Supplementary Online Content

The Emerging Risk Factors Collaboration. Association of cardiometabolic multimorbidity with mortality. *JAMA*. doi:10.1001/jama.2015.7008

eTable 1. Characteristics of the prospective studies contributing to the current analysis

eTable 2. Study-specific definition of known history of diabetes, myocardial infraction and stroke at baseline

eTable 3. Hazard ratios for all-cause mortality according to participants' disease status at baseline in UK Biobank

eTable 4. Estimated future years of life lost according to participants' disease status at baseline, age, and sex

eTable 5. Summary of prospective studies included in the literature-based systematic review eFigure 1. Study design

eFigure 2. Hazard ratios for all-cause mortality according to participants' disease status at baseline, against follow-up time

eFigure 3. Sex-specific hazard ratios for all-cause mortality according to participants' disease status at baseline

eFigure 4. Hazard ratios for CVD mortality, cancer mortality, and non-CVD non-cancer mortality according to participants' disease status at baseline

eFigure 5. Hazard ratios for all-cause mortality according to participants' disease status at baseline, by study-specific definitions of baseline diseases

eFigure 6. Hazard ratios for all-cause mortality according to participants' disease status at baseline, by study-specific methods of ascertainment of death

eFigure 7. Hazard ratios for all-cause mortality according to participants' disease status at baseline, after excluding the first 5 years of follow-up

eFigure 8. Hazard ratios for all-cause mortality according to participants' disease status at baseline, with study-specific estimates pooled using fixed-effect meta-analysis.

eFigure 9. Hazard ratios for all-cause mortality according to participants' disease status at baseline and by median year of survey

eFigure 10. Estimated future years of life lost due to comorbidity with diabetes and prior MI or stroke, attributable to vascular, cancer and other mortality causes

eFigure 11. Estimated future years of life lost according to diabetes, MI and stroke status in the European Union

eAppendix 1. Investigators of the Emerging Risk Factors Collaboration

eAppendix 2. List of study acronyms

eAppendix 3. UK Biobank

eAppendix 4. Systematic review

eAppendix 5. Statistical methods

This supplementary material has been provided by the authors to give readers additional information about their work.

eTable 1. Characteristics of the prospective studies contributing to the current analysis

		Median	Date of		Age at survey		Individuals with	Individuals with	Individuals with	Median years of				Nonvascular,	
		year of	last	No. of	(yrs) mean		diabetes	previous	previous MI	follow -up (5th &	All-cause	Cardiovascular	Cancer	noncancer	Person-year
Cohort abbreviation	Country	baseline	follow -up	individuals	(sd)	Male (%)	(%)	stroke (%)	. (%)	95th percentiles)	deaths*	deaths	deaths	deaths	of follow -up
ARIC ¹	USA	1988	2002	14121	55 (6)	6551 (46)	1643 (11.6)	422 (3.0)	647 (4.6)	14.1 (6.7 to 15.7)	1987	753	744	450	184166
A TENA ²	Italy	1995	2001	4774	50 (7)	0 (0)	120 (2.5)	8 (0.2)	15 (0.3)	6.7 (5.2 to 8.1)	44	12	22	9	31891
AUSDIAB ³	Australia	2000	2012	9542	54 (13)	4298 (45)	507 (5.3)	279 (2.9)	487 (5.1)	12.6 (7.1 to 13.5)	1068	229	276	205	59178
BHS ⁴	Australia	1972	2004	6287	45 (16)	2988 (48)	102 (1.6)	33 (0.5)	76 (1.2)	24.7 (6.4 to 33.2)	2123	1019	583	503	150450
BRHS⁵	UK	1979	2005	7134	50 (6)	7134 (100)	91 (1.3)	49 (0.7)	291 (4.1)	24.5 (6.6 to 25.4)	2679	1253	853	401	141142
BRU№	Italy	1990	2010	823	58 (11)	409 (50)	27 (3.3)	11 (1.3)	19 (2.3)	20.3 (5.4 to 20.5)	272	97	84	87	13797
BWHHS ⁷	UK	2000	2011	3377	69 (5)	0 (0)	156 (4.6)	150 (4.4)	236 (7.0)	11.0 (4.0 to 12.2)	704	222	259	216	23234
CAPS ⁸	UK	1981	1996	2435	52 (5)	2435 (100)	44 (1.8)	43 (1.8)	253 (10.4)	13.0 (5.2 to 13.0)	481	260	147	74	28181
CASTEL ⁹	Italy	1984	1996	2807	74 (5)	1103 (39)	381 (13.6)	129 (4.6)	117 (4.2)	11.2 (2.1 to 14.0)	1334	676	309	329	26879
CHARL ¹⁰	USA	1961	2000	2179	50 (11)	1031 (47)	94 (4.3)	35 (1.6)	119 (5.5)	26.6 (3.5 to 40.0)	1630	862	338	364	50305
CHS ¹¹	USA	1990	2005	4973	72 (5)	2053 (41)	793 (15.9)	209 (4.2)	560 (11.3)	12.6 (2.7 to 15.9)	2789	1069	686	1002	46153
COPEN ¹³	Denmark	1993	2013	9083	58 (15)	3969 (44)	287 (3.2)	193 (2.1)	311 (3.4)	19.1 (2.8 to 21.2)	4274	1198	811	1486	121634
DESIR ¹⁴	France	1995	2010	3841	48 (10)	1891 (49)	125 (3.3)	11 (0.3)	13 (0.3)	14.4 (13.5 to 15.0)	75	22	31	14	33937
DISCO ¹⁵	Italy	1987	1992	1897	50 (11)	857 (45)	86 (4.5)	30 (1.6)	41 (2.2)	5.5 (5.5 to 9.5)	30	13	10	7	12846
DUBBO ¹⁶	Australia	1989	2003	2462	69 (7)	1085 (44)	199 (8.1)	131 (5.3)	309 (12.6)	14.1 (2.1 to 15.0)	1082	550	230	265	25933
EAS ¹⁷	Scotland	1988	2008	1110	64 (6)	569 (51)	59 (5.3)	39 (3.5)	70 (6.3)	20.0 (3.2 to 21.3)	579	204	188	143	16891
EMOFR ¹²	Italy	1996	2002	399	55 (6)	199 (50)	22 (5.5)	29 (7.3)	12 (3.0)	6.7 (6.5 to 7.2)	12	7	2	2	2649
EPESEBOS ¹⁸	USA	1982	1993	1180	72 (5)	428 (36)	152 (12.9)	37 (3.1)	119 (10.1)	11.4 (7.6 to 11.9)	265	125	40	75	11487
EPESEIOW ¹⁸	USA	1982	2008	1865	73 (5)	654 (35)	142 (7.6)	94 (5.0)	205 (11.0)	15.4 (7.3 to 26.5)	1709	794	188	528	18599
EPESENCA ¹⁸	USA	1986	2006	1633	72 (5)	568 (35)	241 (14.8)	90 (5.5)	227 (13.9)	13.6 (7.7 to 20.7)	1071	487	173	345	15709
EPESENHA ¹⁸	USA	1982	1992	971	73 (6)	377 (39)	110 (11.3)	55 (5.7)	115 (11.8)	10.5 (7.2 to 10.8)	256	149	13	47	9346
EPICNOR ¹⁹	UK	1996	2005	21601	59 (9)	9854 (46)	477 (2.2)	290 (1.3)	671 (3.1)	9.8 (6.2 to 12.0)	357	357	0	0	205064
ESTHER ²⁰	Germany	2001	2008	8308	62 (7)	3740 (45)	1109 (13.3)	263 (3.2)	506 (6.1)	5.1 (2.0 to 5.9)	370	108	174	65	37970
FINE_FIN ²¹	Finland	1989	1999	360	77 (5)	360 (100)	32 (8.9)	27 (7.5)	70 (19.4)	7.8 (0.9 to 10.0)	221	115	52	53	1937
FINE_IT ²¹	Italy	1985	2006	541	73 (5)	541 (100)	47 (8.7)	36 (6.7)	34 (6.3)	11.0 (1.7 to 21.4)	464	226	129	64	5612
FINNMARK ¹²	Norw ay	2002	2009	5777	59 (10)	2719 (47)	284 (4.9)	172 (3.0)	403 (7.0)	7.5 (4.0 to 7.5)	498	173	180	107	41508
FINRISK92 ²²	Finland	1992	2008	5984	45 (11)	2820 (47)	109 (1.8)	92 (1.5)	147 (2.5)	16.9 (10.4 to 16.9)	373	137	104	131	94514
FINRISK9722	Finland	1997	2008	7560	50 (12)	3805 (50)	256 (3.4)	178 (2.4)	269 (3.6)	11.8 (11.7 to 11.9)	339	131	89	116	85293
FRAMOFF ²³	USA	1999	2005	2804	60 (9)	1242 (44)	312 (11.1)	21 (0.7)	41 (1.5)	5.2 (3.1 to 7.0)	131	16	59	34	14621
GOTO1324	Sw eden	1963	1998	779	50 (0)	779 (100)	6 (0.8)	2 (0.3)	7 (0.9)	29.7 (10.9 to 34.5)	552	289	143	67	19302
GOTO3324	Sw eden	1984	1998	740	51 (0)	740 (100)	25 (3.4)	7 (0.9)	14 (1.9)	12.8 (6.8 to 13.1)	87	28	27	29	8898
GOTO4324	Sw eden	1993	2003	788	50 (0)	788 (100)	19 (2.4)	3 (0.4)	16 (2.0)	10.0 (9.6 to 10.7)	28	6	16	5	8478
GOTOW ²⁵	Sw eden	1969	2009	1392	47 (6)	0 (0)	14 (1.0)	3 (0.2)	2 (0.1)	37.8 (11.9 to 41.1)	852	354	221	214	38659
GRIPS ²⁶	Germany	1982	1992	5846	48 (5)	5846 (100)	116 (2.0)	9 (0.2)	51 (0.9)	9.8 (8.5 to 10.0)	339	155	109	74	54086
HCS ²⁷	UK	2001	2010	2917	66 (3)	1503 (52)	395 (13.5)	112 (3.8)	111 (3.8)	8.8 (4.9 to 11.6)	312	80	165	66	25434
HIMS ²⁸	Australia	1997	2010	10942	72 (4)	10942 (100)	1218 (11.1)	801 (7.3)	1711 (15.6)	12.6 (2.3 to 14.2)	5020	1683	1851	1436	90642
HONOL ²⁹	USA	1992	1999	3266	78 (4)	3266 (100)	950 (29.1)	172 (5.3)	694 (21.2)	6.3 (1.7 to 7.6)	871	287	243	216	18519
HOORN ³⁰	Netherlands	1991	2005	2314	61 (7)	1046 (45)	218 (9.4)	33 (1.4)	65 (2.8)	13.6 (4.0 to 14.7)	525	191	151	55	18930
HUBRO ¹²	Norw ay	2001	2009	16456	52 (14)	7328 (45)	510 (3.1)	365 (2.2)	477 (2.9)	8.5 (6.0 to 9.5)	1224	348	467	321	141618
KIHD ³³	Finland	1987	2009	2319	53 (5)	2319 (100)	116 (5.0)	49 (2.1)	215 (9.3)	21.7 (5.1 to 25.2)	751	355	207	182	39821
LASA ³⁴	Netherlands	1993	2003	2269	70 (9)	1110 (49)	180 (7.9)	140 (6.2)	263 (11.6)	9.9 (1.7 to 10.5)	788	0	0	0	17467
LEADER ³⁵	UK	1997	2001	1359	68 (9)	1359 (100)	227 (16.7)	157 (11.6)	310 (22.8)	4.3 (1.1 to 6.1)	335	172	90	64	5284
MATISS83 ²	Italy	1984	2002	2605	52 (10)	1227 (47)	127 (4.9)	20 (0.8)	33 (1.3)	18.7 (6.0 to 19.5)	514	268	96	68	44183
MATISS87 ²	Italy	1987	2002	2107	52 (9)	942 (45)	85 (4.0)	19 (0.9)	26 (1.2)	15.6 (7.2 to 16.2)	266	131	46	41	30948
MATISS93 ²	Italy	1994	2002	1239	49 (9)	610 (49)	60 (4.8)	12 (1.0)	20 (1.6)	8.3 (7.0 to 9.3)	42	22	5	10	10110
MCV DRFP ³⁷	Netherlands	1989	2007	24000	42 (10)	11260 (47)	266 (1.1)	185 (0.8)	314 (1.3)	16.7 (10.0 to 18.9)	1920	527	894	381	385982

