Unsuppressed lipolysis in adipocytes is linked with enhanced gluconeogenesis and altered bile acid physiology in *Insr*^{P1195L/+} mice fed high-fat-diet

Eun Young Lee,¹ Kenichi Sakurai,² Xilin Zhang,¹ Chitoku Toda,³ Tomoaki Tanaka,² Meizi Jiang,⁴ Takuji Shirasawa,⁵ Kaori Tachibana,² Koutaro Yokote,² Antonio Vidal-Puig,⁶ Yasuhiko Minokoshi,³ Takashi Miki^{1*}

1 Department of Medical Physiology, 2 Department of Clinical Cell Biology and Medicine, 4 Department of Genome Research and Clinical Application, Chiba University, Graduate School of Medicine, Chiba 260-8670 Japan

3 Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki 444-8585, Japan

5 Department of Ageing Control, Juntendo University, Graduate School of Medicine. Bunkyo 113-0033, Japan 6 Department of Clinical Biochemistry, Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK

[¶]Equal contributors

*Correspondence: tmiki@faculty.chiba-u.jp

Fat weight and adipocyte size. a. Fat weight of the mice at 25 weeks of age (n = 3-8). Epididyma fat weight in $Insr^{P1195L/*}$ /HFD mice was significantly decreased compared with that of WT/HFD mice. b. Immunostaining of epididymal fat tissue with Caveolin-1 (1:1000, BD biosciences). c. Mean adipocyte size. d. Histogram of the cell area of WT/ND and $Insr^{P1195L/*}$ /ND mice (left) and that of WT/HFD and $Insr^{P1195L/*}$ /HFD mice (right). The adipocyte size was not different between of WT/ND and $Insr^{P1195L/*}$ /ND mice (left). By contrast, the number of large (>10000 µm²) adipocytes of $Insr^{P1195L/*}$ /HFD mice was significantly decreased compared with that of WT/HFD mice (right). Data are mean ± SEM. One-way ANOVA plus Bonferroni *post-hoc* analysis. **P*<0.05, ** *P*<0.01, *** *P*<0.001.

Fat accumulation in the liver is reduced in $Insr^{P1195L+}/HFD$ mice. (a) TG content in $Insr^{P1195L+}/HFD$ liver was significantly less than that in WT/HFD liver (n = 10-12 per each group). (b) Relationship between body weight and TG content in liver. (c) HE staining of $Insr^{P1195L+}/HFD$ liver shows the amount of lipid droplet is decreased compared with that of WT/HFD liver. Data are mean ± SEM. Two-way ANOVA plus Bonferroni *post-hoc* analysis. ** *P*<0.01, *** *P*<0.001.

mRNA expressions of genes regulated by insulin are not decreased in liver of *Insr^{P1195L+}*/HFD mice. mRNA expressions of *Srebp-1* in *Insr^{P1195L+}*/ND liver is not different from that in WT/ND liver, including its feeding-induced increase. In addition, mRNA expression of *Fas*, a target of *Srebp-1*, is not decreased in *Insr^{P1195L+}*/HFD liver, indicating that induction of *Srebp-1* and *Fas* by refeeding or HFD remains 'sensitive' under insulin resistance in *Insr^{P1195L+}*/mice (*n* = 10-12 per each group). Data are mean ± SEM. Significance was analyzed by two-tailed Student' s *t*-test between fasted and refed conditions. **P*<0.05, ** *P*<0.01, *** *P*<0.001.

Serum FFA levels. Serum FFA levels were measured by using the kit from BioVision, Inc. (San Francisco, CA, USA) (*n* = 8-13 per each group). Data are mean ± SEM. One-way ANOVA plus Bonferroni *post-hoc* analysis. **P*<0.05.

Serum bile acid compositon. Measurement of BAs in serum revealed that BA composition was altered in *Insr*^{P1195L/+}/HFD mice (n=4 per each group). Data are mean ± SEM. One-way ANOVA plus Bonferroni *post-hoc* analysis. **P*<0.05, ** *P*<0.01, *** *P*<0.001.

