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SI Table S1. Selected constants, values, and variables used for theoretical estimates 
Symbol Value Description Units 
a 7.8 Effective radius of depleting polymer  nm 
cs 0.075 Equivalent monovalent salt concentration of PEM50 nm-3 
dg

CTT 4.5 Grafting distance between C-terminal tails nm 
dg

Tau
 6.4 × 

ΦTau
-1/2 

Grafting distance between Tau as a function of ΦTau nm 

DPRR 1 Height of proline-rich region of Tau nm 
ε0 8.854 ×  

10-12 
Vacuum permittivity  m-3 kg-1 s4 

A2 

εR 80 Relative permittivity of solution at 298K  
f3RL,PD -0.118 Net ionization fraction, proj. domain of 3RL  
f3RM, PD -0.117 Net ionization fraction, proj. domain of 3RM  
f3RS, PD -0.082 Net ionization fraction, proj. domain of 3RS  
fCTT 0.5 Average net ionization fraction, C-terminal tail of tubulin  
fPRR 0.138 Net degree of  ionization, proline-rich region of Tau  
ΦTau  Tau to tubulin-dimer molar ratio  
κ 1/.85 Inverse of Debye-Hückel length for PEM50 nm-1 
kB 1.38 ×10-23 Boltzmann’s constant m2 kg s-2 K-1 

LCTT 3.7 Calculated length of tubulin C-terminal tail nm 
lB 0.7 Bjerrum length nm 
λD 0.85 Debye-Hückel length for PEM50 + 25 mM KCl nm 
N3RL,PD 153 Number of residues in proj. domain of 3RL  
N3RM,PD 124 Number of residues in proj. domain of 3RM  
N3RS,PD 92 Number of residues in proj. domain of 3RS  
NCTT 19.5 Average residues of tubulin C-terminal tail  
ν 0.588 Flory exponent for random coil of amino acids  
Q3RTau-PD 22.5  Net charge of 3R- Tau without the projection domain e 
Q4RTau-PD 26 Net charge of 4R- Tau without the projection domain e 
RMT 12.5 Microtubule outer radius nm 
rg  Radius of gyration nm 
r0 0.1927 Characteristic residue length for random coil of amino 

acids 
nm 

σMT -0.497 Surface charge density of tubulin dimer e nm-2 

σMT-CTT -0.387 Surface charge density of tubulin dimer without CTT e nm-2 

σMT-CTT,3RTau-PD -0.387+ 
0.253×ΦTau 

Surface charge density of tubulin dimer without CTT and 
bound Tau (without PD) (Only for 0≤ΦTau≤0.1) 

e nm-2 

T 298 Temperature K 
 
 
 
 
 
 
 



4 
 

SI Note S1| Theoretical estimates of inter-microtubule forces 
The basic forces between two microtubules (MT) in our system involve attractive depletion forces (due 
to 20,000 molecular weight polyethylene-oxide, or 20k PEO) and repulsive forces due the electrostatic 
and steric forces of MTs and Tau.  
 
S1.1 Depletion Forces on Cylinders by Ideal Polymers 
Depletion forces arise when large colloidal particles (in our case, microtubules [MTs]) are suspended in 
a dilute solution of osmotic depletants (20k PEO).  The depletants are preferentially excluded from the 
vicinity of the colloidal particles due to its inability to get closer than its effective radius, a (Figure S1.1). 
In the low-concentration limit (dilute regime), the monomers apply an ideal gas-like osmotic pressure 
∏osm=ckBT (where c is the number density of 20k PEO) owing to a reduction of excluded volume when 
excluded volumes overlap (1). 
 

 

Figure S1.1| An axial view of 
parallel cylinders bundled by 
depletion attraction. The 20k 
PEO (black circles) is barred 
from the excluded volume 
(dashed line) around the 
microtubules (blue circles). 
The overlap of these two 
excluded volumes results in an 
excess volume available for 
the 20k PEO, leading to an 
entropically induced attraction 
between microtubules 
(equivalently, the removal of 
20k PEO depletants results in 
an excess PEO density around 
the MTs, pushing them 
together).  
 

The depletion energy per unit length (at the dilute limit) takes the form (2): 
 
 ),,( aRHTAckV Bdepletion −=        (Equation S1.1) 

where A(H) is the overlap of the excluded area (cross section of overlap of the excluded volume) as a 
function of the distance H between the surface of two circular cylinders of radius R (for MTs, 
R=12.5nm), surrounded by monomers of radius a (for 20k PEO, the effective depletant radius for a 
polymer of radius of gyration, rg = 6.9 nm,  𝑎𝑎 = 2𝑟𝑟𝑔𝑔

√𝜋𝜋
 = 7.8 nm) (3, 4). By constructing two circles of 

radius R' and center-to-center distance d (Figure S1.2), the known formula (1) for circular segments is 
used to calculate the excluded area with the appropriate translation, R' → R + a and d → H + 2R 
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Figure S1.2| The overlap of two circles as a 
function of center-to-center distance. The 
lens shaped region is a sum of two circular 
segments. 
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 (Equation S1.2) 

 
Which is mathematically equivalent to results of previous work (5) 
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x , we get exact published results as before. 