$\ensuremath{\mathbb C}$ 2015 American Medical Association. All rights reserved.

eTable 1. cont'd

		Ma allana	Data of		Age at		Individuals	Individuals	Individuals	Marilian				N	
		Median	Date of	NIf	survey		w ith	w ith	w ith	Median years of	A II	Oradianasadaa	0	Nonvascular,	D
Cohort obbroviation	Country	year of baseline	last follow-up	No. of individuals	(yrs) mean	Male (%)	diabetes (%)	previous stroke (%)	previous MI (%)	follow -up (5th &	All-cause deaths*	Cardiovascular	deaths	noncancer deaths	Person-years of follow-up
Cohort abbreviation MDC ³⁸	Sweden	1994	2010	19292	(sd) 58 (7)	8430 (44)	(%) 832 (4.3)	236 (1.2)	463 (2.4)	95th percentiles) 16.3 (6.0 to 19.1)	4098	deaths 1379	1795	836	281551
MIDFA M ³⁹	UK	1994 1996	2010	2310	. ,	1032 (45)	032 (4.3) 27 (1.2)	230 (1.2)	403 (2.4) 117 (5.1)	15.4 (14.2 to 15.8)	4098	24	62	38	34857
MIDRP ⁴⁰	UK	1996	2011	12106	45 (6)	()	· · ·	· · ·	()	()	9826	24 4747	62 2728	38 2296	34857 266241
MONFRI86 ²		1975	2010	12106	55 (6)	5573 (46)	153 (1.3)	147 (1.2)	1106 (9.1)	24.2 (4.4 to 36.8)	9826 156	63	34	2296	18181
MONFRI89 ²	Italy	1980			49 (9) 40 (8)	568 (49)	12 (1.0)	7 (0.6)	15 (1.3)	16.7 (6.4 to 16.9)				20 17	14709
MONFRI89 ⁻ MONFRI94 ²	ltaly Italy	1989	2002 2002	1135 1364	49 (8)	566 (50) 677 (50)	15 (1.3)	6 (0.5) 53 (3.9)	28 (2.5)	13.6 (8.4 to 13.7) 8.5 (8.2 to 8.8)	93 57	44 22	13 7	8	14709
MONICA KORA 141		1994 1985	2002 1998	923	49 (8) 54 (6)	923 (100)	61 (4.5) 45 (4.9)	()	23 (1.7)	13.0 (4.5 to 13.5)	57 176	22 90	7 53	8 32	10641
MONICA_KORA1**	Germany	1985	1998	923 4193	54 (6) 53 (12)	923 (100) 2103 (50)	45 (4.9) 234 (5.6)	17 (1.8) 63 (1.5)	35 (3.8) 117 (2.8)	7.9 (5.3 to 8.4)	338	90 148	53 107	32 79	30045
—	Germany	1990			· · /	()	()	· · ·	()	```	538 692	279	224		59051
	Germany		2009	4710	50 (14)	2326 (49)	223 (4.7)	95 (2.0)	96 (2.0)	14.0 (6.0 to 14.7)				167	
	Netherlands	1995	2007	18860	46 (9)	8674 (46)	275 (1.5)	186 (1.0)	269 (1.4)	10.8 (6.0 to 13.0)	647	182	332	103	195521
MOSWEGOT⁴³ MPP³6	Sw eden	1990	2003	4249	47 (11)	2040 (48)	107 (2.5)	52 (1.2)	59 (1.4)	13.0 (8.0 to 18.6)	308	105	133	65	57496
	Sw eden	1980	2010	31911	46 (7)	21920 (69)	349 (1.1)	113 (0.4)	245 (0.8)	29.3 (10.1 to 34.1)	9812	3574	3672	2307	802712 94742
	UK	1996	2007	13248	80 (4)	5237 (40)	1039 (7.8)	1152 (8.7)	1494 (11.3)	7.8 (0.9 to 11.7)	8824	3977	1702	2872	
	USA	1974	1985	12270	47 (6)	12270 (100)	()	5 (0.0)	7 (0.1)	11.0 (8.3 to 11.8)	981	529	278	168	85170
NCS146	Norw ay	1976	1993	24316	42 (4)	12014 (49)	183 (0.8)	25 (0.1)	86 (0.4)	16.1 (14.2 to 16.7)	1481	578	565	256	382133
NCS246	Norw ay	1975	1993	13171	42 (4)	6741 (51)	72 (0.5)	34 (0.3)	50 (0.4)	17.3 (15.3 to 17.8)	844	304	336	147	223176
NCS346	Norw ay	1974	1993	10249	42 (4)	5347 (52)	35 (0.3)	27 (0.3)	66 (0.6)	18.2 (11.7 to 18.8)	1056	517	292	145	179604
	Italy	1980	1991	3293	55 (5)	3293 (100)	222 (6.7)	32 (1.0)	146 (4.4)	10.2 (5.7 to 11.2)	392	159	168	47	32169
NHANESI ⁴⁷	USA	1973	1993	11728	50 (15)	4773 (41)	701 (6.0)	296 (2.5)	747 (6.4)	18.3 (4.0 to 21.0)	3550	1802	863	828	186808
	USA	1990	2008	16017	52 (18)	7547 (47)	1439 (9.0)	599 (3.7)	998 (6.2)	14.2 (3.0 to 17.7)	4640	2088	1053	1413	209386
	Norw ay	2001	2009	9783	53 (13)	4552 (47)	300 (3.1)	214 (2.2)	350 (3.6)	8.5 (6.0 to 9.5)	734	239	274	167	81986
OSAKA ⁵⁰	Japan	1992	2008	12523	52 (10)	8529 (68)	623 (5.0)	114 (0.9)	29 (0.2)	10.2 (3.9 to 18.8)	707	141	230	168	140564
OSLO ⁵¹	Norw ay	1973	2003	17586	44 (6)	17586 (100)	()	31 (0.2)	165 (0.9)	29.5 (10.6 to 30.5)	6089	2755	2055	1088	462041
OSLO2 ¹²	Norw ay	2000	2009	6037	69 (6)	6037 (100)	383 (6.3)	364 (6.0)	668 (11.1)	9.5 (2.0 to 9.5)	1475	459	587	298	50937
PREV END ⁵²	Netherlands	1998	2010	7890	50 (12)	3960 (50)	317 (4.0)	75 (1.0)	381 (4.8)	12.7 (7.4 to 13.2)	795	221	373	172	77701
PRHHP ⁵³	Caribbean	1967	1980	6832	54 (6)	6832 (100)	682 (10.0)	88 (1.3)	398 (5.8)	12.0 (5.5 to 12.0)	1112	530	263	294	56492
PRIME ⁵⁴	France / NI	1992	2000	9998	55 (3)	9998 (100)	344 (3.4)	73 (0.7)	344 (3.4)	5.2 (5.0 to 7.3)	223	61	106	39	54563
	Germany	1983	2003	20484	44 (10)	14861 (73)	433 (2.1)	61 (0.3)	169 (0.8)	9.8 (3.8 to 18.9)	1071	351	454	215	241682
PROSPER ⁵⁶	Scotland/Irel	1998	2002	4201	75 (3)	1987 (47)	499 (11.9)	205 (4.9)	776 (18.5)	3.3 (1.7 to 3.9)	430	200	154	76	12810
ProspectEPIC ⁵⁷	Netherlands	1995	2012	16069	57 (6)	0 (0)	339 (2.1)	310 (1.9)	54 (0.3)	14.4 (9.5 to 17.2)	1329	324	658	266	221730
QUEBEC ⁵⁸	Canada	1974	2002	3415	46 (8)	3415 (100)	63 (1.8)	8 (0.2)	5 (0.1)	27.8 (11.1 to 28.2)	993	188	0	0	74109
RANCHO ⁵⁹	USA	1985	2002	2188	70 (11)	986 (45)	127 (5.8)	75 (3.4)	303 (13.8)	14.2 (2.2 to 18.1)	1093	527	241	320	25273
RS_160	Netherlands	1992	2005	5608	68 (8)	2301 (41)	470 (8.4)	157 (2.8)	753 (13.4)	12.0 (2.7 to 14.2)	2037	777	570	447	58177
RS_II ⁶⁰	Netherlands	2000	2011	2466	64 (8)	1107 (45)	276 (11.2)	86 (3.5)	117 (4.7)	10.0 (4.2 to 10.9)	392	127	153	86	23038
RS_III ⁶⁰	Netherlands	2007	2011	3429	57 (7)	1472 (43)	268 (7.8)	35 (1.0)	87 (2.5)	3.6 (1.9 to 4.8)	61	19	34	6	11888
SHHEC ⁶¹	UK	1986	1999	13081	50 (7)	6545 (50)	207 (1.6)	90 (0.7)	2068 (15.8)	10.0 (7.6 to 10.0)	956	409	380	143	124751
SHIP ⁶²	Germany	1999	2011	3285	55 (14)	1634 (50)	421 (12.8)	73 (2.2)	121 (3.7)	11.3 (5.3 to 12.4)	507	178	185	116	21296
SPEED®	UK	1980	1997	2308	55 (4)	2308 (100)	45 (1.9)	27 (1.2)	132 (5.7)	16.8 (3.8 to 18.2)	674	347	234	90	32979
TARFS ⁶⁴	Turkey	1990	2010	3451	45 (13)	1689 (49)	113 (3.3)	1 (0.0)	4 (0.1)	20.0 (4.6 to 20.0)	550	301	42	29	44834
TROMS ¹²	Norw ay	2002	2009	2017	51 (12)	895 (44)	68 (3.4)	37 (1.8)	62 (3.1)	7.5 (7.5 to 7.5)	91	33	40	14	14922
TROMSØ ⁶⁵	Norw ay	1987	2009	19917	43 (14)	9868 (50)	229 (1.1)	175 (0.9)	421 (2.1)	22.0 (10.2 to 22.4)	2562	891	830	554	315667
ULSAM ⁶⁶	Sw eden	1972	2008	2038	51 (4)	2038 (100)	120 (5.9)	6 (0.3)	16 (0.8)	28.0 (8.7 to 37.7)	1369	616	464	254	49634
NHIOS ⁶⁷	USA	1994	2012	85493	63 (7)	0 (0)	4326 (5.1)	1224 (1.4)	2260 (2.6)	12.1 (5.1 to 14.8)	10580	2764	4124	2687	931744
WHITEI ⁶⁸	UK	1997	2010	4890	77 (5)	4890 (100)	275 (5.6)	345 (7.1)	607 (12.4)	11.0 (1.7 to 13.3)	2841	1177	758	869	46175
ZUTE ²¹	Netherlands	1960	2000	641	64 (13)	641 (100)	22 (3.4)	6 (0.9)	32 (5.0)	25.0 (6.5 to 40.1)	429	189	135	71	13192
FOTAL	udes 8318 unkn			689300	53 (9)					12.8 (4.0 to 29.5)	128843	50595	39266	30664	8832963

*All-cause mortality includes 8318 unknown or ill-defined deaths. Numbers of deaths are based on data without censoring for non-fatal outcomes. Superscripted numbers listed after the study acronyms refer to publications in the list of references in the Supplement.

