE. LFE-based methods are limited in that information on dissipation is not estimated174

without modification (Clayton et al., 2013). In principle, the directionally filtered approach could175

be combined with another method such as direct inversion (Oliphant et al., 2001) to estimate176

viscoelastic parameters in addition to µ, φ, and ζ.177

2.3. Simulation Approach178

To evaluate the DFI approach, we created four finite element (FE) simulations in ComsolTM
179

with the four sets of parameters given in Table 1. The parameters in Case 1 were chosen to be180

similar to those expected in muscle tissue. Cases 1, 3, and 4 have a fiber orientation optimal for181

parameters estimation, while Case 2 has a less favorable fiber orientation. We chose a minimum182

tensile anisotropy of ζ = 0 in Case 3 and a maximum value of tensile anisotropy in Case 4 to183

explore the limits of DFI. Figure 5 shows the FE model which corresponds roughly to a motivating184

experiment presented by Schmidt et al. (2015b). For each case, the fiber direction is parallel to185

the xz-plane at an angle of β from the xy-plane. For all cases we used an isotropic loss factor of186

η = 0.2, which is similar to ranges (0.23 < η < 0.93) found for the human brain using MRE (Bayly187

et al., 2014), (0.11 < η < 0.23) for gelatin using MRE (Okamoto et al., 2011), and qualitatively188

similar in turkey breast ex vivo using MRE (Schmidt et al., 2015a,b).189

The Young’s moduli and Poisson’s ratios in the FE simulations were calculated from E1 =190

µ(4ζ + 3), E2 = E1/(1 + ζ), ν12 = 0.49, ν21 = ν12E2/E1, and ν23 = 1− ν21 − 0.01. The cylinder in191
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the simulation had an outer diameter of 47.75 mm, an inner diameter of 3.2 mm, and was 25 mm192

thick. The swept mesh was equally spaced with 15 elements along the radius, 48 elements around193

the perimeter, and 15 elements along the vertical. The excitation amplitude was A = 5 × 10−6 m194

at a frequency of 200 Hz.195

We added noise to the FE simulation data of all four cases, which resulted in an SNR of 10, to196

the simulation results of all four cases. The SNR is defined using the following relationship197

SNR =
A

σ
√

2
, (5)

where A/
√

2 is the RMS of the excitation amplitude and σ is the standard deviation. The normally198

distributed noise was added to the total displacement.199

3. Results200

In this section we compare the material parameter estimates using the DFI method with known201

values from the four simulation cases from Table 1. First, slow and fast shear wave speeds are202

compared with values calculated analytically from the wave speed equations. Next, local material203

parameter estimates are presented for Case 1. Finally, global estimates are compared with the204

known values for all four cases.205

3.1. Wave Propagation Speeds206

Since the material parameters are known in each simulation, the speed of both shear waves207

can be calculated analytically from the material parameters for any propagation direction. This208

allows a direct comparison between speed estimates from the DFI process and the analytical values.209

Figure 6 shows the comparison for slow and fast shear waves for cases 1, 3, and 4 from Table 1. The210
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estimated wave speeds are the mean values of all selected voxels for each direction. For clarity, wave211

speeds are estimated from a total of 32 equally spaced propagation directions within the xy-plane.212

3.2. Local Parameter Estimates213

The local inversion of the material parameters for the Case 1, which is typical of all four cases, is214

shown in Fig. 7. Slices 8 through 17 of the total 24 are shown. A total of 48 propagation directions,215

mainly near the xy-plane as shown in Fig. 5d, were used in the estimation process. Propagation di-216

rections near the xy-plane result in polarization directions with large components in the z-direction,217

which corresponds to the direction of excitation. We selected a fractional amplitude threshold of218

