Position	Codon	Possible residues
V39	NDT	CDFGHILNRSVY
N41	RWT	NIVD
Y43	нwт	FYLHIN
M45	VWG	EKLMQV
S48	VNT	ADGHILNPRSTV
N49	NDT	CDFGHILNRSVY
Q50	vww	HQNKDELIV
T51	VYT	AILPTV
D52	NDT	CDFGHILNRSVY
K53	VNA	AEGIKLPQTVR
A56	NHT	ADFHILNPSTVY
Q63	VNA	AEGIKLPQTVR
G65	NDT	CDFGHILNRSVY
Q66	CMA	QP
L97	NWT	FILVYHND
S102	NCT	STAP
L103	NDT	CDFGHILNRSVY
A104	NHT	ADFHILNPSTVY
P105	SCT	АР
K106	VNA	AEGIKLPQTVR
A107	NYT	FILVSPTA
E111	VRW	DEHKNQSGR

Figure S1. Design of the "First Generation" PD-1 library. (*A*) Table of randomized positions of hPD-1 are given in the table, with the corresponding degenerate codon and the potential amino acids possible at each site. (*B*) Structural depiction of the "First Generation" library; hPD-1 is in green with randomized side chains indicated as blue space-filling spheres.

Α			В
<u>Position</u>	Codon	Possible residues	
V39	VRT	DGHNRS	
L40	NTT	FILV	
N41	NWT	FILVDHNY	
Y43	YWT	FHLY	
R44	YDT	FHLRYC	
M45	SAW	DEHQ	
N49	DRT	CDGNSY	
K53	AMA	кт	
Q66	СМА	QP	
V72	RYT	VAIT	
M83	NTS	FILVM	
Y96	YWT	FHLY	
L97	NTT	FILV	
A100	RYT	VAIT	
L103	YWT	FHLY	
A107	NTT	FILV	

Figure S2. Design of the "Second Generation" PD-1 library. (*A*) Table of randomized positions of hPD-1 are given in the table, with the corresponding degenerate codon and the potential amino acids possible at each site. (*B*) Structural depiction of the "Second Generation" library; hPD-1 is in green with randomized side chains indicated as blue space-filling spheres.

Figure S3. Schematic diagram of HAC "microbody" (HACmb) design in comparison to individual HAC PD-1 monomer and anti-PD-L1 antibody. HACmb is HAC-V fused to the CH3 domain of human IgG1 linked by a disulfide-containing hinge sequence.

Figure S4 *In vitro* staining of hPD-L1 expressing cells. (*A*) FACS plot of CT26-Tg(hPD-L1)- Δ (mPDL1) either unstained (black), stained with AlexaFluor594-labeled HAC monomer (red), or AlexaFluor488-labeled anti-PD-L1 antibody (clone 29E.2A3, Biolegend). (*B*) *In vitro* competitive staining of hPD-L1-expressing CT26 cells using a titrated range of HAC labeled with Alexa Fluor-488 and anti-human PD-L1 (clone 29E.2A3) labeled with APC. Antibody and HAC quantities are labeled below each plot.

Figure S5. *In vivo* staining of hPD-L1-expressing tumors. Histological section taken from the same tumor as depicted in Figure 3A, but from the center of the tumor rather than at the periphery. Image is from tumors dissected four hours after intraperitoneal injection of anti-hPD-L1-Alexa Fluor488 (green) and HAC-Alexa Fluor 594 (red). Nuclei (blue) were labeled with DAPI. Scale bars represent 500µm.

Figure S6. PD-L1 is expressed on the surface of circulating T cells in tumor-engrafted mice. Dot plot of % positive PD-L1 expression by CD4+ T cells (left) and CD8+ T cells (right), as measured by FACS analysis of lymphocytes from the peripheral blood of mice 14 days post-engraftment with CT26 tumors.

