Supplementary information

Genome-wide expression analysis offers new insights into the origin and evolution of *Physcomitrella patens* stress response

Basel Khraiwesh^{1,2,3*}, Enas Qudeimat^{2,3§}, Manjula Thimma^{3§}, Amphun Chaiboonchoe^{1§}, Kenan Jijakli¹, Amnah Alzahmi¹, Marc Arnoux², Kourosh Salehi-Ashtiani^{1,2*}

¹Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE
 ²Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
 ³Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, KSA

§ These authors contributed equally to this work.

* Corresponding Authors: Basel Khraiwesh (<u>bhk1@nyu.edu</u>) and Kourosh Salehi-Ashtiani (<u>ksa3@nyu.edu</u>), Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE

Supplementary Tables

Table S1: Summary of reads and expressed genes based on the RNASeq data from *P. patens* abiotic stress treatments.

Features	0.5 h				4.0 h				
reatures	ABA	Cold	Drought	Salt	ABA	Cold	Drought	Salt	Control
Total Reads	24,572,598	25,701,402	22,727,146	21,066,004	23,995,124	26,269,396	24,271,618	22,921,412	26,827,908
Mapped Reads	21,965,889	22,735,394	19,806,506	18,141,685	21,455,483	23,039,577	21,163,981	19,818,724	23,929,288
	89.39%	88.46%	87.15%	86.12%	89.42%	87.71%	87.20%	86.46%	89.17%
Uniquely Manned Boads	20,512,728	21,173,562	19,013,472	16,951,836	19,917,780	22,061,344	20,286,906	18,473,814	22,601,958
Mappeu Reaus	83.48%	82.38%	83.66%	80.47%	83.01%	83.98%	83.58%	80.60%	84.20%
Non-Uniquely Manned Reads	1,453,161	1,561,832	793,034	1,189,849	1,537,703	978,233	877,075	1,344,910	1,327,330
Mappeu Reaus	5.91%	6.08%	3.49%	5.65%	6.41%	3.72%	3.61%	5.87%	4.90%
Unmapped Boads	2,606,709	2,966,008	2,920,640	2,924,319	2,539,641	3,229,819	3,107,637	3,102,688	2,898,620
Reaus	10.61%	11.54%	12.85%	13.88%	10.58%	12.29%	12.80%	13.54%	10.80%
Number of Expressed Genes	19,591	20,003	19,438	19,896	19,575	19,909	19,312	19,489	19,822

 Table S2: The table shows up-regulated genes at 0.5 h with fold change > 50 in RPKM. This table is in support with Fig. 4a.

Gene ID	ABA 0.5 h	Cold 0.5 h	Drought 0.5 h	Salt 0.5 h	Description
Pp1s370_29V6.1	73.06521739	58.34782609	658.8695652	1117.543478	Late embryogenesis abundant protein, LEA-3
Pp1s2_226V6.1	57.07692308	63.74358974	400.7179487	590.025641	F15D2.42; stress-responsive protein, putative [<i>Arabidopsis thaliana</i>]
Pp1s37_28V6.1	68.85	53.075	69.175	69.8	Ubiquitin ligase protein
Pp1s266_43V6.1	109.4285714	58.28571429	418.2857143	423.1428571	F11F8.28; hydrolase, alpha/beta fold family protein [<i>Arabidopsis thaliana</i>]
Pp1s276_3V6.1	94.48275862	19.89655172	189	156.5517241	Transcriptional factor
Pp1s55_253V6.1	128.8571429	54.57142857	937.2857143	150.8571429	Transcriptional factor
Pp1s43_12V6.1	141.5625	235.5625	187.1875	82.3125	Sigma factor sigb regulation protein

 Table S3: The table shows down-regulated genes at 0.5 h with fold change >10 in RPKM. This table is in support with Fig. 4b.

