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1 Markov chain Monte Carlo algorithm

Table 1. Prior parameters used for Markov chain Monte Carlo inference.

Parameter Prior parameters
pc αc=2.5 βc=1
pic αic=2 βic=1
τ c=0.5 d=0.001
L µL=0.775 s2

L=0.0121
κ µκ=0.05 s2

κ=10000
v± µv±=±0.03 s2

v±=10

α µα=0.01 s2
α=10000

1.1 Parameter updates

We update each parameter separately by drawing samples from the full conditional probability distributions
as follows:

1.1.1 Precision τ

The conditional distribution π(τ |·) is Gamma distributed, where π(·) indicates a probability function and the
conditioning is on all parameters and data except τ , giving the update

τ
∣∣· ∼ Γ(c+ n− 1, d+

1

2

2∑
k=1

n−1∑
i=1

(xki+1 − xki − fki )2) (1)

where fki (σki ) = (−1)kvσk
i

+ (−1)kκ(di − L cos(θi))− αxki , and parameters are defined as in main text.

1.1.2 Velocities v±

The conditional distributions on v± are Gaussian distributed. For v+ we have conditional

π(v+|·) ∝ exp

[
−1

2

(
1

s2
v

(v+ − µv)2+

τ

2∑
k=1

∑
1≤i<n,
σk
i =+

[
xki+1 − xki − (−1)kv+ − (−1)kκ(x1

i − x2
i − L cos(θi)) + αxki

]2)] (2)

and similarly for v−. Completing the square, we have for v±

v±
∣∣· ∼ N

 1

τ±v

±µvs−2
v + τ

2∑
k=1

∑
1≤i<n,
σk
i =±

[
(−1)k(xki+1 − xki + αxki )− κ(x1

i − x2
i − L cos(θi))

] , 1

τ±v

 (3)

with τ±v = τn± + s−2
v . Here n± are the number of time points in state ± respectively combined over both

sister trajectories and we have n+ + n− = 2(n− 1). We use a Metropolis-Hasting rejection step to impose
the constraints v+ > 0, v− < 0, using the above as a proposal.
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1.1.3 Spring constant κ

The conditional distribution on κ is Gaussian. It is given by

π(κ|·) ∝ exp

[
−1

2

(
1

s2
κ

(κ− µκ)2 + τ

2∑
k=1

n−1∑
i=1

[
xki+1 − xki − (−1)kvσk

i
− (−1)kκ(x1

i − x2
i − L cos θi) + αxki

]2)]
(4)

Completing the square gives the update

κ
∣∣· ∼ N ([µκs−2

κ + τ

2∑
k=1

n−1∑
i=1

(
(−1)k(xki+1 − xki + αxki )− vσk

i

)
(x1
i − x2

i − L cos θi)

]
/τκ, τ

−1
κ

)
(5)

with τκ = s−2
κ + 2τ

∑n−1
i=1 (x1

i − x2
i − L cos θi)

2. We impose the constraint κ ≥ 0 by using the above as a
proposal with a Metropolis-Hasting rejection step.

1.1.4 Spring natural length L

The natural spring length L has conditional

π(L|·) ∝ exp

[
−1

2

(
1

s2
L

(L− µL)2+

τ

2∑
k=1

n−1∑
i=1

(
xki+1 − xki − (−1)kvσk

i
− (−1)kκ(x1

i − x2
i − L cos(θi)) + αxki

)2
)] (6)

Completing the square gives the update

L
∣∣· ∼ N ([µLs−2

L + τκ

2∑
k=1

n−1∑
i=1

cos(θi)
(

(−1)k+1(xki+1 − xki + αxki ) + vσk
i

+ κ(x1
i − x2

i )
)]/

τL, τ
−1
L

)
(7)

with τL = s−2
L + 2τκ2

∑n−1
i=1 cos2(θi). Again, we impose positivity with a rejection step.