0.10, a certainty threshold of 0.25, and a kernel size (radius) of 5 voxels. We accepted estimates for219

which R > 0.83 resulting in 33,065 voxels with parameter estimates, which is about 83% of total220

number of voxels in the displacement field. The mean values of the estimated parameters and their221

standard deviations are given by µ = 986 ± 56, φ = 0.92 ± 0.23, and ζ = 1.57 ± 0.23. The results222

highlight the effect of the typical limited number of directions in a relatively small kernel, which223

reduces the accuracy of the inversion. For a homogeneous region, increasing the kernel size to the224

total volume will typically give the best results. Great care should be taken in a local approach to225

ensure that both slow and fast shear waves of sufficient amplitude (good SNR) in multiple prop-226

agation directions are present. Therefore, we have chosen to focus on the global approach in this227

paper and have only included results for the local approach for Case 1.228

3.3. Global Parameter Estimates229

For the global inversion, we chose a Monte Carlo approach in which the material properties230

at every voxel are assumed to be homogeneous. The same propagation directions and threshold231

values used in the local inversion where applied to the global approach for all 4 cases with additive232
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noise. For results without noise, we selected a fractional amplitude threshold of 0.25. For the233

Monte Carlo analysis, we picked 100 random wave speed estimates with an equal number of slow234

and fast shear wave speeds and repeated this process 1000 times. Estimates were taken from any235

voxel and direction remaining after the three selection techniques from Section 2.2 were applied.236

For inversions with additive noise, we repeated the Monte Carlo approach with 30 different sets of237

noise and averaged the mean and variance of those 30 cases. Table 2 shows the known values, mean238

values, and standard deviations of the estimated material parameters for all four cases with and239

without additive noise.240

4. Discussion241

In materials that can be modeled as incompressible and transversely isotropic, two types of shear242

wave can exist and their speeds can be used to estimate material parameters. We use simulated243

data in this paper to assess the accuracy and reliability of a method based on directional filtering244

to estimate parameters of an ITI material. As an intermediate step, analytical and estimated shear245

waves speeds are compared in Fig. 6. This figure shows that slow and fast shear waves can be246

successfully separated using vector projection onto specific polarization directions and directional247

filtering. Estimating the fast shear wave speed is critical if the tensile anisotropy is to be estimated.248

For most propagation directions, excellent agreement is found between analytical and estimated249

wave speeds.250

Two important points are highlighted by the few directions in Fig. 6, in which the wave speed251

comparison is inexact. First, a sufficiently wide range of propagation directions is crucial for good252

material parameter estimates. Such a range of directions could be achieved either by an approach253

that includes multiple voxels in each inversion or by adding excitations that induce shear waves with254
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different propagation directions. Second, good selection criteria for determining which wave speed255

estimates to include in the inversion process is essential for accurate material parameter estimates.256

Local Approach The capabilities and limitations of the local DFI approach are highlighted257

by the inversion results shown in Fig. 7. Valid estimates were found for most of the central voxels,258

but could not be found for voxels near the vertical edges on the left and right of the cylinder. For259

voxels with valid estimates, there is good agreement between the estimated and known parameters.260

More than 99% of µ estimates, 93% of φ estimates, and 62% of ζ estimates are ±25% from the261

known values. For soft tissue, in which properties are difficult to measure, accuracy within 25% is262

noteworthy. Voxels in which no estimates were achieved reveals a limitation of the local approach.263

Namely, for a given wave field, at certain locations there may be too little information to accurately264

estimate all three parameters. Caution should, therefore, be used when taking the local approach.265

However, potentially good selection criteria can be used to eliminate a majority of poor estimates266

as demonstrated in the presented case.267

Global Approach The results of the global DFI approach in Table 2 indicate that DFI is268

quite accurate and not sensitive to the fiber direction or material parameters. Estimated material269

parameters are within 25% of the known values for all four cases, with the exception of ζ in cases270