Figure S7. HACmb does not induce macrophage-mediated phagocytosis *in vitro*. FACS-based phagocytosis assay using *ex vivo* differentiated human macrophages and CFSE-labeled hPD-L1 expressing CT26 cells as target. Y axis represents the percent of CFSE+ macrophages after co-culture with CT26 target cells and either HAC monomer, HACmb, or anti-human PD-L1 (clone 29E.2A3).

Figure S8. Dose-finding study of anti-mPD-L1 antibody 10F.9G2 in the CT26 syngeneic tumor model. Relative growth rates of engrafted tumors, calculated as tumor volume (mm³) based on thrice-weekly caliper measurement of individual tumors over the course of the treatment period. Mice were engrafted subcutaneously with 5x10⁶ CT26 cells, and treatment with either vehicle (PBS, black), thrice-weekly anti-mPD-L1 antibody (blue), or daily anti-mPD-L1 antibody (red) was begun the day after engraftment. Error bars represent s.e.m. *, p<0.05, **, p<0.01, ****, p<0.0001.

Figure S9. Anti-tumor activity of HACmb requires adaptive immunity. Relative growth rates of engrafted tumors, calculated as tumor volume (mm³) based on thrice-weekly caliper measurement of individual tumors over the course of the treatment period. Either wild-type Balb/c mice or immunocompromised *Rag2-/-IL2Rg-/-* mice were engrafted subcutaneously with 1x10⁶ CT26 cells, and treatment with either vehicle (PBS), or daily HACmb was initiated the day after engraftment. Error bars represent s.e.m. **, p<0.01, ***, p<0.001.

Figure S10. Validation of DOTA-HAC PET tracer. (*A*) Competition binding assays of wild-type hPD-1, HAC-V, or DOTA-HAC on human SK-MEL-28 cells. 100 nM hPD-1/streptavidin-Alexa Fluor 647 tetramer was used as the probe ligand. Error bars represent s.e.m. (*B*) Immunoreactivity of anti-hPD-L1 radiotracer. hPD-L1(+), hPD-L1(-) and hPD-L1(+) cells blocked with excess HAC-N91C prior to the addition of tracer were tested for binding specificity. 5 nM ⁶⁴Cu-DOTA-HAC readily bound to hPD-L1(+) cells (80.5 % ± 1.9 %), while control hPD-L1(-) cells only exhibited minimal immunoreactivity (8.3 % ± 0.5 %). Binding was blocked in hPD-L1(+) cells by the addition of HAC-N91C to 1 μ M (8.9 % ± 0.1 %). n.s., not significant. ****, p<0.0001, Two-way ANOVA.

Figure S11. ⁶⁴Cu-DOTA-HAC MicroPET imaging dynamics. (*A*) Tumor uptake computed by region of interest (ROI) analysis over 24 hours. (*B*) Renal uptake in hPD-L1 (+) and (-) tumor bearing mice assessed by ROI analysis. (*C*) PET-CT image 24 hours post-injection of ⁶⁴Cu-DOTA-HAC (230µCi/25µg/200µl) in NSG mouse bearing dual subcutaneous hPD-L1(+) (dashed) and hPD-L1(-) (solid) CT26 tumors. (*D*) Tumor uptake computed by region of interest (ROI) in dual tumor bearing mice. (*E*) Renal clearance over 24 hours in dual tumor bearing mice. All uptake values normalized to maximum mean %ID/g. Normalized (μ_t) = $\frac{\mu_t - \mu_{min}}{\mu_{max} - \mu_{min}}$, where μ_t is the average %ID/g for n mice at a given time point, μ_{max} is the maximum average %ID/g for all time points, and μ_{min} is equal to zero.

Figure S12. 1 and 24 hour biodistribution of ⁶⁴Cu-DOTA-HAC. (*A*) After completion of micro-PET/CT imaging, mice were euthanized and dissected for biodistribution analysis. Mean uptake in the indicated organs and tissues are given as the percentage of injected dose per gram of tissue (%ID/g). Error bars represent s.e.m. (*B*) Summary of means and s.e.m. of the ratios of tumor to tissue uptake at 1 and 24 hours.