1.1.5 Anti-poleward force parameter α

The conditional π(α|·) is a Gaussian,

π(α|·) ∝ exp

[
−1

2

(
1

s2
α

(α− µα)2+

τ

2∑
k=1

n−1∑
i=1

(
xki+1 − xki + (−1)k+1vσk

i
+ (−1)k+1κ(x1

i − x2
i − L cos θi) + αxki

)2
)] (8)

with α > 0. This gives a conditional posterior,

α|· ∼ N

(µαs
−2
α − τ

∑
k,i

xki

(
xki+1 − xki + (−)k+1vσk

i
+ (−)k+1κ(x1

i − x2
i − L cos θi)

)
)/τα, τ

−1
α

 (9)

with τα = s−2
α + τ

∑n−1
i=1

∑2
k=1(xki )2 and truncated to α > 0 by rejection step.
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1.1.6 State transition probabilities pc, pic

The conditionals on pc, pic are Beta distributed as follows

pc

∣∣∣· ∼ Beta(ac +Nc −Kc, bc +Kc) (10)

where Nc,Kc are the number of coherence time points and the number of switches to incoherence
respectively for the (current) sister hidden states σkt . Similarly,

pic

∣∣∣· ∼ Beta(aic +Nic −Kic, bic +Kic) (11)

1.1.7 Hidden states σkt

The hidden MC can be updated by a Gibbs move locally at each time point [1]. Define ars as the transition
matrix between the states (+,−), with pc, pic the probabilities of no change, a depending on the current
state. The conditional for state σki , sister k is then given by

π(σki = r|·) ∝ aσk
i−1r

(σk̂i−1)φ(∆Xk
i |σki = r, ·)arσk

i+1
(σk̂i )

where φ is the Gaussian pdf of ∆Xk
i depending on σki , and we indicate the dependence of a on the other

sister k̂ (determining whether the sisters are coherent/incoherent). The first and last time points are slightly
different, as there is no preceding/following state. This conditional is easily normalised for a Gibbs update,
running consecutively over sisters and through time.
However, this algorithm has poor mixing; on the Gelman-Rubin convergence statistic [2] the noise τ is the
slowest to converge because of poor convergence of the hidden MC. Performance is improved by using two
moves. Firstly, doing a joint update of both sisters at each time point, i.e. we use the above conditional
(product over sisters) to compute the probabilities of states (+,+), (+,−), (−,+), (−,−) at each time point
and use a Gibbs update. Secondly, we use a block move of length w for each sister separately. This is
computationally time consuming taking about 4 times longer than the joint sister update. We found a 20%
mix of the block move, w randomly selected over 4-10 gave as good convergence as a full block move.
The block move is constructed as follows. Define row vectors u0, u1 associated with current states 0,1 at
position i. Then iteratively move to the next time point reconstructing

ur = [u0a0rφ(∆Xk
i |σki = 0, ·)]⊕ [u1a1rφ(∆Xk

i |σki = 1, ·)]

for sister k, thereby doubling the length of ur. This works through the window. Initialise the vectors by
ur = asr if σki1 = s, and then ur is the unnormalised probability vector of all 2w states if σkiw+1

= r. The
state in the window is then updated using a Gibbs move. Windows from the start of the time series have a
prior on the initial position as above. Computational costs to update over the full time series are similar for
w = 2...11, thereafter rising.

1.2 Initial conditions, mixing and convergence

We ran 5 chains for each sister pair from over-dispersed initial conditions and used the Gelman-Rubin
statistic [2] to test for convergence. Chains were initially run up to 250,000 samples and sub-sampled by a
factor of 20. If they failed to converge (convergence diagnostic > 1.2 on any parameter), run length was
doubled (subsampling frequency also doubled), repeated up to a maximum of 3 times to meet the
convergence criterion. Any trajectory with a convergence statistic still above 1.2 was considered unconverged
and discarded from further analysis. The hidden state was initialised from a simulation of the MC given the
initial parameters pc, pic. We used the last 5000 samples per chain for final analysis, discarding burn-in.
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1.3 Identifiability

The model in (5) has an identifiability problem for constant twist θt, i.e., data in a single trajectory is
insufficient to determine all the parameters. This derives from the symmetry L→ L+ l/ cos θ, v± → v± + κl
for arbitrary l; thus only the two combinations v+ − v−, v+ − κL cos θ (and recombinations of these) are
independent of the symmetry; thus the model is a priori unidentifiable. The sign constraints v+ > 0 and
v− < 0 limit this identifiability symmetry to −v+