2 and 4 with noise added and φ in case 4 with noise added. For the BCs in the simulation, a271

fiber direction of β = 45o from the xy-plane is optimal for estimating material properties, since272

the amplitude of both shear waves will be similar. However, as the fiber direction approaches the273

xy-plane, the amplitude of the fast shear wave is also reduced. A fiber direction of β = 0o will result274

in only slow shear waves being excited. Case 2, which includes a fiber angle of β = 15o from the275
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plane, is expected to be challenging for DFI, but the accuracy of the material parameter estimates276

for this case is similar to the other cases. Accurate estimates were obtained for both large and small277

values of tensile anisotropy ratio, ζ.278

5. Summary and Conclusions279

Material parameters of soft, anisotropic tissue can be estimated from shear wave measurements280

such as those acquired from MRE. The accuracy of DFI was evaluated using simulated data for281

both a local and global approach. Using a local approach, good estimates could be found in some282

but not all regions of the sample. However, using information from multiple regions in the sample,283

very accurate global estimates of all parameters could be obtained. Improvements to the DFI284

method could include incorporating more sophisticated selection criteria, and alternative inversion285

techniques could improve accuracy in material parameter estimates. Adding multiple experiments286

with different modes of excitation or fiber directions to the estimation process should increase the287

available information and lead to more accurate estimates especially in the local approach in which288

information tends to be more limited than the global approach. Future studies will explore the289

estimation of material properties from experimental data.290
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Appendix A Derivation of Shear Wave Speeds297

In this section we derive the equations for both the speed and amplitude polarization of the298

slow and fast shear waves. We begin with the linear elasticity tensor of a four-parameter, nearly299

incompressible, transversely isotropic (NITI) material model from Feng et al. (2013), given in Voigt300

notation as301 

σ11

σ22

σ33

σ23

σ13

σ12



=



C1111 C1122 C1133 0 0 0

C2211 C2222 C2233 0 0 0

C3311 C3322 C3333 0 0 0

0 0 0 C2323 0 0

0 0 0 0 C1313 0

0 0 0 0 0 C1212





ε11

ε22

ε33

2ε23

2ε13

2ε12



, (A.1)

where ε is the linearized strain from the small strain assumption. In the derivation of the elasticity302

tensor, the fiber direction was assumed to be ~A = [1 0 0]ᵀ which is in the direction of ~x1. The303

plane of symmetry of the ITI material (the 23-plane in Fig. 1) is perpendicular to the fiber direction.304

The terms in Eq.(A.1) are given by305

C1111= κ+
4

3
µ

(
1 +

4

3
ζ

)
, C2222 = C3333= κ+

4

3
µ

(
1 +

1

3
ζ

)
,

C1122 = C2211 = C1133 = C3311= κ− 2

3
µ

(
1 +

4

3
ζ

)
, C2233 = C3322= κ− 2

3
µ

(
1− 2

3
ζ

)
,

C2323= µ, and C1313 = C1212= µ(1 + φ) ,

(A.2)
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where µ is the substrate shear modulus, κ is the bulk modulus, φ is the shear anisotropy, and ζ is306

the tensile anisotropy (Feng et al., 2013). This stiffness matrix satisfies the symmetry requirements307

for any linear, elastic transversely isotropic material, or if φ and ζ are zero, an isotropic, linear308

elastic material. For a nearly incompressible material, it is instructive to examine the compliance309

tensor, which is the inverse of the elasticity tensor C−1 = S. In this case the compliance tensor is310

given in Voigt notation by311

S =



1
µ(4ζ+3)

+ 1
9κ

−1
2µ(4ζ+3)

+ 1
9κ

−1
2µ(4ζ+3)

+ 1
9κ

0 0 0

−1
2µ(4ζ+3)

+ 1
9κ

1+ζ
µ(4ζ+3)

+ 1
9κ

−(1+2ζ)
2µ(4ζ+3)

+ 1
9κ

0 0 0

−1
2µ(4ζ+3)

+ 1
9κ

−(1+2ζ)
2µ(4ζ+3)

+ 1
9κ

1+ζ
µ(4ζ+3)