Gene ID	ABA 0.5 h	Cold 0.5 h	Drought 0.5 h	Salt 0.5 h	Description
Pp1s660_1V6.1	-4.439415589	-3.324242282	-3.920464095	-3.939613353	Non-symbiotic hemoglobin class 1
Pp1s2_7V6.1	-6.631540867	-4.561151539	-8.14611404	-5.631540867	Zinc finger, B-box;CCT domain
Pp1s251_59V6.1	-6.808964175	-4.860596943	-9.001609253	-4.539837496	Beta-expansin 3
Pp1s11_29V6.1	-3.459431619	-3.392317423	-4.409526713	-3.738686377	Expansin 2

Table S4: The table shows up and down-regulated genes at 0.5 h with similar expression trend. This table is in support with Fig. 4c.

Gene ID	ABA 0.5 h	Cold 0.5 h	Drought 0.5 h	Salt 0.5 h	Description
Pp1s100_117V6.1	1.347084708	1.285478548	1.355885589	1.184268427	ATP synthase subunit beta
Pp1s122_140V6.1	1.523911875	1.276732939	1.4191295	1.19398173	T10P11.12; seven transmembrane MLO family protein / MLO-like protein 1 (MLO1) [<i>Arabidopsis thaliana</i>]
Pp1s143_71V6.1	0.629011553	0.740693196	0.983311938	0.836970475	DS545032.1; 487504; protein_coding
Pp1s185_2V6.1	0.66713593	0.708431097	0.86305334	0.763882371	Glutaredoxin c4
Pp1s36_294V6.1	1.042935417	1.027845145	1.233450103	1.118835893	Acyl-binding protein
Pp1s37_172V6.1	0.902439024	1.2916666667	1.254065041	1.131097561	No description; protein_coding
Pp1s39_347V6.1	0.642169908	0.631832139	0.743398158	0.6209826	Proteasome epsilon chain precursor
Pp1s60_311V6.1	0.792592593	0.955555556	1.385185185	1.074074074	No description
Pp1s73_34V6.1	1.559370529	1.904148784	2.258941345	2.075822604	Multiple inositol polyphosphate phosphatase 1
Pp1s84_242V6.1	1.322714379	1.343661357	1.635391665	1.642592189	No description

 Table S5: The primer sequences of the randomly selected and internal reference genes used for quantitative real-time PCR (qPCR)

 analysis. This table is in support with Fig. 5.

Gene ID	Forward Primer	Reverse Primer	Gene Annotation
Pp1s13_134V6.1	CATGATTGATCGCTTGTTGG	ACCGCGATCTTTATCACCTG	3-hydroxyisobutyryl-coenzyme A
Pp1s56_240V6.1	AGTGCTGGGTTTCATTCGAC	AGCCATGTTACATCCGGAAA	Riboflavin kinase
Pp1s1722_1V6.1	AGAGAGTGCGCAGACTGGAT	ACCCGGATTCAACCAAACTT	mRNA sequence for carbonic anhydrase
Pp1s52_261V6.1	ATGTTGCACGGTCACAAGAA	CGAGGAAGCCCTTCTTCTCT	Polyadenylation Signal (PAS)
Pp1s27_129V6.1	AGAACACAGAGGCCAGCAGT	ATCGTCATGTCGTTCCCATT	No description
Pp1s274_60V6.1	GGCGAGCTTAGGTACTGCAC	CTTGGAGGTGACGACCTGAT	F4F15.180; expressed protein [Arabidopsis thaliana]
Pp1s49_268V6.1	TTCAGGAGGGCTGTGGATAA	AGATCCCAAATGAGCTGCAC	No description
Pp1s4821_1V6.1	CGAGCACACAATCATGAACC	CTCCTTCCTCAAACAGGAACC	mRNA sequence for carbonate dehydratase
Pp1s370_29V6.1	AAGGATGCGACCTTGAACAC	AAACCCTGCAGTGTGTTTCC	Late embryogenesis abundant protein, LEA-3
Pp1s55_253V6.1	TCTGGGGATGAAGACTCAGG	TTCCACCTTAACCCATTCCA	Transcriptional factor
Pp1s2_7V6.1	GAAACCGAAGGGAGAGAAGG	CCTATCGGACCAGGCTGTAA	Zinc finger, B-box;CCT domain
Pp1s251_59V6.1	GTGATCCCAGATTGGTTTGG	CTTCGTAAACTCCGCCTCTG	Beta-expansin 3

Supplementary Figures

Figure S1: Dendrograms describing the expressions profile similarities between stress responses. The dendrograms are generated using gplots package in R (<u>https://cran.r-project.org/web/packages/gplots/index.html</u>). Each dendrogram is shown with distance and clustering methods in their titles respectively.