Study	Previous	Previous	Previous	Study	Previous	Previous	Previous
name	diabetes	MI	stroke	name	diabetes	MI	stroke
ARIC ¹	$\circ \bullet$	++	+	LEADER ³⁵	0	++	++
AUSDIAB ³	0	+	+	MCVDRFP ³⁷	0	+	+
BHS⁴	0	++	+	MDC ³⁸	0	++	++
BRHS⁵	0	++	++	MIDFAM ³⁹	0	++	++
BRUN ⁶	$\circ \bullet \bullet$	++	+	MIDRP ⁴⁰	0	++	+
BWHHS ⁷	0	++	++	MONICA_KORA1	0.	+	+
CAPS ⁸	0	++	+	MONICA_KORA2	0.	+	+
CASTEL ⁹	0	++	+	MONICA_KORA3	0.	+	+
CHARL ¹⁰	0	++	+	MORGEN ⁴²	0	+	+
CHS ^{a 11}	$\circ \bullet$	++	+	MOSWEGOT ⁴³	0	+	+
CONOR ^{b 12}	0	+	+	MPP ³⁶	0	+	++
COPEN ¹³	0	++	++	MRCOLD ⁴⁴	•	+	+
CUORE ^{c 2}	$\circ \bullet$	++	+	MRFIT ⁴⁵	0	++	++
DESIR ¹⁴	$\bigcirc ullet ullet$	++	++	NCS ^{f 46}	0	+	+
DUBBO ¹⁶	$\circ \bullet$	++	+	NHANESI ⁴⁷	$\circ \bullet$	+	+
EAS ¹⁷	0	++	+	NHANESIII ⁴⁸	0	+	+
	0	+	+	OSAKA ⁵⁰	•	++	+
[°] EPESEIOW ¹	0	+	+	OSLO ⁵¹	0	+	+
	0	+	+	PREVEND ⁵²	$\circ \bullet$	++	++
	0	+	+	PRHHP ⁵³	$\circ \bullet$	++	++
EPICNOR ¹⁹	0	+	+	PRIME ⁵⁴	0	++	+
ESTHER ²⁰	0•	++	+	PROCAM ⁵⁵	$\circ ullet$	++	+
FINE ^{d 21}	0	++	++	ProspectEPIC ⁵⁷	0	+	+
FINRISK ^{e 22}	$\circ \bullet$	++	++	PROSPER ⁵⁶	0	++	++
FRAMOFF ²³	$\bigcirc \bullet \bullet$	++	++	QUEBEC ⁵⁸	0	++	++
GOTO13 ²⁴	0	++	++	RANCHO ⁵⁹	$\circ \bullet$	++	+
GOTO33 ²⁴	0	++	++	RIFLE ^{g 15}	0	++	++
GOTO43 ²⁴	0	++	++	ROTT ^{h 60}	$\circ \bullet$	++	+
GOTOW ²⁵	$\bigcirc ullet ullet$	++	++	SHHEC ⁶¹	0	++	+
GRIPS ²⁶	0	++	++	SHIP ⁶²	$\circ \bullet$	++	++
HCS ²⁷	0	++	++	SPEED ⁸	0	++	+
HIMS ²⁸	0	++	++	TARFS ⁶⁴	$\circ \bullet \bullet$	++	++
HONOL ²⁹	$\bigcirc ullet ullet$	++	++	TROMSO ⁶⁵	$\circ \bullet$	+	+
HOORN ³⁰	$\bigcirc ullet ullet$	++	+	ULSAM ⁶⁶	0●	++	++
KIHD ³³	•	++	++	WHIOS ⁶⁷	0.	+	+
LASA ³⁴	0.	++	+	WHITEI ⁶⁸	0●	+	+

eTable 2. Study-specific definition of known history of diabetes, myocardial infarction and stroke at baseline

Self-report only;

 Diabetes medications data;
 Biochemical criteria;
 Self-report only;
 Self-report supplemented by objective criteria (eg, Electrocardiogram, Physical examination)

^a CHS was analysed as 2 different studies (ie, CHS-1 and CHS-2).

^b CONOR was analysed as 5 different studies (ie, FINNMARK, HUBRO, OPPHED, OSLO2, and TROMS).

^c CUORE was analysed as 8 different studies (ie, ATENA, EMOFRI, MATISS-83, MATISS-87, MATISS-93, MONFRI-86, MONFRI-89 and MONFRI-94).

^d FINE was analysed as 3 different studies (FINE_FIN, FINE_IT, and ZUTE). FINE_IT ascertained baseline history of diabetes using self-report and diabetes medications data.

^e FINRISK was analysed as 2 different studies (FINRISK92 and FINRISK97).

^t NCS was analysed as 3 different studies (ie, NCS1, NCS2 and NCS3).

⁹ RIFLE was analysed as 2 different studies (ie, DISCO and NFR).

^hROTT was analysed as 3 different studies (ie, RS_I, RS_II, RS_III).

eTable 3. Hazard ratios for all-cause mortality according to participants' disease status at baseline in UK Biobank

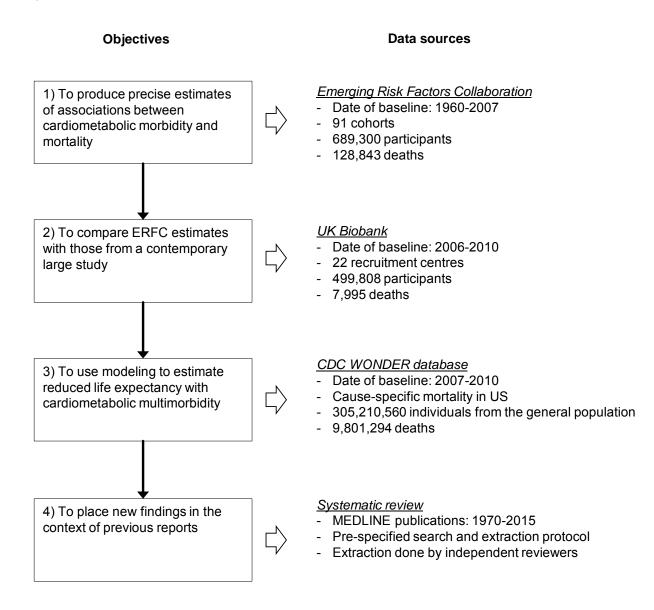
Disease status at baseline	No. of	No. of	Pearson-	Hazard ratio
	participants	deaths	years	(95% CI)
Diabetes & Stroke & MI	230	29	1,039	6.0 (4.2, 8.7)
Stroke & MI	668	57	3,151	3.8 (2.9, 4.9)
Diabetes & Stroke	966	79	4,511	3.9 (3.1, 4.9)
Diabetes & MI	2,036	201	9,341	4.3 (3.7, 5.0)
MI only	8,770	421	41,717	2.1 (1.9, 2.3)
Stroke only	6,835	277	32,563	2.1 (1.9, 2.4)
Diabetes only	18,549	534	87,474	1.6 (1.5, 1.8)
None	461,754	6,397	2,214,549	[Reference]

Hazard ratios are adjusted by age and sex.

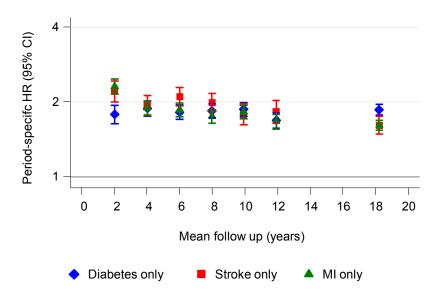
eTable 4. Estimated future years of life lost according to participants' age, sex and disease

status at baseline

Disease status at baseline					Age (yea	rs)				
	40	45	50	55	60	65	70	75	80	85
Male	~~ ~	a		<i>i</i> = 0						
Diabetes & Stroke & MI	22.9	21.7	19.8	17.3	14.4	11.2	8.1	5.2	2.9	1.2
Stroke & MI	21.5	20.1	18.1	15.6	12.9	10.1	7.4	4.8	2.7	1.2
Diabetes & Stroke	16.3	15.6	14.5	13.1	11.2	9.1	6.8	4.6	2.6	1.2
Diabetes & MI	16.8	16.0	14.8	13.1	11.2	9.0	6.7	4.5	2.6	1.2
MI only	10.0	9.6	8.9	8.0	7.0	5.7	4.4	3.1	1.9	0.9
Stroke only	8.8	8.6	8.1	7.5	6.6	5.6	4.4	3.1	1.9	0.9
Diabetes only	7.9	7.6	7.2	6.5	5.7	4.8	3.7	2.7	1.6	0.8
Female										
Diabetes & Stroke & MI	20.1	19.8	19.1	17.7	15.7	13.0	9.9	6.7	3.9	1.8
Stroke & MI	13.0	12.8	12.3	11.5	10.4	9.0	7.2	5.2	3.3	1.6
Diabetes & Stroke	16.5	16.2	15.5	14.5	13.0	11.1	8.7	6.2	3.8	1.9
Diabetes & MI	19.9	19.2	18.1	16.4	14.3	11.8	9.1	6.4	3.8	1.8
MI only	6.5	6.4	6.2	5.9	5.5	4.9	4.1	3.1	2.0	1.0
Stroke only	7.4	7.4	7.2	7.0	6.5	5.9	5.0	3.8	2.5	1.3
Diabetes only	8.2	8.1	7.8	7.3	6.7	5.9	4.8	3.6	2.4	1.2

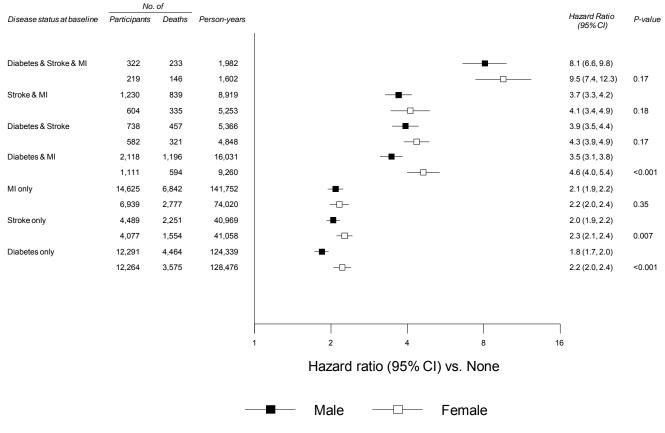

Estimates of cumulative survival from 40 years of age onwards among the eight baseline disease groups were calculated by applying hazard ratios (specific to age-at-risk and sex) for cause-specific mortality associated with baseline disease status to US cause-specific death rates at 40 years of age and older.

eTable 5. Summary of prospective studies included in the literature-based systematic review

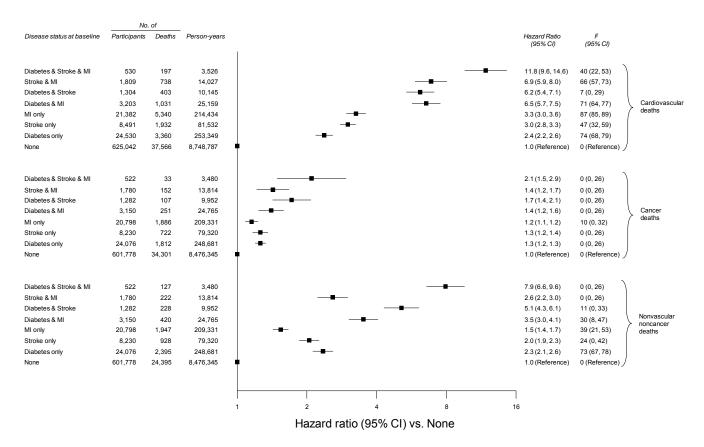

Study acronym	Country	Population source	Baseline year	Date of last follow-up	Age, range	Sex, % male	Exposed group	No. of participants, exposed / reference group	No. of deaths, exposed / reference group
EPESE ²³	USA	Population register	1993-1994	1999	65+	43	Diabetes & Stroke	76 / 2,246	35 / 375
Schramm et al.9	Denmark	Data linkage	1997	2002	30+	48	Diabetes & MI	6,419 / 3,129,516	2,997 / 244,775
PHS ¹⁰	USA	Occupational	1982-1983	1988	40-84	100	Diabetes & CHD	815 / 82,247	210 / 2,425
FINRISK ¹¹	Finland	Population register	1972-1997	2001	25-74	49	Diabetes & MI	146 / 49,319	93 / 8,082
HPFS ¹²	USA	Occupational	1986	1996	40-75	100	Diabetes & CHD	230 / 47,763	98 / 3,195
NHS ¹⁴	USA	Occupational	1976	1996	30-55	0	Diabetes & CHD	234 / 109,231	30 / 7,853