+ 1
9κ

0 0 0

0 0 0 1
µ

0 0

0 0 0 0 1
µ(1+φ)

0

0 0 0 0 0 1
µ(1+φ)



. (A.3)

Note that as the ratio κ/µ increases, the effect of the bulk modulus on the compliance tensor, becomes312

negligible. In contrast, elements of the stiffness tensor approach infinity for an incompressible313

material. Once the incompressible assumption is made, we take a similar approach as Royer et al.314

(2011) and Rouze et al. (2013) to find the Young’s moduli E, shear moduli µ, and Poisson’s ν ratios:315

E1 = µ(4ζ + 3) , E2 =
µ(4ζ + 3)

1 + ζ
,

µ1 = µ(1 + φ) , µ2 = µ ,

ν12 =
1

2
, ν21 =

1

2(1 + ζ)
, and ν23 =

1 + 2ζ

2(1 + ζ) ,

(A.4)

where the coordinate system and fiber direction are defined by Fig. 1.316

For the case of elastic, plane waves traveling in the four-parameter NITI material, the assumed317

solution318

~u (~x, t) = u0 ~m exp [i (k~n · ~x− ωt)] (A.5)
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satisfies the equation of motion (EOM)319

divσ = ρ
∂2~u

∂t2
, (A.6)

where σ is a second order stress tensor, div is the divergence, u0 is the amplitude of the displacement,320

t is time, ~m = [m1 m2 m3]
ᵀ is the polarization direction of the displacement, ~n = [n1 n2 n3]

ᵀ
321

is the propagation direction, k is the wavenumber, ω is the excitation frequency, and ρ is the322

density (Holzapfel, 2000, pp. 144-145). Substituting the assumed solution into the EOM results in323

the eigenvalue problem:324

Q (~n) · ~m = ρ c2 ~m, (A.7)

where Q is the acoustic tensor and c is the wave speed. The solution to the eigenvalue problem325

defines three eigenvalues λ = ρc2 and eigenvectors ~m.326

Without loss of generality, we can specify that the propagation direction remains in the 12-plane327

(see Fig. (1)) and can be defined by ~n = [cos θ sin θ 0]ᵀ. Substituting ~n from the 12-plane and328

the elastic tensor terms from Eq. A.2 gives the acoustic tensor the form of329

Q =
(κ+ 4µ

3
+ 16µζ

9
)c2 + µ(1 + φ)s2 (κ+ µ

3
+ µφ− 8µζ

9
)cs 0

(κ+ µ
3

+ µφ− 8µζ
9

)cs (κ+ 4µ
3

+ 4µζ
9

)s2 + µ(1 + φ)c2 0

0 0 µ(1 + φ)c2 + µs2

 ,

(A.8)

where c = cos θ and s = sin θ. For a given set of material properties, the eigenvalue problem from330

Eq.(A.7) can now be solved numerically. For an incompressible material where the limit of κ→∞331

is taken, an analytical form of the eigenvalues is given by332
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λ1 = ρc2s = µ(1 + φ cos2 θ) , (A.9a)

λ2 = ρc2f = µ(1 + φ cos2(2θ) + ζ sin2(2θ)) , and (A.9b)

λ3 = ρc2p →∞ , (A.9c)

where cs is the slow shear wave speed, cf is the fast shear wave speed, and cp is the pressure wave333

speed. The eigenvectors are given by334

~v1 = [0 0 1]ᵀ ,

~v2 = [− sin θ cos θ 0]ᵀ , and

~v3 = [cos θ sin θ 0]ᵀ ,

(A.10)

and are not dependent on the value of the bulk modulus. In general, the fiber and propagation335

directions will be in arbitrary directions, and the slow ~ms and fast ~mf shear wave polarization336

directions are337

~ms = ~n× ~a = −~v1 , and (A.11a)

~mf = ~n× ~ms = ~v2 . (A.11b)

338

Appendix B Weighted Least Squares Approach339

Material parameters can be estimated using weighted least squares (WLS) from Eq. (2), Eq. (4),340

and the wave speed. This section follows the same approach used by Tweten et al. (2015). We start341

with the typical least squares equation342

H~x = ~y , (B.1)
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where H is the observation matrix, ~x is a vector containing the parameters to be estimated, and343

~y is a vector containing the measurements. The wave speed equations (Eq. 2 and Eq. 4) for both344

wave modes can be written in the form of Eq. (B.1) as345 

1 cos2 θ1 0

...
...