Figure S2: The Principal Component Analysis (PCA) plot as shown above depicts the grouping of expression profiles of each sample in the experiment. This plot has been generated using R programming language (<u>https://www.r-project.org/</u>) with default parameters.

Figure S3: Pie chart representing Gene Ontology (GO) terms distribution in *P. patens* DEGs. DEGs were annotated in at least one of the three GO categories: biological process, molecular function and cellular component. Sequence distribution filtered by number of sequences for biological process, molecular function and cellular component with cutoff 200, 200, and 100, respectively. See **Supplementary Datasets 12-14** for the complete lists.

Figure S4: Melting curves analyses for the two reference genes were used for normalization of DEGs qPCR data.

Supplementary Datasets 1-25

Supplementary Dataset 1: List of genes representing the degree of overlap among gene expression of *P. patens* control and ABA treated samples at different time points.

Supplementary Dataset 2: List of genes representing the degree of overlap among gene expression of *P. patens* control and cold treated samples at different time points.

Supplementary Dataset 3: List of genes representing the degree of overlap among gene expression of *P. patens* control and drought treated samples at different time points.

Supplementary Dataset 4: List of genes representing the degree of overlap among gene expression of *P. patens* control and salt treated samples at different time points.

Supplementary Dataset 5: List of expressed genes based on RPKM value across all abiotic stress treatments and the control sample. GO terms (inferred by BLAST2GO) based on the *P. patens* V1.6.

Supplementary Dataset 6: List of DGEs of *P. patens* in response to ABA, cold, drought and salt treatment at two different time points.

Supplementary Dataset 7: List of DEGs representing the degree of overlap among the two time points across all abiotic stress treatments.

Supplementary Dataset 8: List of up regulated genes of *P. patens* representing the degree of overlap among all studied stress treatments at 0.5 an hour.

Supplementary Dataset 9: List of up regulated genes of *P. patens* representing the degree of overlap among all studied stress treatments at 4.0 hours.

Supplementary Dataset 10: List of down regulated genes of *P. patens* representing the degree of overlap among all studied stress treatments at 0.5 an hour.

Supplementary Dataset 11: List of down regulated genes of *P. patens* representing the degree of overlap among all studied stress treatments at 4.0 hours.

Supplementary Datasets 12-14: GO terms (inferred by BLAST2GO) for DEGs based on the *P. patens* V1.6 GO annotation. Biological process (Supplementary Dataset 12), molecular function (Supplementary Dataset 13), cellular component (Supplementary Dataset 14).

Supplementary Dataset 15: List of enriched functional groups for up regulated genes based on GSEA.

Supplementary Dataset 16: List of enriched functional groups for down regulated genes based on GSEA.

Supplementary Dataset 17: A detailed BLAST-P analysis and hits of *P. patens* stressed-DEGs against all organisms in the taxonomic group of Viridiplantae.

Supplementary Datasets 18-21: List of DEGs representing the degree of overlap for evolutionary dynamics and orphan transcripts integrity. Orphan genes (Supplementary Dataset 18), *P. patens/C. reinhardtii* (Supplementary Dataset 19), *P. patens/S. moellendorffii* (Supplementary Dataset 20), *P. patens/A. thaliana* (Supplementary Dataset 21).

Supplementary Datasets 22-25: GO enrichment analysis of DEGs associated with evolutionary dynamics for *P. patens* orphans (Supplementary Dataset 22), *P. patens/C. reinhardtii* (Supplementary Dataset 23), *P. patens/S. moellendorffii* (Supplementary Dataset 24) and *P. patens/A. thaliana* genes (Supplementary Dataset 25).