Abbreviations: CHD, coronary heart disease; EPESE, Hispanic Established Population for the Epidemiological Study of the Elderly; HPFS, Health Professionals Follow-up Study; MI, myocardial infarction; NHS, Nurses' Health Study; PHS, Physicians' Health Study. Superscripted numbers listed after the study acronyms refer to publications in the list of references in the main text.

eFigure 1. Study design



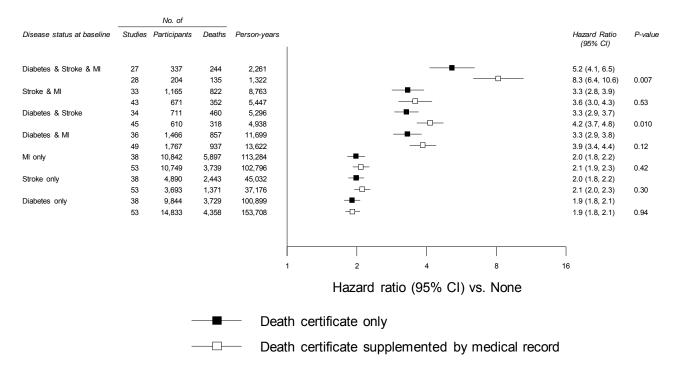
eFigure 2. Hazard ratios for all-cause mortality according to participants' disease status at baseline, against follow-up time


Hazard-ratios (HRs) were adjusted for age and sex. HRs were calculated within bins of follow-up times defined as 0 to <2, 2 to <4, 4 to <6, 6 to <8, 8 to <10, 10 to <12, and \geq 12 years.

eFigure 3. Sex-specific hazard ratios for all-cause mortality according to participants' disease status at baseline

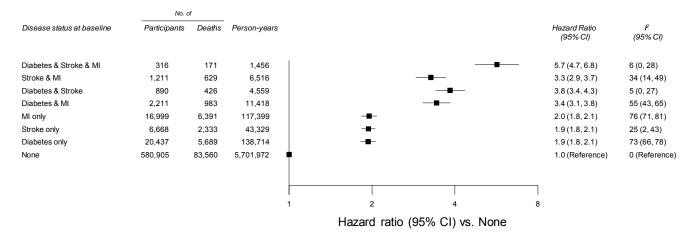
Hazard ratios are stratified by sex and adjusted by age at baseline. Analyses were based on data without censoring for non-fatal outcomes. Analyses were based on participants from 91 studies.

eFigure 4. Hazard ratios for cardiovascular mortality, cancer mortality, and nonvascular noncancer mortality according to participants' disease status at baseline

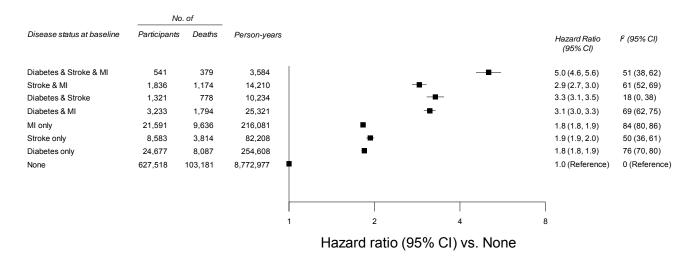

Hazard ratios are stratified by sex and adjusted by age at baseline. Analyses were based on data without censoring for non-fatal outcomes. Analyses were based on 89 studies for cardiovascular mortality, 87 studies for cancer mortality, and 87 studies for nonvascular noncancer mortality.

eFigure 5. Hazard ratios for all-cause mortality according to participants' disease status at baseline, by study-specific definitions of baseline diseases

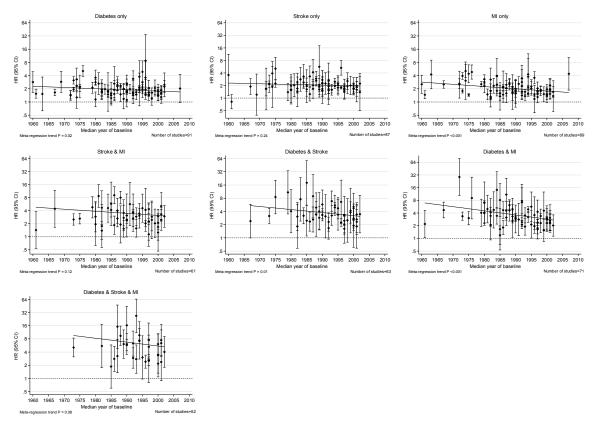
			No. of				
	Disease status at baseline	Studies	Participants	Deaths	Person-years	Hazard Ratio I (95% CI)	P-value
(Diabetes & Stroke & MI	32	277	189	1,960	7.1 (5.5, 9.2)	
		23	264	190	1,624	<u> </u>	0.75
	Diabetes & MI	47	1,361	739	11,120	3.7 (3.2, 4.3)	
	Diabetes & Stroke	38 44	1,872 573	1,055 352	14,201 4,609		0.80
	Diabeles & Stroke	44 35	748	426	4,609 5,624	4.1 (3.5, 4.7) 3.7 (3.2, 4.2) (0	0.35
By definition of	Stroke & MI	41	976	598	8,041	3.5 (2.9, 4.1)	
previous diabetes		35	860	576	6,168		0.66
p	MI only	50	12,510	5,272	131,298	2.1 (1.9, 2.2)	
	Stroko only	41 50	9,081 4,428	4,364 1,837	84,782 45,273		0.96
	Stroke only	50 41	4,420 4,155	1,037	45,273 36,934	- - 2.0 (1.9, 2.2) -□- 2.1 (2.0, 2.3) (1.1, 2.2)	0.32
	Diabetes only	50	10,086	3,644	110,622	- - 1.9 (1.8, 2.1)	
l		41	14,591	4,443	143,986	1.9(1.8, 2.1) (0.84
(Diabetes & Stroke & MI	23 32	311	220	2,131	6.3 (4.8, 8.4) → → → → → → → → → → → → → → → → → → →	0.00
	Diabetes & MI	32 29	230 1,425	159 814	1,452 11,660	7.6 (5.9, 9.9) (3.7 (3.1, 4.3)	0.33
	Diabetes a wi	56	1,808	980	13,661		0.88
	Diabetes & Stroke	28	671	424	5,304	3.6 (3.1, 4.2)	
		51	650	354	4,930		0.31
By definition of 🚽	Stroke & MI	27	974	636	7,261	3.4 (2.8, 4.1)	
previous MI	MI only	49 29	862 9,157	538 4,272	6,949 90,232	3.7 (3.1, 4.3) (0 2.0 (1.8, 2.3)	0.49
	Will Offly	62	12,434	5,364	125,848		0.90
	Stroke only	29	4,970	2,244	47,207		
		62	3,613	1,570	35,000		0.83
	Diabetes only	29	11,055	3,848	118,329	2.1(1.9, 2.3)	
(62	13,622	4,239	136,278	-□- 1.8 (1.7, 2.0) (0.018
(Diabetes & Stroke & MI	38	406	289	2,683	6.6 (5.3, 8.2)	
		17	135	90	901	8.3 (5.8, 12.0)	0.28
	Diabetes & MI	57	2,265	1,304	18,051	3.7 (3.3, 4.2)	
	Diabetes & Stroke	28 55	968 1,012	490 615	7,270 7,836	3.7 (3.0, 4.4) (3.8 (3.4, 4.2)	0.93
	Diabeles & Struke	24	309	163	2,397		0.46
By definition of	Stroke & MI	53	1,356	899	10,458	3.6 (3.2, 4.2)	
previous stroke		23	480	275	3,751	3.3 (2.6, 4.2)	0.48
	MI only	58	15,879	7,144	160,374		
	Stroke only	33 58	5,712 6,546	2,492 2,928	55,707 61,337		0.98
	Stroke Only	33	2,037	2,928	20,870	-■- 2.1 (2.0, 2.3) -□- 2.0 (1.8, 2.2)	0.25
	Diabetes only	58	17,727	5,725	180,338		
Ĺ		33	6,950	2,362	74,269	——— 1.8 (1.7, 2.0) (0.20
						1 2 4 8 16	
						Hazard ratio (95% CI) vs. None	
				_			
			-		— Self-	report only	
			-	-0-	— Sup	plemented by objective criteria	


Hazard ratios are stratified by sex and adjusted by age at baseline. Study-specific definitions of baseline diseases are provided in eTable 2.

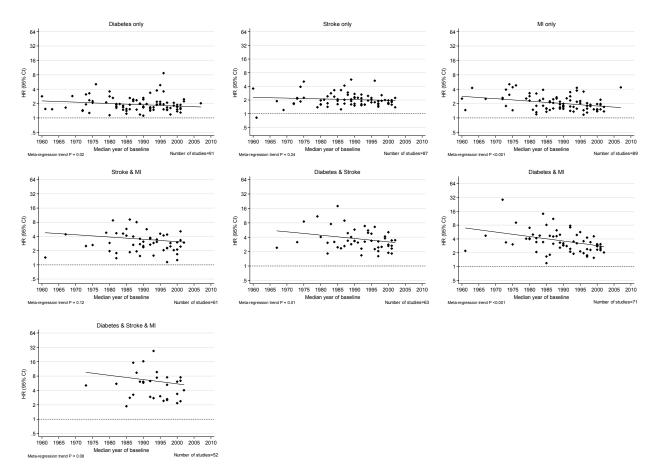
eFigure 6. Hazard ratios for all-cause mortality according to participants' disease status at baseline, by study-specific methods of ascertainment of death


Hazard ratios are stratified by sex and adjusted by age at baseline.

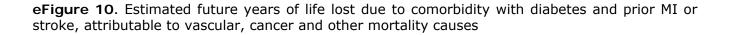
eFigure 7. Hazard ratios for all-cause mortality according to participants' disease status at baseline, after excluding the first 5 years of follow-up

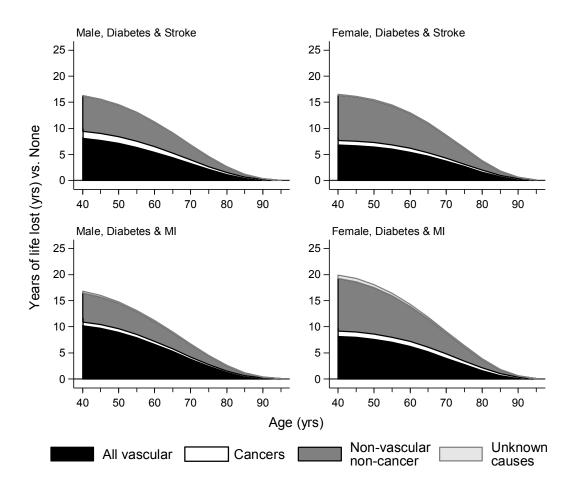

Hazard ratios are stratified by sex and adjusted by age at baseline. Analyses of all-cause mortality were based on data without censoring for non-fatal outcomes. Analyses were based on participants from 87 studies.

eFigure 8. Hazard ratios for all-cause mortality according to participants' disease status at baseline, with study-specific estimates pooled using fixed-effect meta-analysis.