/
κ < l < −v−

/
κ in addition to L+ l/ cos θ > 0, where L

and v± are the unknown true values. This symmetry is lost if θt varies over the trajectory; however the low
variation of θt leaves an a posteriori identifiability problem where the posterior distribution for L shifts
towards higher values as the prior variance is increased (Fig. S1B). To infer the model we therefore require
an informed prior on L; using a prior for L determined from nocadozole treated cells (Fig. S1A) we found all
other parameters were estimatable from the data. We tested the sensitivity of estimated parameters to
changes in the L prior mean (Fig. S1C) and found that apart from v± (which was expected due to the
nature of symmetry) almost all other parameters were robust, κ being the next most sensitive showing
significant change only when the L prior mean was decreased by 20%. This confirmed that any error in
determining the natural length (because of other effects of nocadozole treatment, such as compaction of the
chromosomes) did not significantly affect our conclusions as regards v±, and did not affect conclusions
pertaining to the other parameters at all.

2 Model selection details

2.1 Brownian motion model

Brownian motion in an over-damped environment (with negligible inertia) can be modelled by the following
stochastic differential equation

dXt =
√

2DdWt (12)

where D is the diffusion coefficient. Integrating over a small time interval ∆t gives the approximate
displacement, to order O(∆t)

Xt+∆t = Xt + ηt∆t (13)

where ηt ∼ N (0, s2) and s2 = 2D
/

∆t. Hence, frame-to-frame displacements are approximately

Xt+∆t −Xt

∆t
=

∆X

∆t
= ηt ∼ N (0, s2) (14)

For two sisters (X1,X2), the likelihood of a set of displacements {∆xki } is

π({∆xki }|τ) =
τn−1

(2π)n−1

∏
k

exp

(
−τ

2

n−1∑
i=1

(∆xki )2

)
(15)

where τ = s−2 is called the precision.

2.2 Brownian motion models with spring and drift

We also computed the Bayes factor of Mcoh against two other Brownian models: one with sister pairs
connected by a Hookean spring but otherwise each undergoing a 1D BM, Mspring-BM, and further extension
of Mspring-BM to allow for a constant drift acting on both sisters, Mspring-drift-BM. The Bayes factors for these
models largely agreed with that for MBM (Fig. S3A,B) so we did not compare these models further.

2.3 Marginal likelihoods

To compare the support for different models we computed marginal likelihoods to estimate Bayes factors,
that is, the posterior odds ratios conditioned on two models. We employed algorithms due to Chib [3] and
Chen [4] to take advantage of previously generated MCMC samples. Chib’s method also requires generating
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further chains with blocks of the parameters fixed. We sequentially fixed each parameter in each subsequent
chain, setting the fixed parameter to its posterior mean estimate. The extra chains incur considerable
additional computational cost, therefore after checking that the difference in marginal likelihood between the
two methods was negligible over a wide range of trajectories, we favoured Chen’s method, which is based on
the following identity for K samples from a converged MCMC chain

π(X|M) = log π(X|Θ∗)− log

[
1

K

K∑
k=1

g(Θ(k)|Σ(k))

π(Θ∗)

π(Θ∗|Σ(k),X)

π(Θ(k)|Σ(k),X)

]
(16)

where X is the displacement data, Θ∗ is a fixed point for the model parameters (here, the posterior mean
estimate), Θ(k) and Σ(k) are parameter and hidden state samples from the MCMC run, respectively and
g(Θk|Σ(k)) is an arbitrary density. To calculate π(X|Θ∗) we integrated out the hidden state Σ by
importance sampling weighted by drawing samples from the posterior distribution for Σ. The choice of g
affects the variance of the estimate. We set g to the product of Γ distributions fitted independently to the
posterior samples for parameters v±, κ, α, L, and τ , and Beta distributions similarly fitted for pc, pic. This
choice ensures that the density of g will not deviate too far from the joint posterior density. We tested that
the resulting marginal likelihood estimate was independent of this choice by comparing with estimates
derived using g(Θ|Σ) = π(Θ) and estimating the variance of both methods using overlapping batch
statistics [4]. The variance under the fitted g was markedly lower but the mean estimates were consistent
across trajectories. Having computed the marginal likelihoods for two models M1 and M2, their Bayes factor
is B1/2 = π(X|M1)

/
π(X|M2) and the data supports M1 over M2 when B1/2 > 1.