Thus, the potential energy normalized (in the dilute regime) is:  
  
 ),,()( aRHTAckHV Bdepletion −=        (Equation S1.5) 
 
However, it is important to note that this is a simplified derivation; in treating PEO as an ideal gas 
(dilute regime), interactions between individual polymers (2nd and higher order virial-coefficients) are 
not taken into account. Experimental measurements are needed to obtain the osmotic pressure (П) of 
polymer-induced depletion forces. Thus, the depletion-attraction potential energy used in our modeling 
was:  

  

R'
 d

 

R'
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 ),,()( aRHAHVdepletion Π−=        (Equation S1.6) 
 
П is the measured depletant osmotic pressure ( lim

𝑐𝑐→0
П = 𝑐𝑐𝑘𝑘𝐵𝐵𝑇𝑇 ). Fortunately, measurements of the 

osmotic pressure for the dilute and semi-dilute regime of 20k PEO have been reported (6) (Figure S1.3 
and caption), allowing quick translation between wt% of 20k PEO and osmotic pressure values. 
  

 

 
Figure S1.3| The osmotic pressure measured for 
increasing wt% of 20k PEO. Experimentally derived data 
points (triangle markers) for the osmotic pressure (Pa) is 
used to obtain a best-fit line to extrapolate pressures for any 
given wt% of 20k PEO, where  

21.
10 %)(75.257.)( PEOwtLog ×+=Π  

 
S1.2 Electrostatic potential energy between two charged cylinders (hard cylinder model) 
To first order, the electrostatic repulsive forces between MTs can be modeled as the potential energy 
between two parallel, charged cylinders. This is calculated by applying the Derjaguin approximation (7) 
(which has its limits, but is used for simplicity) to relate the potential energy between planar surfaces to 
curved surfaces of radius R: 
 

 ( )
Hh

dhhVRHV
H

planecyl
−

= ∫
∞

)(        (Equation S1.7) 

 
Where Vplane(h) (energy per unit area) and Vcyl(H) (energy per unit length) are the potential energies for 
surface-to-surface distances for parallel planes and cylinders, respectively (Figure S1.4).  
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Figure S1.4| The Derjaguin 
approximation takes planar 
potential energies and converts 
them to equivalent potential 
energies for curved surfaces. In 
our particular case, the electrostatic 
planar potential for surface-to-
surface distance h is "bent" to an 
equivalent potential for two parallel 
cylindrical surfaces with surface-to-
surface distance H 
 

 
The potential energy per unit area between two charged surfaces (in the Debye-Hückel regime) with 
"hard" surface charge density σ in an electrolyte solution (of permittivity εrε0) is (1) 
 

 
0
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=         (Equation S1.8) 

 
Where κ is the inverse of the Debye-Hückel length, the characteristic decay length of electrostatic 
potential energy in an electrolyte solution of concentration cs. For monovalent salt concentration cs, the 
Debye-Hückel length is calculated (1) as [ ] 2/12

0 )2/(/1 sBrD ceTkεεκλ == . Inserting Equation S1.8 into 
Equation S1.7 yields the cylindrical potential energy per unit length for surface-to-surface distance H, as 
calculated by Ohshima and Hyono (8): 
 

 )(2)( 2/12/3
0

2
H

r

hard
cyl eLiRHV κ

κεε
σπ −=        (Equation S1.9) 

Where ∑
∞

=

=
1

2/1
2/1 /)(

k

k kzzLi , the polylogarithm function of order 1/2. The reduced potential energy per 

unit length rewritten for our system in terms of cylinder radius (microtubule radius, RMT≈12.5nm), 
Debye-Hückel length λD =.85nm for PEM50 (50 mM PIPES, 1mM MgCl2 and 1 mM EGTA at pH 6.8 
with 75 mM NaOH) with 25 mM KCl added (equivalent to a 100 mM solution of 1:1 electrolyte plus 1 
mM of MgCl2), surface charge density σMT, and salt concentration cs≈.075nm-3 (for a monovalent salt 
equivalent to PEM50 at pH 6.8 with 25 mM added KCl): 
 

 )(
)(

2/12

2/12
H

s

MTMT

B

hardMT
cyl eLi

ce

R
Tk

HV κκσπ −=      (Equation S1.10) 

 
The surface charge densityσ, absent a physical measurement, is usually calculated from the net charge of 
the sequence without accounting for partial neutralization by counterions. Measurements of microtubule 
electrophoretic movement in microchannels provide an estimate of the partial counterion neutralization 

(9). At pH 6.9, the bare-charge of the tubulin (Qbare) and bound nucleotides/ions was calculated to be -
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50e per dimer, but the effective charge (Qeff) was measured as -23e per dimer. Thus, we calculate the 
effective charge renormalization prefactor r = Qeff/Qbare = 0.46.  
 