Primer	Sequence (5' to 3')				
D1aff_1F	CATTTTCAATTAAGATGCAGTTACTTCGCTG				
D1aff_2R	AATAACAGAAAATATTGAAAAACAGCGAAGTAACTGCATCTTAATTG				
D1aff_3F	TTACTTCGCTGTTTTTCAATATTTTCTGTTATTGCTAGCGTTTTAGCAG				
D1aff_4R	GTCTATCTGGGGAATCTGCTAAAACGCTAGCAATAACAGAAAAT				
D1aff_5F	TTTTAGCAGATTCCCCAGATAGACCATGGAACCCACCAAC				
D1aff_6R	CAACAAAGCTGGGGAGAAAGTTGGTGGGTTCCATGGTC				
D1aff_7F	AACTTTCTCCCCAGCTTTGTTGGTCGTCACTGAAGGTGA				
D1aff_8R	GAACAAGTGAAAGTAGCGTTATCACCTTCAGTGACGACCAA				
D1aff_9F	GTGATAACGCTACTTTCACTTGTTCCTTCTCCAACACTTCC				
D1aff_10R	GAAGGATTCGGAAGTGTTGGAGAAGGAACA				
D1aff_11F	CAACACTTCCGAATCCTTCNDTTTGRWTTGGHWTAGAVWGTCCCCAVNTNDTVW				
	WVYTNDTVNATTGGCTNHTTTCCCAGAAGATAGATCC				
D1aff_12R	GAGTGACTCTGAATCTAGCATCTKGAHNTGGTNBGGATCTATCTTCTGGGAAA				
D1aff_13F	AGATGCTAGATTCAGAGTCACTCAATTGCCAAAC				
D1aff_14R	GGACATGTGGAAATCTCTACCGTTTGGCAATTGAGTGACTCTGA				
D1aff_15F	CGGTAGAGATTTCCACATGTCCGTCGTCAGAGCTAGAAGAAACG				
D1aff_16R	GTAAGTACCGGAATCGTTTCTTCTAGCTCTGACGAC				
D1aff_17F	GAAACGATTCCGGTACTTACNWTTGTGGTGCTATTNCTNDTNHTSCTVNANYTCAA				
	ATTAAGVRWTCCTTGAGAGCTGAATTGAG				
D1aff_18R	GGATCCTCTTTCAGTGACTCTCAATTCAGCTCTCAAGGA				
D1aff_19F	ATTGAGAGTCACTGAAAGAGGATCCGAACAAAAGCTTATC				
D1aff_20R	CAAGTCTTCTTCGGAGATAAGCTTTTGTTCGGATCCTCTT				
D1aff_21F	AAAGCTTATCTCCGAAGAAGACTTGGGTGGTGGTGG				
D1aff_22R	CCACCAGATCCACCACCCAAGTC				

 Table S1. Primers used to create "First Generation" PD-1 library.