2.4 Explained variance

The explained variance (EV) is a measure of how well a model accounts for the variance of a trajectory.
Given the model parameters, hidden state and data we can compute the sum of squares

V [X] =
∑
k=1,2

n∑
i=1

(xki+1 − xki − fki (σki ))2 (17)

where fki is as in (7). Here V is the difference between the predicted displacements of the model and the
observed displacements. By averaging over the posterior samples from the MCMC, we obtain the average
explained variance,

EV = 1− Eposterior[V ]

Var0
(18)

where

Var0 =
∑
k=1,2

n∑
i=1

(xki+1 − xki )2 (19)

is an estimate of the displacement variance of the two sisters. This is equal to the displacement variance if we
subtract the mean displacement but this is close to zero for long time series.

2.5 Directional correlation statistic

In a Brownian motion the probability of a change in direction of motion (i.e., sign(∆xi) 6= sign(∆xi+1)) is
0.5 and is independent at each time-step. Hence the number of directional switches K in n time-points is
binomially distributed

P (K = k) =

(
n− 2

k

)
1

2n−2
. (20)

The number of switches k in a trajectory is computed as the number of times the sign of the displacement of
the centre position between the two sisters changes (i.e., sign(∆(x1

i + x2
i ))). We also examined subsampled

displacements over the interval n∆t. Using this we define a statistic

Dn∆t = 1− 2 min(P (K ≤ k), P (K > k)) ∈ [0, 1] (21)
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A trajectory is not likely to be Brownian motion if Dn∆t ≈ 1 due to correlations between successive
displacements.

3 Live cell imaging and kinetochore tracking

HeLa-Kyoto (K) cells stably expressing eGFP-CENP-A / eGFP-Centrin1 were cultivated and maintained as
described in [5]. Cells were seeded in 35 mm glass bottom dishes (MatTek Corporation) and the media
changed to Leibovitz L-15 supplemented with 10% foetal calf serum prior to imaging. Cells were imaged
using a 100X 1.4 NA oil objective on a confocal spinning-disk microscope (VOX Ultraview; Perkin and Elmer)
with a Hamamatsu ORCA-R2 camera, controlled by Volocity 6.0 (Perkin and Elmer). Mitotic cells were first
identified using bright-field illumination to minimise phototoxicity. Image stacks (25 Z-sections, 0.5 µm
spacing) were collected every 2 seconds for 5 minutes (150 time-points per video). Camera pixels were binned
2× 2 giving an effective pixel size of 138 nm in the lateral direction with 16 bits per pixel imaging depth.
Exposure conditions were 50 ms per Z-slice using a 488 nm laser set to 15% power. 90% of cells entered
anaphase after measurement demonstrating that cells were unharmed by phototoxicity. Image time-series
were deconvolved using Huygens 4.1 (SVI) using a point-spread function measured from micro-bead images.
Kinetochores trajectories were tracked as previously described [6] except we implemented a 3D Gaussian
mixture model algorithm for refining spot positions to sub-pixel accuracy [7], based on an earlier 2D
version [8]. MATLAB kinetochore tracking software (KiT) is available from
http://mechanochemistry.org/mcainsh/software.php and will be described in detail in a forthcoming
paper.

3.1 Nocodazole treatment for spring rest length determination

To estimate the spring rest length, we treated eGFP-CENP-A / eGFP-Centrin1 HeLa-K cells with
nocodazole. This causes depolymerisation of all microtubules, thus relieving kinetochore pairs of tension.
Cells were imaged in prometaphase as described in section 3, except with 31 Z-sections and 0.2 µm spacing.
Higher Z resolution was necessary because kinetochores pairs were randomly oriented in 3D. Kinetochore
trajectories were tracked as described in section 3.
To accurately determine the spring rest length, we fitted trajectories to a 1D harmonic oscillator model

Dt+∆t −Dt = −κ(Dt − L) +N(0, s2) (22)

where Dt is the distance between sister kinetochores at time t, κ is the spring constant and L is the rest
length. s2 quantifies the noise in the trajectory. We used an analogous MCMC algorithm to section 1,
excluding any need to compute hidden states, to infer L from individual trajectories.
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