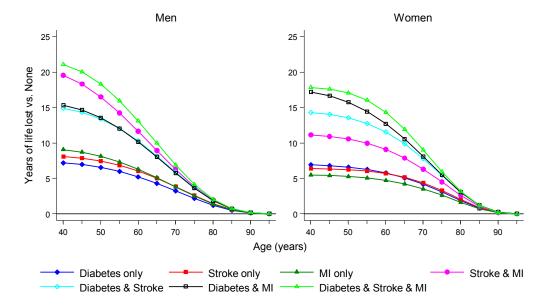

Hazard ratios are stratified by sex and adjusted by age at baseline. Analyses of all-cause mortality were based on data without censoring for non-fatal outcomes. Analyses were based on participants from 87 studies.

eFigure 9A. Hazard ratios for all-cause mortality according to participants' disease status at baseline and by median year of survey




Hazard ratios (HRs) were stratified by sex and adjusted by age at baseline. Each data marker denotes results from a single study. The number of studies contributing to each panel in this figure is listed under the panel's horizontal axis. Studies with less than 2 events in each exposure category were omitted from the plots. To provide greater visual clarity in instances when more than one study in a panel had the same median year of survey, panels in Figure 9B have been plotted without confidence intervals around the point estimates. The lines in this figure have been fitted by meta-regression using a method described in reference 16 of the reference list in the main text.

eFigure 9B. Hazard ratios (without confidence intervals) for all-cause mortality according to participants' disease status at baseline and by median year of survey



Hazard ratios (HRs) were stratified by sex and adjusted by age at baseline. Each data marker denotes results from a single study. The number of studies contributing to each panel in this figure is listed under the panel's horizontal axis. Studies with less than 2 events in each group were omitted from the plots. The lines in this figure have been fitted by meta-regression using a method described in reference 16 of the reference list in the main text.

eFigure 11. Estimated future years of life lost according to diabetes, MI and stroke status in the European Union

Estimates of cumulative survival from 40 years of age onwards among the eight baseline disease groups were calculated by applying hazard ratios (specific to age-at-risk and sex) for cause-specific mortality associated with baseline disease status to European Union cause-specific death rates at 40 years of age and older. Details are provided in eAppendix 5.

eAppendix 1. Investigators of the Emerging Risk Factors Collaboration

ARIC: Eric A Whitsel, Lisa Miller Wruck, Elizabeth Selvin, Wayne D Rosamond; AUSDIAB: Jonathan E Shaw, Paul Z Zimmet, Elizabeth L M Barr; BHS: Matthew W Knuiman, Mark Divitini; BRHS: Peter H Whincup, S Goya Wannamethee, Richard W Morris; BRUN: Stefan Kiechl, Johann Willeit, Siegfried Weger, Arno Gasperi; BWHHS: Debbie A Lawlor, Shah Ebrahim; CaPs: John Gallacher, Yoav Ben-Shlomo, John W G Yarnell; CASTEL: Edoardo Casiglia; CHARL: Paul J Nietert, Susan E Sutherland, David L Bachman; CHS: Mary Cushman, Bruce M Psaty, Richard A Kronmal, (see http://www.chs-nhlbi.org for acknowledgements); CONOR: Randi Selmer, Anne J Søgaard, Lise L Håheim; COPEN: Børge G Nordestgaard, Anne Tybjærg-Hansen, Ruth Frikke-Schmidt, Gorm B Jensen; CUORE: Simona Giampaoli, Salvatore Panico, Diego Vanuzzo, Luigi Palmieri; DESIR: Ronan Roussel, Fabrice Bonnet, Stephane Cauchi, Frédéric Fumeron; DUBBO: Leon A Simons, Judith Simons; EAS: Jackie F Price, Stela McLachlan, Amanda Lee; EPESEBOS: Caroline L Phillips, Jack M Guralnik, James O Taylor; **EPESEIOW**: Robert B Wallace, Frank Kohout, Jack M Guralnik; **EPESENCA**: Caroline Phillips, Jack M Guralnik, Dan G Blazer; EPESENHA: Caroline L Phillips, Jack M Guralnik, Joanne M McGloin; EPICNOR: Kay-Tee Khaw, Nicholas J Wareham; ESTHER: Hermann Brenner, Ben Schöttker, Kai-Uwe Saum, Dietrich Rothenbacher; FINE_FIN: Aulikki Nissinen; FINE_IT: Chiara Donfrancesco, Simona Giampaoli; FINRISK92, FINRISK97: Veikko Salomaa, Erkki Vartiainen, Pekka Jousilahti, Kennet Harald; FRAMOFF: Ralph B D'Agostino, Sr., Joseph M. Massaro, Vasan S Ramachandran; GOTO13: Kurt Svärdsudd, Henry Eriksson, Georgios Lappas, Catharina Welin; GOTO33: Annika Rosengren, Henry Eriksson, Georgios Lappas, Catharina Welin; GOTO43: Lennart Welin, Henry Eriksson, Georgios Lappas, Catharina Welin; GOTOW: Cecilia Björkelund; GRIPS: Dorothea Nagel; HCS: Cyrus Cooper, Elaine M Dennison; HIMS: Leon Flicker, Graeme J Hankey, Paul E Norman, Osvaldo P Almeida, Jon Golledge; HONOL: Beatriz Rodriguez; HOORN: Coen D A Stehouwer, Jacqueline M Dekker, Giel Nijpels; HPFS: Frank B Hu; IKNS: Shinichi Sato; KIHD: Jussi Kauhanen, Jukka T Salonen, Tomi-Pekka Tuomainen, Sudhir Kurl, Sari Voutilainen; LASA: Dorly J H Deeg, Jan L Poppelaars, Renate T de Jongh; LEADER: Tom W Meade; MCVDRFP: W M Monique Verschuren; MDC: Bo Hedblad, Olle Melander; MIDSPAN: Carole L Hart, Naveed Sattar, Alex McConnachie, Graham Watt; MONICA/KORA1,2,3: Annette Peters, Christa Meisinger, Barbara Thorand, Wolfgang Koenig; MORGEN: W M Monique Verschuren; MOSWEGOT: Lars Wilhelmsen, Henry Eriksson, Georgios Lappas, Catharina Welin; MPP: Gunnar Engström, Peter M Nilsson; MRCOLD: Dorothea Nitsch, Chris Bulpitt; MRFIT: Lewis H Kuller, Greg Grandits; NCS: Randi Selmer, Sidsel Graff-Iversen; NHANESI, NHANESIII: Richard F Gillum; NSHS: Karina W Davidson, Jonathan A Shaffer; OSAKA: Hiroyasu Iso, Shinichi Sato; Oslo: Randi Selmer, Sidsel Graff-Iversen, Lise L Håheim; PREVEND: Pim van der Harst, Stephan J L Bakker, Hans L Hillege, Ron T Gansevoort; **PRHHP**: Carlos J Crespo; **PRIME**: Philippe Amouyel, Jean Dallongeville; **PROCAM**: Gerd Assmann, Helmut Schulte; **ProspectEPIC**: Yvonne T van der Schouw, Joline W J Beulens; PROSPER: J Wouter Jukema, Ian Ford, David J Stott; **QUEBEC**: Gilles R Dagenais, Bernard Cantin, Jean-Pierre Després, Benoît Lamarche; **RANCHO**: Elizabeth Barrett-Connor, Alka M Kanaya, Kimbach T Carpiuc, Assiamira Ferrara; RIFLE: Maurizio Trevisan; RS-I: Oscar H Franco, Albert Hofman, Frank JA van Rooij, M Arfan Ikram; RS-II: Maryam Kavousi, Abbas Dehghan, Jan Heeringa, Jessica C Kiefte-de Jong; RS-**III**: Maarten JG Leening, Symen Ligthart, Janine F Felix, Loes Jaspers; **SHHEC**: Hugh Tunstall-Pedoe, Mark Woodward; SHIP: Marcus Dörr, Stephan B Felix, Roberto Lorbeer, Henry Völzke; SHS: Barbara V Howard, Lyle Best; Speedwell: Yoav Ben-Shlomo; TARFS: Altan Onat; **TROMSØ**: Inger Njølstad; **ULSAM**: Johan Sundström, Johan Ärnlöv, Lars Lind, Erik Ingelsson; WHIOS: Sylvia Wassertheil-Smoller; WHITEI: Michael Marmot, Astrid Fletcher, Eric J Brunner; **ZUTE**: Daan Kromhout;

Data Management Team: M Walker, S Spackman, T Bolton.

Coordinating Centre: T Bolton, N Bansal, S Burgess, A S Butterworth, E Di Angelantonio, D F Freitag, P Gao, E Harshfield, S Kaptoge, L M O'Keeffe, L Pennells, S Spackman, S G Thompson, M Walker, P Willeit, A M Wood, D Wormser, J Danesh (principal investigator).

eAppendix 2. List of study acronyms

ARIC, Atherosclerosis Risk in Communities Study¹ ATENA, cohort of Progetto CUORE² AUSDIAB, Australian Diabetes, Obesity and Lifestyle Study³ BHS, Busselton Health Study⁴ BRHS, British Regional Heart Study⁵ BRUN, Bruneck Study⁶ **BWHHS**, British Women's Heart and Health Study⁷ CaPS, Caerphilly Prospective Study⁸ CASTEL, Cardiovascular Study in the Elderly⁹ CHARL, Charleston Heart Study¹⁰ CHS, CHS-1 original cohort of the Cardiovascular Health Study¹¹ and CHS-2, supplemental African-American cohort of the Cardiovascular Health Study¹¹ CONOR, Cohort of Norway¹² COPEN, Copenhagen City Heart Study¹³ CUORE, Progetto CUORE² **DESIR**, Data from an Epidemiological Study on the Insulin Resistance Syndrome¹⁴ DISCO, cohort of Risk Factors and Life Expectancy Pooling Project¹⁵ **DUBBO**, Dubbo Study of the Elderly¹⁶ EAS, Edinburgh Artery Study¹⁷ EMOFRI, part of CUORE² **EPESEBOS**, The Established Populations for the Epidemiologic Study of the Elderly Studies, Boston¹⁸ EPESEIOW, The Established Populations for the Epidemiologic Study of the Elderly Studies, Iowa¹⁸ EPESENCA, The Established Populations for the Epidemiologic Study of the Elderly Studies, North Carolina¹⁸ EPESENHA, The Established Populations for the Epidemiologic Study of the Elderly Studies, New Haven¹⁸ EPICNOR, European Prospective Investigation of Cancer Norfolk Study¹⁹ ESTHER, Epidemiologische Studie zu Chancen der Verhutung und optimierten Therapie chronischer Erkrankungen in der alteren Bevolkerung²⁰ FINE, Finland, Italy and Netherlands Elderly Study - Italian cohort²¹ FINE_FIN, cohort of FINE²¹ FINE_IT, cohort of FINE²¹ FINMARK, cohort of CONOR¹² FINRISK-92, Finrisk Cohort 199222 FINRISK-97, Finrisk Cohort 1997²² FRAMOFF, Framingham Offspring Cohort²³ GOTO13, Goteborg Study 191324 GOTO33, Göteborg 1933 Study24 GOTO43, Göteborg 1943 Study24 GOTOW, Population Study of Women in Göteborg, Sweden²⁵ GRIPS, Göttingen Risk Incidence and Prevalence Study²⁶ HCS, Hertfordshire Cohort Study²⁷ HIMS, Health in Men Study² HONOL, Honolulu Heart Program²⁹ HOORN, Hoorn Study³⁰ HPFS, Health Professionals Follow-up Study³¹ HUBRO, cohort of CONOR¹² IKNS, Ikawa, Kyowa, and Noichi Study³² KIHD, Kuopio Ischaemic Heart Disease Study³³ LASA, Longitudinal Aging Study Amsterdam³⁴ LEADER, Lower Extremity Arterial Disease Event Reduction Trial³⁵ MATISS-83, cohort of Progetto CUORE² MATISS-87, cohort of Progetto CUORE² MATISS-93, cohort of Progetto CUORE² MCVDRFP, Monitoring of CVD Risk Factors Project³⁷ MDC-CV, Malmö Diet and Cancer Study³⁸ MIDFAM, MIDSPAN Family Study³⁹ MIDRP, MIDSPAN Renfrew & Paisley Study⁴⁰ MONFRI-86, cohort of Progetto CUORE² MONFRI-89, cohort of Progetto CUORE² MONFRI-94, cohort of Progetto CUORE² MONICA_KORA1, MONICA/KORA Augsburg Surveys S141 MONICA_KORA2, MONICA/KORA Augsburg Surveys S241 MONICA_KORA3, MONICA/KORA Augsburg Surveys S341 MORGEN, Monitoring Project on Chronic Disease Risk Factors⁴² MOSWEGOT, MONICA Göteborg Study43 MPP, Malmö Preventive Project³ MRCOLD, MRC Study of Older People⁴⁴ MRFIT, Multiple Risk Factor Intervention Trial 145 NCS 1, 2 and 3, Norwegian Counties Studies⁴⁶ NFR, cohort of Risk Factors and Life Expectancy Pooling Project¹⁵ NHANES I, First National Health and Nutrition Examination Survey⁴⁷ NHANES III, Third National Health and Nutrition Examination Survey⁴⁸ NSHS, Nova Scotia Health Survey⁴⁹ © 2015 American Medical Association. All rights reserved.