...

1 cos2 θM 0

1 cos2 2θ1 sin2 2θ1

...
...

...

1 cos2 2θN sin2 2θN




µ

µφ

µζ

 = ρ



c2s,1

...

c2s,M

c2f,1

...

c2f,N



, (B.2)

where θ1 is the angle between the propagation direction ~n1 and the fiber direction, cs,1 and cf,1346

are the slow and fast shear wave speeds in the propagation direction ~n1, respectively, and M and347

N are the total number slow and fast wave speed estimates, respectively. Each row in Eq. (B.2)348

comes from a different voxel (repeated for slow and fast shear waves), and the total number of rows349

corresponds to twice the number of voxels in the kernel for the local approach or twice the number350

of voxels in the volume for the global approach. At least three rows are required, and at least two351

different angles θ are required for a valid estimate.352

The material parameters can be estimated using the WLS equation353

x̃ =
(
HTWH

)−1
HTW~y , (B.3)

where x̃ is a vector of the estimated material parameters and W is the weighting matrix. The weights354

used in this paper are the relative displacement amplitudes at each voxel for a given propagation355

direction and polarization.356
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428

Table 1: The material properties for all four finite element simulations, where ρ is the density, µ is the substrate

shear modulus, φ is the shear anisotropy, and ζ is the tensile anisotropy. The angle between the xy-plane and the

fiber orientation is given by β.

ρ
[
kg/m3

]
µ [Pa] φ ζ β

Case 1 1000 1000 1 2 45o

Case 2 1000 1000 1 2 15o

Case 3 1000 1000 2 0 45o

Case 4 1000 1000 0.5 4 45o
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Table 2: Global material parameter estimates and their standard deviations for the four cases from Table 1 using

a Monte Carlo approach to DFI. For simulations without noise (SNR=∞), all estimated material parameters are

within 25% of the known values. For the cases with additive noise (SNR=10), most estimated material parameters

are within 25% of the known values, except for ζ in cases 2 and 4 and φ in case 3, which are within 40% of the known

values.

Case 1 Case 2

Actual SNR=∞ SNR=10 Actual SNR=∞ SNR=10

µ 1000 1040±21 994±25 1000 1030±36 980±37

φ 1 1.04±0.07 0.91±0.08 1 1.02±0.09 0.95±0.10

ζ 2 1.76±0.06 1.51±0.08 2 1.60±0.10 1.21±0.10

Case 3 Case 4

Actual SNR=∞ SNR=10 Actual SNR=∞ SNR=10

µ 1000 1050±23 996±25 1000 1040±20 986±27

φ 2 1.53±0.08 1.32±0.09 0.5 0.59±0.06 0.60±0.08

ζ 0 0.00±0.04 0.01±0.04 4 3.10±0.11 2.47±0.11
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Figure 1: a) Transversely isotropic material with fiber reinforcement. Tensile moduli in directions b) parallel and

c) perpendicular to the fibers are given by E1 and E2, respectively. Shear moduli in planes d) parallel and c)

perpendicular to the fibers are given by µ1 and µ, respectively. The 13-plane (not shown) has the same shear and

tensile properties as the 12-plane. The dashed boxes indicate the undeformed case.
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a)

b)