Primer	Sequence (5' to 3')				
1F_AffMat_G2	CATTTTCAATTAAGATGCAGTTACTTCGCTG				
2R_AffMat_G2	AATAACAGAAAATATTGAAAAACAGCGAAGTAACTGCATCTTAATTG				
3F_AffMat_G2	TTACTTCGCTGTTTTTCAATATTTTCTGTTATTGCTAGCGTTTTAGCAG				
4R_AffMat_G2	GTCTATCTGGGGAATCTGCTAAAACGCTAGCAATAACAGAAAAT				
5F_AffMat_G2	TTTTAGCAGATTCCCCAGATAGACCATGGAACCCACCAAC				
6R_AffMat_G2	CAACAAAGCTGGGGAGAAAGTTGGTGGGTTCCATGGTC				
7F_AffMat_G2	AACTTTCTCCCCAGCTTTGTTGGTCGTCACTGAAGGTGA				
8R_AffMat_G2	GAACAAGTGAAAGTAGCGTTATCACCTTCAGTGACGACCAA				
9F_AffMat_G2	GTGATAACGCTACTTTCACTTGTTCCTTCTCCAACACTTCC				
10R_AffMat_G2	GAAGGATTCGGAAGTGTTGGAGAAGGAACA				
11F_AffMat_G2	CCAACACTTCCGAATCCTTCVRTNTTNWTTGGYWTYDTSAWTCCCCATCCD RTCAAACTGATAMATTGGCTGCTTTCCCAGAAG				
12R_AffMat_G2	GACCTGGTTGGGATCTATCTTCTGGGAAAGCAGCCAAT				
13F_AffMat_G2	GAAGATAGATCCCAACCAGGTCMAGATGCTAGATTCAGARYTACTCAATTG CCAAACGGTAGAG				
14R_AffMat_G2	CTTCTAGCTCTGACGACGGASANGTGGAAATCTCTACCGTTTGGCAATTGA G				
15F_AffMat_G2	TCCGTCGTCAGAGCTAGAAGAAACGATTCCGGTACT				
16R_AffMat_G2	GCTCTCAAGGATTCCTTAATTTGAANCTTTGGAGCAWRGGAAATARYACCA CAAANAWRAGTACCGGAATCGTTTCTTCTAGC				
17F_AffMat_G2	TTCAAATTAAGGAATCCTTGAGAGCTGAATTGAGAGTCAC				
18R_AffMat_G2	GTTCGGATCCTCTTCAGTGACTCTCAATTCAGCTCTCAAG				
19F_AffMat_G2	GTCACTGAAAGAGGATCCGAACAAAAGCTTATCTCCGAAGAAGAC				
20R_AffMat_G2	CCACCAGATCCACCACCCAAGTCTTCTTCGGAGATAAGCTTTTG				

Table S2. Primers used to create "Second Generation" PD-1 library.

	Mean	95% CI of diff.	Significant?	Summary	Individual P
Day 14 comparison	Diff.				value
PBS vs. HACmb	507.6	320.1 to 695.2	Yes	****	< 0.0001
PBS vs. anti-PD-L1	69.97	-117.6 to 257.5	No	ns	0.4636
PBS vs. anti-CTLA4	480.7	293.2 to 668.3	Yes	****	< 0.0001
PBS vs. anti-					
CTLA4+HACmb	747.4	559.9 to 935.0	Yes	****	< 0.0001
PBS vs. anti-CTLA4+					
anti-PD-L1	510.4	322.8 to 697.9	Yes	****	< 0.0001
HACmb vs. anti-PD-					
L1	-437.7	-625.2 to -250.1	Yes	****	< 0.0001
HACmb vs. anti-					
CTLA4	-26.92	-214.5 to 160.6	No	ns	0.7779
HACmb vs. anti-					
CTLA4+HACmb	239.8	52.21 to 427.3	Yes	*	0.0124
HACmb vs. anti-					
CTLA4+ anti-PD-L1	2.740	-184.8 to 190.3	No	ns	0.9771
anti-PD-L1 vs. anti-					
CTLA4	410.8	223.2 to 598.3	Yes	****	< 0.0001
anti-PD-L1 vs. anti-					
CTLA4+HACmb	677.4	489.9 to 865.0	Yes	****	< 0.0001
anti-PD-L1 vs. anti-					
CTLA4+ anti-PD-L1	440.4	252.9 to 628.0	Yes	****	< 0.0001
anti-CTLA4vs. anti-					
CTLA4+HACmb	266.7	79.13 to 454.2	Yes	**	0.0055
anti-CTLA4vs. anti-					
CTLA4+ anti-PD-L1	29.66	-157.9 to 217.2	No	ns	0.7559
anti-CTLA4+HACmb					
vs. anti-CTLA4+ anti-					
PD-L1	-237.0	-424.6 to -49.47	Yes	*	0.0134

Table S3. Statistical analysis of large tumor study groups at treatment day 14.