# Synthesis and Immunological Studies of Linear Oligosaccharides of β-Glucan as Antigens for Anti-Fungal Vaccine Development

Guochao Liao,<sup>a†</sup> Zhifang Zhou,<sup>a†</sup> Srinivas Burgula,<sup>a</sup> Jun Liao,<sup>a,b</sup> Cheng Yuan,<sup>c</sup> Qiuye Wu,<sup>b</sup> and Zhongwu Guo<sup>a</sup>\*

a) Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA

b) School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China

c) Department of Pharmacy, Shanghai East Hospital, Tongji University, Jimo Road, Shanghai 200120, China

E-mail: zwguo@chem.wayne.edu

## **Table of Contents:**

| I. Calculated antibody titers of various ELISA experiments | S1 |
|------------------------------------------------------------|----|
| II. NMR and MS spectra of synthesized compounds            | S3 |

### I. Calculated Antibody Titers of Various ELISA Experiments

| Mouse # | 1    | 2    | 3     | 4    | 5     | 6      | Average | SD    |
|---------|------|------|-------|------|-------|--------|---------|-------|
| kappa   | 26   | 6673 | 23277 | 1166 | 22543 | 49127  | 17135   | 18696 |
| IgG1    | 5569 | 3593 | 285   | 0    | 13220 | 58324  | 13498   | 22482 |
| IgG2a   | 0    | 0    | 0     | 0    | 0     | 0      | 0       | 0     |
| IgG2b   | 0    | 0    | 20251 | 0    | 405   | 12762  | 5570    | 8798  |
| IgG3    | 66   | 6528 | 0     | 0    | 0     | 57061  | 10609   | 22905 |
| IgM     | 5473 | 41   | 8     | 5211 | 7342  | 102187 | 20044   | 40355 |

 Table S-1: Antibody titers induced by conjugate 1

 Table S-2: Antibody titers induced by conjugate 2

| Mouse # | 1    | 2     | 3      | 4      | 5     | 6     | Average | SD    |
|---------|------|-------|--------|--------|-------|-------|---------|-------|
| kappa   | 3717 | 57177 | 114125 | 65939  | 55022 | 47983 | 57327   | 35403 |
| IgG1    | 125  | 70980 | 172826 | 140541 | 78955 | 49184 | 85435   | 62477 |
| IgG2a   | 0    | 0     | 0      | 0      | 0     | 0     | 0       | 0     |
| IgG2b   | 51   | 26578 | 68697  | 253    | 102   | 2     | 15947   | 27928 |
| IgG3    | 1    | 40975 | 27647  | 1      | 2     | 12    | 11440   | 18210 |
| IgM     | 2162 | 38087 | 45483  | 32135  | 8436  | 73711 | 33336   | 26052 |

| Mouse # | 1     | 2    | 3     | 4      | Average | SD    |
|---------|-------|------|-------|--------|---------|-------|
| kappa   | 63764 | 1496 | 67279 | 67455  | 49998   | 32380 |
| IgG1    | 53163 | 2    | 95510 | 109124 | 64450   | 49131 |
| IgG2a   | 0     | 0    | 0     | 0      | 0       | 0     |
| IgG2b   | 8271  | 0    | 61492 | 34461  | 26056   | 27818 |
| IgG3    | 58109 | 103  | 37301 | 27645  | 30789   | 24085 |
| IgM     | 35849 | 2135 | 46170 | 42884  | 31759   | 20214 |

Table S-3: Antibody titers induced by conjugate 3

Table S-4: Antibody titers induced by conjugate 4

| Mouse #                               | 1                               | 2                                     | 3                               | 4                                   | 5                                 | 6                                      | Average                               | SD                   |
|---------------------------------------|---------------------------------|---------------------------------------|---------------------------------|-------------------------------------|-----------------------------------|----------------------------------------|---------------------------------------|----------------------|
| kappa                                 | 13328                           | 53453                                 | 12192                           | 31169                               | 24779                             | 85058                                  | 36663                                 | 28067                |
| IgG1                                  | 25459                           | 37160                                 | 3563                            | 40853                               | 34196                             | 173046                                 | 52380                                 | 60602                |
| IgG2a                                 | 0                               | 0                                     | 0                               | 0                                   | 0                                 | 0                                      | 0                                     | 0                    |
| IgG2b                                 | 99                              | 30972                                 | 2251                            | 3866                                | 7294                              | 50711                                  | 15866                                 | 20464                |
| IgG3                                  | 19                              | 23746                                 | 0                               | 40791                               | 37                                | 80927                                  | 24253                                 | 32396                |
| IgM                                   | 24949                           | 50422                                 | 27435                           | 3647                                | 12219                             | 61883                                  | 30093                                 | 22254                |
| IgG1<br>IgG2a<br>IgG2b<br>IgG3<br>IgM | 25459<br>0<br>99<br>19<br>24949 | 37160<br>0<br>30972<br>23746<br>50422 | 3563<br>0<br>2251<br>0<br>27435 | 40853<br>0<br>3866<br>40791<br>3647 | 34196<br>0<br>7294<br>37<br>12219 | 173046<br>0<br>50711<br>80927<br>61883 | 52380<br>0<br>15866<br>24253<br>30093 | 2046<br>3239<br>2225 |

SD: standard deviation



**Figure S-1.** Comparison of the average antibody titers of corresponding antigen-specific (A) total IgG antibodies and (B) total IgM antibodies in the day 48 pooled antisera of mice immunized with conjugates **1-4**, respectively. The error bar is the standard deviation of three parallel experiments. \*  $P \ll 0.01$  as compared to **1**; <sup>#</sup> P < 0.05 as compared to **2**.



## II. NMR and MS Spectra of Synthesized Compounds.

















88 80 72 64 56 48 40 Chemical Shift (ppm) 32 24 16





160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift (ppm)





















BSR-II-63-2C13







160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 Chemical Shift (ppm)











liao\_2\_124\_C Standard Carbon

### 102.73 102.75 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 101.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 100.25 10









MALDI TOF MS spectrum of HSA protein



MALDI TOF MS spectrum of HSA-octasaccharide conjugate 6



MALDI TOF MS spectrum of HSA-decasaccharide conjugate 7



MALDI TOF MS spectrum of HSA-dodecasaccharide conjugate 8