In our experiments the bare charge of α-tubulin (NCBI protein database: NP_001159977.1) and β-
tubulin (NP_001040014.1) with bound nucleotides/ions was calculated to be -21.7e and -22.6e, 
respectively, at pH 6.8 (via http://protcalc.sourceforge.net/), giving a sum bare-charge of -44.3e per 
tubulin-dimer. As both experiments were in similar buffer conditions, we use the effective charge 
renormalization prefactor r to calculate the effective charge Qeff = r Qbare ≈ -20.4e per tubulin-dimer. As 
the dimer area ≈ 41 nm2 (product of dimer height, 8 nm, and protofilament-protofilament distance, 5.13 
nm) (10), this gives an effective renormalized suface charge density σMT= -0.497e nm-2.   
 
 
S1.3 MT bundling using the hard cylinder model 
Equation S1.6 and S1.10 are used to model the pairwise interaction of microtubules using depletion 
attraction and the hard cylinder model for microtubules.  
 
 )()()( HVHVHV hardMT

cyldepletionMT +=      (Equation S1.11) 
 
The sum of the potential energies (Equation S1.11) is plotted as a function of wt% of 20k PEO (Figure 
S1.5). If we consider the average length of microtubules (~2 µm, Figure S1.6) and expect the bundled 
state to correspond to a potential energy depth of 5 to 10 kBT, the model predicts bundling at a wt% of 
20k PEO as low as 0.15. As the nematic (non-bundled) phase is experimentally observed at a higher wt% 
of 20k PEO (0.25), the model does not capture the magnitude of repulsive forces.   
 

 

Figure S1.5| The energy per unit 
length curves against the wall-to-
wall distance using the simple 
charged-cylinder model for MTs. 
Curves derived from the model 
(equation S1.10) are plotted for  
actual PEO wt% used in experiments 
(solid lines) and in-between 
concentrations (dashed lines). Colors 
(from black to orange) are 
coordinated with data in fig. 3 
(ΦTau=0). If the bundled state 
corresponds to a potential energy 
depth of 5 to 10 kBT (the pink-striped 
zone) for 2 µm length MTs (see Fig. 
S1.6), the model predicts bundling 
would occur at .15 wt% of 20k PEO 
(and above) while experimentally 
bundling is seen between 0.25 and 
0.46 wt% of 20k PEO (orange curve). 
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Figure S1.6| The length 
distributions for taxol-stabilized 
microtubules. Near stoichiometric 
amounts of taxol to tubulin, the 
average length of microtubules is 
identified using electron microscopy 
and plotted after 1 min (hatched 
bars) and 30 mins (thick bars) (11). 
The average length is taken to be 2 
µm 
 

 
S1.4 Electrostatic potential energies between two soft, charged cylinders 
It is apparent that the modeling of microtubules as charged “hard” cylinders underestimates the repulsive 
component, thus requiring a more advanced model. From our knowledge of tubulin crystallography (10), 
MTs do not have a constant charge density. Most of the charge is located on the C-terminal tails (CTT) 
of both α- and β- tubulin (18 and 21 residues, respectively (12), both with an average ionization fraction 
fCTT≈0.5). As a result of this high-charge density, not only does it make MTs akin to a polyelectrolyte-
grafted colloids (Figure S1.7) but the charge must be renormalized (with prefactor r), as in S1.3 with the 
MT surface. Due to the intrinsically disordered nature of the CTT, the height of the CTT is not well 
defined but is estimated to be LCTT≈4 nm from simulation data (13), with an expanded conformation 
expected by theory (14).  
 

 

Figure S1.7| A close-up view of the 
microtubule surface reveals positively-
charged C-terminal tails of α- and β- 
tubulin. While microtubules can be 
approximated to be hollow cylinders made up 
of tubulin with constant charge density, a 
more appropriate model takes into account the 
charge found in the CTTs that project off the 
microtubule surface.   