Plane of
Displacement

Plane of
Displacement

Figure 2: A displacement field with a single propagation direction, ~n, at an angle θ from the fiber direction, ~a, can be

decomposed into two shear waves, (a) “slow” and (b) “fast” with different polarization directions. This is illustrated

for the case in which the fiber direction is aligned with the x-axis. (a) The displacements of the slow shear wave are

in the ~ms polarization direction which lies in the shaded plane. (b) The displacements of the fast shear wave are in

the ~mf polarization direction which lies in the shaded (xz) plane. Note that the wavelength of the fast shear waves

is longer than that of the slow shear wave for the same frequency.
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Figure 3: The effect of tensile modulus ζ and propagation direction θ on the a) slow cs and b) fast cf shear speeds

is shown (µ = ρ = φ = 1 and κ → ∞). The tensile modulus increases along a radius from the origin with an angle

θ from the θ = 0 axis. An increase in ζ increases cf , but has no effect on cs. The effects of ζ and bulk modulus κ

on the c) fast shear speed and d) pressure wave speed cp are shown (µ = ρ = φ = 1 and θ = 135o). The fast shear

speed approaches a constant value for finite κ.
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Figure 4: The process of estimating the shear wave speed for DFI begins with the 3D displacement field. The data

displayed in this figure is from the cylindrical simulation shown in Fig. 5. All slices are shown in the xy-plane

with the slice location and coordinate system indicated in the upper left hand corner of this figure. The U, V, and

W displacement fields are in the x, y, and z directions, respectively. The total displacement field is decomposed

into slow and fast shear waves and directionally filtered using the propagation and polarization directions shown,

resulting in slow and fast shear wave displacement fields for each direction. Next, wave speeds are estimated from

the slow and fast shear wave displacement fields using LFE. Inclusion criteria using an amplitude threshold and

certainty threshold result in amplitude and certainty masks, respectively for both the slow and fast shear waves.

These amplitude and certainty masks are applied to the speed estimates resulting in the slow and fast shear wave

speed estimates shown at the end of the process. Outlier wave speeds (> 1 standard deviation from the mean) are

not included in the subsequent parameter fitting step.
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b)

c)

a)

d)

x

y z

Figure 5: Finite element (ComsolTM) simulation of Case 1 with displacement in the z-direction shown. The location

and direction of excitation is shown by the arrow in a), and the resulting propagation is shown in both the b) xz-plane

and c) xy-plane. The lines indicate fiber direction. Note that the wavelength is longer in the direction parallel to

planes containing the fibers. For all cases, the boundary conditions (BCs) include a 5 µm excitation at 200 Hz on the

inner boundary radius = 1.6 mm; fixed displacement on the outer boundary radius = 23 mm; and free displacement

on the top and bottom faces. For all cases, the output data was discretized to simulated images with “field of view”

of 48 × 48 × 24 mm3 with a 1 mm3 voxel size. d) Propagation direction vector set used for the local and global

inversion approaches.
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Figure 6: Analytical propagation speeds (lines) and mean estimated propagation speeds from simulation (symbols)

of a) slow and b) fast shear waves. Parameters for Case 1 (dotted line, * symbols), Case 2 (dotted line, � symbols),

Case 3 (solid line, o symbols), and Case 4 (dashed line, x symbols) are given in Table 1. Mean wave speed estimates

are calculated by averaging voxel estimates for each direction using the process outlined in Fig. 4. Note that Cases

1 and 2 have the same theoretical curve, but Case 2 has a wider range of angles, θ.
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Figure 7: Local estimates of parameter values for Case 1 (see Table 1) with added noise (SNR=10) using DFI. a)

W-displacement field of slice 12 without noise (SNR= ∞) above and with noise (SNR=10) below. The b) shear

modulus (µsim = 1000 Pa), c) shear anisotropy (φsim = 1), d) tensile anisotropy (ζsim = 2), and e) R2 are shown for

slices 8 through 17. For the parameters µ, φ, and ζ, the range shown is ±50% of the true values (this range contains

98% of all estimated values). The full range is shown for R2.
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