OPPHED, cohort of CONOR¹² OSAKA, Osaka Study⁵⁰ OSLO, Oslo Study⁵¹ OSLO2, cohort of CONOR¹² PREVEND, Prevention of Renal and Vascular End Stage Disease Study⁵² PRHHP, Puerto Rico Heart Health Program⁵³ PRIME, Prospective Epidemiological Study of Myocardial Infarction⁵⁴ PROCAM, Prospective Cardiovascular Münster Study⁵⁵ Prospect EPIC, Prospect-EPIC Utrecht⁵⁷ PROSPER, Prospective Study of Pravastatin in the Elderly at Risk⁵⁶ QUEBEC, Quebec Cardiovascular Study⁵⁸ RANCHO, Rancho Bernardo Study⁵⁹ RIFLE, Risk Factors and Life Expectancy Pooling Project¹⁵ ROTT, The Rotterdam Study⁶⁰ RS-1, 2 and 3, cohorts of The Rotterdam Study60 SHHEC, Scottish Heart Health Extended Cohort⁶¹ SHIP, Study of Health in Pomerani⁶² SHS, Strong Heart Study⁶³ SPEED, Speedwell Study⁸ TARFS, Turkish Adult Risk Factor Study⁶⁴ TROMS, cohort of CONOR¹² TROMSØ, Tromsø Study65 **ULSAM**, Uppsala Longitudinal Study of Adult Men⁶⁶ **WHIOS**, Women's Health Initiative⁶⁷ WHITE I, Whitehall I Study⁶⁸ ZUTE, cohort of FINE²¹

References

- (1) Lee CD, Folsom AR, Pankow JS, Brancati FL. Cardiovascular events in diabetic and nondiabetic adults with or without history of myocardial infarction. *Circulation* 2004;109:855-860.
- (2) Palmieri L, Donfrancesco C, Giampaoli S et al. Favorable cardiovascular risk profile and 10-year coronary heart disease incidence in women and men: results from the Progetto CUORE. *Eur J Cardiovasc Prev Rehabil* 2006;13:562-570.
- (3) Dunstan DW, Zimmet PZ, Welborn TA et al. The Australian Diabetes, Obesity and Lifestyle Study (AusDiab)-methods and response rates. *Diabetes Res Clin Pract* 2002;57:119-129.
- (4) Knuiman MW, Vu HT. Prediction of coronary heart disease mortality in Busselton, Western Australia: an evaluation of the Framingham, national health epidemiologic follow up study, and WHO ERICA risk scores. J Epidemiol Community Health 1997;51:515-519.
- (5) Wannamethee SG, Shaper AG, Lennon L. Cardiovascular disease incidence and mortality in older men with diabetes and in men with coronary heart disease. *Heart* 2004;90:1398-1403.
- (6) Willeit J, Kiechl S. Prevalence and risk factors of asymptomatic extracranial carotid artery atherosclerosis. A population-based study. *Arterioscler Thromb* 1993;13:661-668.
- (7) Lawlor DA, Bedford C, Taylor M, Ebrahim S. Geographical variation in cardiovascular disease, risk factors, and their control in older women: British Women's Heart and Health Study. *J Epidemiol Community Health* 2003;57:134-140.
- (8) Bainton D, Miller NE, Bolton CH et al. Plasma triglyceride and high density lipoprotein cholesterol as predictors of ischaemic heart disease in British men. The Caerphilly and Speedwell Collaborative Heart Disease Studies. Br Heart J 1992;68:60-66.
- (9) Casiglia E, Pauletto P, Mazza A et al. Impaired glucose tolerance and its co-variates among 2079 non-diabetic elderly subjects. Ten-year mortality and morbidity in the CASTEL study. CArdiovascular STudy in the ELderly. *Acta Diabetol* 1996;33:284-290.
- (10) Nietert PJ, Sutherland SE, Keil JE, Bachman DL. Demographic and biologic influences on survival in whites and blacks: 40 years of follow-up in the Charleston Heart Study. *Int J Equity Health* 2006;5:8.
- (11) Carnethon MR, Biggs ML, Barzilay J et al. Diabetes and coronary heart disease as risk factors for mortality in older adults. *Am J Med* 2010;123:556-559.
- (12) Rabanal KS, Lindman AS, Selmer RM, Aamodt G. Ethnic differences in risk factors and total risk of cardiovascular disease based on the Norwegian CONOR study. *Eur J Prev Cardiol* 2012.
- (13) Schnohr P, Jensen G, Nyboe J, Eybjaerg HA. [The Copenhagen City Heart Study. A prospective cardiovascular population study of 20,000 men and women]. *Ugeskr Laeger* 1977;139:1921-1923.
- (14) Balkau B, Lange C, Fezeu L et al. Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). *Diabetes Care* 2008;31:2056-2061.
- (15) The RIFLE Research Group. Presentation of the rifle project risk factors and life expectancy. The RIFLE Research Group. *Eur J Epidemiol* 1993;9:459-476.
- (16) Simons LA, Simons J, Friedlander Y, McCallum J. Usefulness of fasting plasma glucose to predict mortality or coronary heart disease in persons > or = 60 years of age without diabetes mellitus or in those with undiagnosed diabetes mellitus (from The Dubbo Study). *Am J Cardiol* 2008;102:831-834.
- (17) Fowkes FG, Housley E, Cawood EH, Macintyre CC, Ruckley CV, Prescott RJ. Edinburgh Artery Study: prevalence of asymptomatic and symptomatic peripheral arterial disease in the general population. *Int J Epidemiol* 1991;20:384-392.
- (18) Cornoni-Huntley J, Ostfeld AM, Taylor JO et al. Established populations for epidemiologic studies of the elderly: study design and methodology. *Aging (Milano)* 1993;5:27-37.
- (19) Day N, Oakes S, Luben R et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. *Br J Cancer* 1999;80 Suppl 1:95-103.
- © 2015 American Medical Association. All rights reserved.

- (20) Schöttker B, Haug U, Schomburg L, Köhrle J, Perna L, Müller H, Holleczek B, Brenner H. Strong associations of 25-hydroxyvitamin D concentrations with all-cause, cardiovascular, cancer, and respiratory disease mortality in a large cohort study. *Am J Clin Nutr* 2013;97:782-793.
- (21) Menotti A, Mulder I, Nissinen A et al. Cardiovascular risk factors and 10-year all-cause mortality in elderly European male populations; the FINE study. Finland, Italy, Netherlands, Elderly. *Eur Heart J* 2001;22:573-579.
- (22) Laatikainen T, Critchley J, Vartiainen E, Salomaa V, Ketonen M, Capewell S. Explaining the decline in coronary heart disease mortality in Finland between 1982 and 1997. *Am J Epidemiol* 2005;162:764-773.
- (23) Rutter MK, Meigs JB, Sullivan LM, D'Agostino RB Sr, Wilson PW. C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. *Circulation* 2004;110:380-385.
- (24) Rosengren A, Eriksson H, Larsson B et al. Secular changes in cardiovascular risk factors over 30 years in Swedish men aged 50: the study of men born in 1913, 1923, 1933 and 1943. J Intern Med 2000;247:111-118.
- (25) Noppa H, Bengtsson C. Obesity in relation to smoking: a population study of women in Göteborg, Sweden. *Prev Med* 1980;9:534-543.
- (26) Cremer P, Elster H, Labrot B, Kruse B, Muche R, Seidel D. Incidence rates of fatal and nonfatal myocardial infarction in relation to the lipoprotein profile: first prospective results from the Gottingen Risk, Incidence, and Prevalence Study (GRIPS). *Klin Wochenschr* 1988;66 Suppl 11:42-49.
- (27) Syddall HE, Aihie Sayer A, Dennison EM, Martin HJ, Barker DJ, Cooper C. Cohort profile: the Hertfordshire cohort study. *Int J Epidemiol* 2005;34:1234-1242.
- (28) Norman PE, Flicker L, Almeida OP, Hankey GJ, Hyde Z, Jamrozik K. Cohort Profile: The Health In Men Study (HIMS). Int J Epidemiol 2009;38:48-52.
- (29) Kagan A, Popper JS, Rhoads GG. Factors related to stroke incidence in Hawaii Japanese men. The Honolulu Heart Study. *Stroke* 1980;11:14-21.
- (30) Mooy JM, Grootenhuis PA, de VH et al. Prevalence and determinants of glucose intolerance in a Dutch caucasian population. The Hoorn Study. *Diabetes Care* 1995;18:1270-1273.
- (31) Pischon T, Girman CJ, Hotamisligil GS, Rifai N, Hu FB, Rimm EB. Plasma adiponectin levels and risk of myocardial infarction in men. *JAMA* 2004;291:1730-1737.
- (32) Iso H, Naito Y, Sato S, Kitamura A, Okamura T, Sankai T, Shimamoto T, Iida M, Komachi Y. Serum triglycerides and risk of coronary heart disease among Japanese men and women. *Am J Epidemiol* 2001;153:490-499.
- (33) Mykkanen L, Laakso M, Penttila I, Pyorala K. Asymptomatic hyperglycemia and cardiovascular risk factors in the elderly. *Atherosclerosis* 1991;88:153-161.
- (34) Huisman M, Poppelaars J, van der Horst M, Beekman AT, Brug J, van Tilburg TG, Deeg DJ. Cohort profile: the Longitudinal Aging Study Amsterdam. *Int J Epidemiol* 2011;40:868-876.
- (35) Meade TW. Design and intermediate results of the Lower Extremity Arterial Disease Event Reduction (LEADER)* trial of bezafibrate in men with lower extremity arterial disease [ISRCTN4119421]. Curr Control Trials Cardiovasc Med 2001;2:195-204.
- (36) Berglund G, Eriksson KF, Israelsson B, Kjellström T, Lindgärde F, Mattiasson I, Nilsson JA, Stavenow L. Cardiovascular risk groups and mortality in an urban swedish male population: the Malmö Preventive Project. *J Intern Med* 1996;239:489-497.
- (37) Hoeymans N, Smit HA, Verkleij H, Kromhout D. Cardiovascular risk factors in relation to educational level in 36 000 men and women in The Netherlands. *Eur Heart J* 1996;17:518-525.
- (38) Enhorning S, Bankir L, Bouby N et al. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmo Diet and Cancer Study cardiovascular cohort. *Int J Obes (Lond)* 2012.
- (39) Welsh P, Doolin O, McConnachie A, Boulton E, McNeil G, Macdonald H, Hardcastle A, Hart C, Upton M, Watt G, Sattar N. Circulating 250HD, dietary vitamin D, PTH, and calcium associations with incident cardiovascular disease and mortality: the MIDSPAN Family Study. *J Clin Endocrinol Metab* 2012;97:4578-4587.
- © 2015 American Medical Association. All rights reserved.

- (40) Hawthorne VM, Watt GCM, Hart CL, Hole DJ, Smith GD, Gillis CR. Cardiorespiratory disease in men and women in Scotland: baseline characteristics of the Renfrew/Paisley (Midspan)study population. Scott Med J 1995;40:102-7.
- (41) Keil U, Liese AD, Hense HW et al. Classical risk factors and their impact on incident non-fatal and fatal myocardial infarction and all-cause mortality in southern Germany. Results from the MONICA Augsburg cohort study 1984-1992. Monitoring Trends and Determinants in Cardiovascular Diseases. *Eur Heart J* 1998;19:1197-1207.
- (42) Houterman S, Verschuren WM, Oomen CM, Boersma-Cobbaert CM, Kromhout D. Trends in total and high density lipoprotein cholesterol and their determinants in The Netherlands between 1993 and 1997. Int J Epidemiol 2001;30:1063-1070.
- (43) Wilhelmsen L, Johansson S, Rosengren A, Wallin I, Dotevall A, Lappas G. Risk factors for cardiovascular disease during the period 1985-1995 in Goteborg, Sweden. The GOT-MONICA Project. J Intern Med 1997;242:199-211.
- (44) Fletcher AE, Jones DA, Bulpitt CJ, Tulloch AJ. The MRC trial of assessment and management of older people in the community: objectives, design and interventions [ISRCTN23494848]. *BMC Health Serv Res* 2002;2:21.
- (45) Sherwin R, Kaelber CT, Kezdi P, Kjelsberg MO, Thomas HE Jr. The multiple risk factor intervention trial (MRFIT) II. The development of the protocol. *Prev Med* 1981;10:402-425.
- (46) Bjartveit K, Foss OP, Gjervig T. The cardiovascular disease study in Norwegian counties. Results from first screening. Acta Med Scand Suppl 1983;675:1-184.
- (47) Gillum RF, Makuc DM, Feldman JJ. Pulse rate, coronary heart disease, and death: the NHANES I Epidemiologic Follow-up Study. Am J Epidemiol 1991;121:172-177.
- (48) Gillum RF, Obisesan TO. Physical activity, cognitive function, and mortality in a US national cohort. *Ann Epidemiol* 2010;20:251-257.
- (49) Davidson KW, Schwartz JE, Kirkland SA, Mostofsky E, Fink D, Guernsey D, Shimbo D. Relation of inflammation to depression and incident coronary heart disease (from the Canadian Nova Scotia Health Survey [NSHS95] Prospective Population Study). Am J Cardiol 2009;103:755-761.
- (50) Kitamura A, Sato S, Kiyama M et al. Trends in the incidence of coronary heart disease and stroke and their risk factors in Japan, 1964 to 2003: the Akita-Osaka study. *J Am Coll Cardiol* 2008;52:71-79.
- (51) Haheim LL, Holme I, Hjermann I, Leren P, Tonstad S. Trends in the incidence of acute myocardial infarction and stroke: a 21-year follow-up of the Oslo study. *Scand Cardiovasc J* 2004;38:216-221.
- (52) Geluk CA, Tio RA, Tijssen JG et al. Clinical characteristics, cardiac events and coronary angiographic findings in the prospective PREVEND cohort: an observational study. *Neth Heart J* 2007;15:133-141.
- (53) Garcia-Palmieri MR, Feliberti M, Costas R, Jr. et al. An epidemiological study on coronary heart disease in PR. The Puerto Rico Heart Health Program. 1969. *Bol Asoc Med P R* 2002;94:61-67.
- (54) Ducimetiere P, Ruidavets JB, Montaye M, Haas B, Yarnell J. Five-year incidence of angina pectoris and other forms of coronary heart disease in healthy men aged 50-59 in France and Northern Ireland: the Prospective Epidemiological Study of Myocardial Infarction (PRIME) Study. Int J Epidemiol 2001;30:1057-1062.
- (55) Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. *Circulation* 2002;105:310-315.
- (56) Shepherd J, Blauw GJ, Murphy MB et al. The design of a prospective study of Pravastatin in the Elderly at Risk (PROSPER). PROSPER Study Group. PROspective Study of Pravastatin in the Elderly at Risk. Am J Cardiol 1999;84:1192-1197.
- (57) Boker LK, van Noord PA, van der Schouw YT et al. Prospect-EPIC Utrecht: study design and characteristics of the cohort population. European Prospective Investigation into Cancer and Nutrition. Eur J Epidemiol 2001;17:1047-1053.
- (58) Dagenais GR, Robitaille NM, Lupien PJ et al. First coronary heart disease event rates in relation to major risk factors: Quebec cardiovascular study. *Can J Cardiol* 1990;6:274-280.
- (59) Barrett-Connor E. The Rancho Bernardo Study: 40 years studying why women have less heart disease than men and how diabetes modifies women's usual cardiac protection. *Glob Heart* 2013;8:95-104.
- © 2015 American Medical Association. All rights reserved.

- (60) Hofman A, Darwish Murad S, van Duijn CM, Franco OH, Goedegebure A, Ikram MA, Klaver CC, Nijsten TE, Peeters RP, Stricker BH, Tiemeier HW, Uitterlinden AG, Vernooij MW. The Rotterdam Study: 2014 objectives and design update. *Eur J Epidemiol* 2013;28:889-926.
- (61) Smith WC, Crombie IK, Tavendale R, Irving JM, Kenicer MB, Tunstall PH. The Scottish Heart Health Study: objectives and development of methods. *Health Bull (Edinb)* 1987;45:211-217.
- (62) Kowall B, Rathmann W, Giani G et al. Random glucose is useful for individual prediction of type 2 diabetes: results of the Study of Health in Pomerania (SHIP). *Prim Care Diabetes* 2013;7:25-31.
- (63) Lee ET, Welty TK, Fabsitz R, Cowan LD, Le NA, Oopik AJ, Cucchiara AJ, Savage PJ, Howard BV. The Strong Heart Study. A study of cardiovascular disease in American Indians: design and methods. *Am J Epidemiol* 1990;132:1141-1155.
- (64) Onat A, Senocak MS. Relative risk of factors for coronary heart disease in population with low cholesterol levels. *Int J Cardiol* 1994;43:51-60.
- (65) Miller NE, Thelle DS, Forde OH, Mjos OD. The Tromso heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study. *Lancet* 1977;1:965-968.
- (66) Lind L, Vessby B, Sundstrom J. The apolipoprotein B/AI ratio and the metabolic syndrome independently predict risk for myocardial infarction in middle-aged men. *Arterioscler Thromb Vasc Biol* 2006;26:406-410.
- (67) Hsia J, Aragaki A, Bloch M, LaCroix AZ, Wallace R. Predictors of angina pectoris versus myocardial infarction from the Women's Health Initiative Observational Study. *Am J Cardiol* 2004;93:673-678.
- (68) Clarke R, Breeze E, Sherliker P et al. Design, objectives, and lessons from a pilot 25 year follow up re-survey of survivors in the Whitehall study of London Civil Servants. *J Epidemiol Community Health* 1998;52:364-369.

eAppendix 3. UK Biobank

Details of UK Biobank have been described previously.¹ Briefly, over 500,000 participants aged 40-69 years were recruited during 2006-2010 in 22 geographical centres throughout the United Kingdom. The assessment visit comprised electronic signed consent; a self-completed touch-screen questionnaire; brief computer-assisted interview; physical and functional measures; and collection of biological samples. Participants have been linked with death records of the UK Office for National Statistics through National Health Service identification numbers.²

A total of 499,808 participants with complete data on age, sex, and medical history of diabetes, stroke and myocardial infarction were included in the current analysis. Medical history of diabetes, stroke and myocardial infarction was defined using self-reported information recorded at baseline visit in UK Biobank and updated using information on hospitalization before baseline extracted from Hospital Episode Statistics (using the following ICD codes: I21-I22 for history of myocardial infarction; I60, I61, I63, I64 for history of stroke). Information on smoking status, level of education (as measure of socioeconomic status), and fruit and meat consumption were collected using the touchscreen questionnaire at baseline visit. Body mass index was calculated (kg/m²) using measured height and weight. Weight was measured using the Tanita BC-418 MA body composition analyser (accurate to within 0.1kg) after removal of heavy clothing and shoes. Standing height was measured without shoes using a Seca 202 height measure. Blood pressure was measured using the Omron HEM-7015IT digital blood pressure monitor.² The mean of two measurements taken approximately within a minute of each other was used in the analysis. The UK Biobank study was approved by the North West Multi-centre Research Ethics Committee (MREC) and all participants provided written informed consent to participate in the UK Biobank.

Statistical analysis

Participants were categorized into eight mutually exclusive groups according to baseline disease, ie: 1) diabetes only; 2) stroke only; 3) MI only; 4) diabetes and MI only; 5) diabetes and stroke only; 6) stroke and MI only; 7) diabetes, stroke and MI; 8) none of these (reference group). Hazard ratios and 95% CI for all-cause mortality were calculated using Cox proportional-hazards regression models. The primary analysis adjusted for age and sex only. Secondary analyses were additionally adjusted for smoking status, education level, body mass index, systolic blood pressure, and diet(fruit intake and meat consumption). Data were analysed using Stata version 12.1

Reference List

- Sudlow C, Gallacher J, Allen N et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLoS Med* 2015;12(3):e1001779.
- (2) UK Biobank (2007). Protocol for a large-scale prospective epidemiological resource. http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf (accessed May 11, 2015).

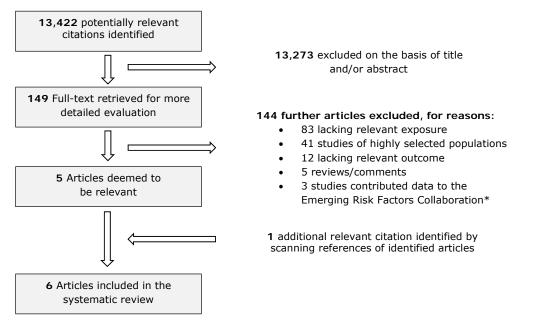
eAppendix 4. Systematic review

Data Sources and Searches

Studies published between January 1970 and April 2015 were identified, without any language restriction, through electronic searches using MEDLINE, and supplemented by scanning reference lists of articles identified. The computer-based search strategy is detailed below.

Study Selection

Prospective observational studies were included if they had reported on the association of cardiometabolic morbidity (ie, people with a baseline history of at least two of the conditions diabetes, stroke, and myocardial infarction) with allcause mortality. Observational studies were eligible if had recorded at least one year of follow-up and involved participants from approximately general populations (ie, participants not selected on the basis of pre-existing disease at baseline). Studies were not eligible for the review if they had contributed data to the Emerging Risk Factors Collaboration. A literature search flow chart is provided below.


Data Extraction

Data on the following characteristics were extracted independently by two investigators (PW and LOK) according to a pre-specified protocol: study location, sampling population, year of baseline survey, date of last follow-up, duration of follow-up, age range of participants at baseline, gender, sample size, numbers of deaths, reported hazard ratios for mortality associated with ≥2 cardiometabolic conditions (ie, diabetes, stroke, and myocardial infarction), and degree of statistical adjustment used. Discrepancies were resolved by discussion and by adjudication of a third reviewer (EDA). We used the most up-to-date or comprehensive information in cases of multiple publications.

Search strategy

#1	"history of" or "prior" or "pre-existing" or "prevalent" or "existing" or "comorbidity"
#2	"Myocardial infarction" OR "coronary heart disease" OR stroke OR diabetes
#3	Mortality[Mesh] OR mortality OR death OR survival
#4	"Cohort Studies"[Mesh] OR cohort OR prospective OR "risk ratio" OR "relative risk" OR "hazard
	ratio" OR "rate ratio" OR "risk ratios" OR "relative risks" OR "hazard ratios" OR "rate ratios"
#5	"Animals"[Mesh] NOT "Humans"[Mesh]
Search:	(#1 AND #2 AND #3 AND #4) NOT #5
Restrictions:	None
Publication database:	MEDLINE
Result:	13,422 citations

Literature search flow chart

* British Regional Heart Study (BRHS), Cardiovascular Health Study (CHS), and MIDSPAN Renfrew & Paisley Study (MIDRP).

eAppendix 5. Statistical methods used for estimating years of life lost.

We used three pieces of information to estimate reductions in life expectancy associated with a history of disease at baseline (henceforth "exposure groups"):

(i) age-at-risk specific hazard ratios for all-cause (and cause-specific) mortality in each exposure group versus the reference (derived from the ERFC);

(ii) population all-cause (and cause-specific) mortality rates (derived from the detailed mortality component of the CDC WONDER database of the US Centers for Disease Control and Prevention); and

(iii) prevalence of exposure groups in the population (derived from the ERFC).

We estimated population survival curves for each of 8 exposure groups, utilising estimated age-at-risk specific hazard ratios for mortality by exposure groups in the ERFC and routine statistics on overall population mortality rates. We estimated reductions in life-expectancy as differences in areas under any two survival curves compared. To calculate an appropriate mortality rate for the reference group (i.e. those without disease morbidity), we used ERFC data on exposure prevalence estimates, as described below.

Age-at-risk specific hazard ratios for mortality by exposure groups were estimated from ERFC data separately for each sex. Specifically, a Cox regression model stratified by cohort and trial arm (where applicable) was fitted separately for each sex using a dataset in which participant ages-at-risk were deterministically updated by splitting the follow up times every 5-years and recalculating an age-at-risk variable at the beginning of each 5-year interval of follow up. Interactions between baseline exposure groups and linear and quadratic terms for the age-at-risk variable were included in the model to obtain smoothed hazard ratios. Thus, for participant i in stratum s with exposure group indicator variable $E_{si(j)}$ (i.e. dummy variable equal to 1 if in exposure group is j and zero otherwise) the log hazard rate at time t since baseline was modelled as:

$$\log(h_{si}(t)) = \log(h_{s0}(t)) + \sum_{j=1}^{7} \gamma_{0j} E_{si(j)} + \beta_2 agerisk_{si} + \beta_3 agerisk_{si}^2 + \sum_{j=1}^{7} \gamma_{1j} E_{si(j)} \times agerisk_{si} + \sum_{j=1}^{7} \gamma_{2j} E_{si(j)} \times agerisk_{si}^2$$
(1)

from which the age-at-risk specific hazard ratios (and 95% CIs) for mortality were obtained as linear combinations of the relevant estimated coefficients, with age-at-risk fixed at values corresponding to midpoints of 5-year age-groups from age 40 onwards (**Figure 1**).

Population all-cause (and cause-specific) mortality rates per 100,000 were obtained in 5-year age-groups for the US population during years 2007-2010 from the Center for Disease Control (CDC) WONDER online database (http://wonder.cdc.gov/controller/datarequest/D76) (Figure2), as well as for 15 EU countries during year 2000 (http://ec.europa.eu/eurostat/data/database). Because the mortality rates were provided only up to age-group 80-84 years, but we desired to estimate the overall population survival curves, we used a Poisson regression model with linear and quadratic terms for the midpoints of 5-year age-groups to smooth and extrapolate the mortality rates (Figure 3). Next, assuming exponential survival (i.e. constant hazard) within each 5-year age group, we estimated the age-specific survival probability as $S_a = \exp(-5 \times IR_a)$ and derived the overall population survival curves from age 35 onwards as the product of the relevant age-group specific survival probabilities (Figure 4).

$$p(survival \mid agerisk \ge 35) = \prod_{agerisk \ge 35} S_a$$
(2)

In order to infer population mortality rates appropriate for the reference exposure group used in our estimation of agespecific hazard ratios (i.e. those without disease morbidity), we used logistic regression to model the age-specific prevalence of (co)morbidity in ERFC cohorts by sex and decade of recruitment (**Figure 5**) We used the age-specific prevalence estimates for the decade commencing in the year 1990 to infer the age-specific mortality rates appropriate for our reference group IR_{a0} as:¹

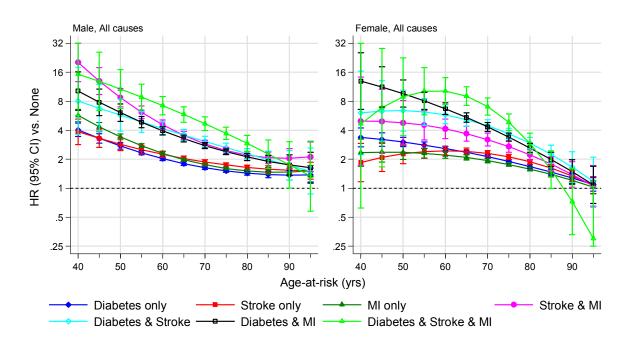
$$IR_{a0} = \frac{IR_{a}}{p_{a0} + \sum_{j=1}^{7} p_{aj} \times RR_{aj}}$$
(3)

Where IR_a is the population mortality rate for age group a, p_{aj} is the age-specific prevalence of exposure group j, and RR_{aj} is the age-specific hazard ratio in comparison of exposure group j versus reference group (j = 0). The age-specific mortality rates in each of the non-reference exposure groups were then inferred in turn by multiplying the age-specific mortality rate for the reference group IR_{a0} by the age-specific hazard ratios RR_{aj} based on ERFC data and equation (2) above used to infer the exposure group-specific population survival curves (**Figure 6**). Finally, reductions in life expectancy according to baseline disease (co)morbidity groups were estimated as difference in the areas under the survival curves for the reference group and each of the disease (co)morbidity groups in turn (**Figure 7**). The areas under curves were calculated by numerical integration.

Appendix References

1 Woloshin S, Schwartz LM, Welch HG. The risk of death by age, sex, and smoking status in the United States: putting health risks in context. J Natl Cancer Inst 2008;100(12):845-53.

eAppendix 5. Figures



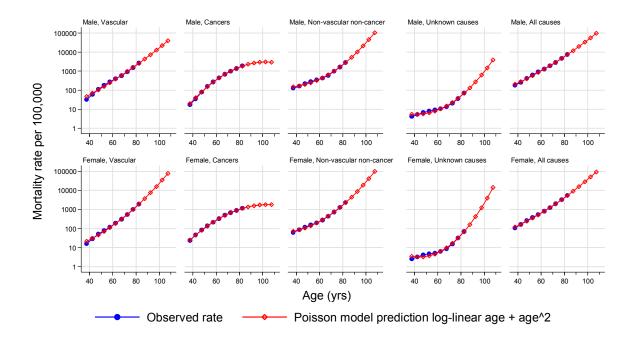
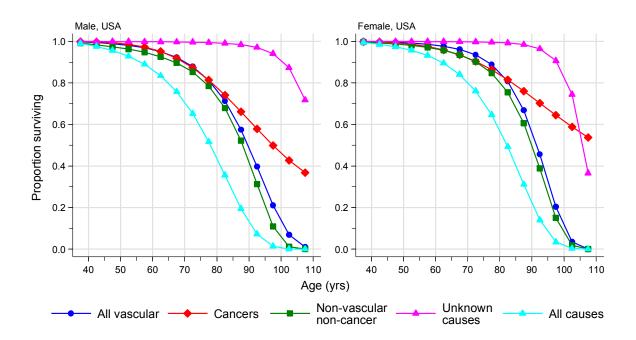

Figure 1. Age-at-risk specific hazard ratios for all-cause mortality by sex and exposure groups estimated from ERFC data.

Figure 2. US population mortality rates during year 2007 - 2010 downloaded from CDC WONDER online database.*



* To maintain consistency with analyses conducted in ERFC, the mortality rate for non-vascular noncancer causes was recalculated as the difference of all-cause mortality and the sum of vascular mortality (I00-I99), cancer mortality (C00-D48), and unknown causes of mortality (R00-R99).

Figure 3. Assessment of adequacy of a Poisson model used to smooth and extrapolate US population mortality rates during years 2007 - 2010 downloaded from CDC WONDER online database beyond the database's upper bound age cut-off of 84 years to facilitate modelling.

Figure 4. Derived population survival curves for all-cause and cause-specific mortality from age 35 years based on smoothed and extrapolated US population mortality rates 2007 - 2010.

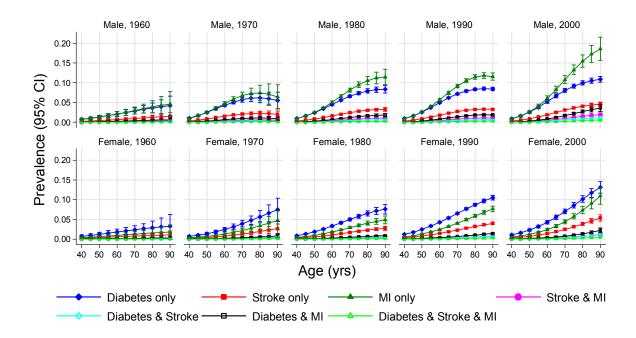
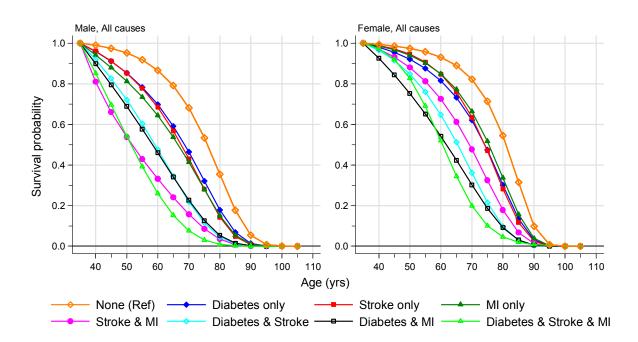



Figure 5. Modelled age-specific prevalence of (co)morbidity in ERFC cohorts by sex and decade of recruitment.

Figure 6. Inferred survival curves for US population by sex and baseline disease morbidity.

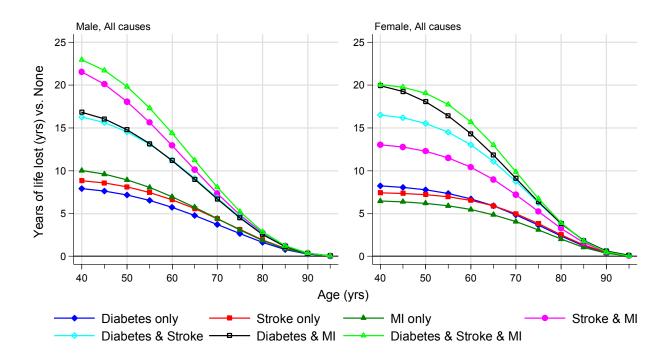


Figure 7. Estimated sex-specific reductions in life expectancy in the US population according to baseline disease morbidity.