  

A more sophisticated model for microtubules accounts for the polyelectrolyte layer above the 
microtubule surface, necessitating a shift from the hard cylinder model (with surface charge density,σ) 
to a soft cylinder (with volume charge density,ρ) model.  The potential energy per unit area for a soft 
planar charged surface is (8) 
 

 ( )
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CTTsoft
plane
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κρ       (Equation S1.12) 
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Where L is the height of the polyelectrolyte layer and h is the surface-to-surface distance, not including 
the polyelectrolyte layer. Utilizing the Derajaguin approximation (equation S1.7), the soft cylinder 
model is calculated by Ohshima (8):  
 

 ( ) )(sinh
2

)( 2/1
2

2/7
0

2
H

r

CTTsoft
cyl eLiL

R
HV κκ

κεε

ρπ −=   LH 2≥    (Equation S1.13) 

 
Where the volume charge density is the product of ionization fraction (fCTT≈1/2), average number of 
residues in the CTT (NCTT=19.5), and renormalization prefactor r, divided by the volume occupied by 
the CTT (simplified as the product of square of the CTT grafting distance [(dg

CTT)2 ≈21 nm2] and the 
height of the CTT [LCTT=4 nm]): 
 

Ld
erfN

g
2=ρ          (Equation S1.14) 

 
Equation S1.13 can be rewritten using the appropriate variables. To include the limit where LH 2< , the 
polyelectrolyte layer height is compressed to half the surface-to-surface distance, by geometry.  
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(Equation S1.15) 

 
S1.5 MT bundling using the soft cylinder model 
In our more advanced model (utilizing equation S1.15), contributing factors include the depletion 
attraction (from the 20k PEO, equation S1.5), "hard" electrostatic repulsion (from the remaining charge 
on the MT surface [where σTub-CTT=-0.387e nm-2], equation S1.9), and soft electrostatic repulsion from 
the tubulin CTT (equation S1.14) 
 
 )()()()( HVHVHVHV CTTsoft

cyl
MThard

cylDepletion
Total
MT ++=    (Equation S1.16) 

 
The system potential energies were also plotted over a range of low wt% of 20k PEO (Figure S1.8). The 
model captures the correct wt% of 20k PEO, which can be seen in a component breakdown of each 
potential energy contribution (Figure S1.9).  
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Figure S1.8| The energy per unit 
length curves against the wall-to-
wall distance utilizing the soft-
cylinder model. Curves derived 
from the model (equation S1.15) 
are plotted for actual PEO wt% 
used in experiments (solid lines) 
and in-between concentrations 
(dashed lines). Colors (from black 
to orange) are coordinated with 
data in fig. 3 (ΦTau=0). If the 
bundled state corresponds to a 
potential energy depth of 5 to 10 
kBT (the pink-striped zone) for 2 
µm length MTs (see Fig. S1.6), the 
model predicts bundling would 
occur at .46 and .35 wt% of 20k 
PEO, which is experimentally 
recapitulated (orange curve). 

 

 

 
Figure S1.9| Component 
breakdown of the potential energy 
per unit length for 0.46 wt% of 20k 
PEO. Note the dominant contribution 
of the soft-cylinder, owing to the short 
Debye-Hückel length which more 
effectively screens the hard-cylinder 
interactions. 
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SI Note S2| Treatment of Tau on Microtubules  
 
S2.1 Height of Tau protruding normal to the microtubule surface 
While treatment of the C-terminal tails of tubulin is relatively straightforward, models of Tau are more 
involved because of its polyampholytic nature. While it is known the microtubule-binding repeats are 
closely bound to the surface, less is known about the N- and C- terminal tails of Tau (NTT and CTT, 
respectively). Due to the relative size of the Tau NTT (196 residues for the shortest isoform) compared 
to the Tau CTT (73 residues) and the prior knowledge that the projection domain of the NTT is known 
to project off the MT surface (15), only the contributions of the Tau NTT is considered.  
 
The NTT consists of a highly-charged polyampholytic projection domain (PD, ~40% of residues 
charged) and a weakly-cationic proline-rich region (PRR, ~20% of residues charged).  Simulations (16, 
17) suggest that the PRR is weakly-bound to the highly-anionic MT surface and the PD assumes an 
extended conformation normal to the MT surface. The dramatic increase in pressure required to bundle 
microtubules for the –M and –L Tau isoforms (see Fig. 3, main paper) suggest that Tau underwent a 
conformational change on the MT surface at Φ=1/13 for the –L isoforms and Φ=1/10 for the –M 
isoforms. This occurs when the diameter of Tau protein on the MT surface approaches the distance 
between Tau proteins on MTs.  
 
Even though Tau is physisorbed on the MT surface, binding data (18) indicates that the concentration at 
which Tau is mixed with tubulin is the same concentration upon which Tau is bound to the MT surface 
(Up until Φ=1/5 to 1/3). Thus, we treat Tau as essentially grafted to the MT surface, where 
 
 𝑑𝑑𝑔𝑔𝑇𝑇𝑇𝑇𝑇𝑇 = 4.5

�Φ𝑇𝑇𝑇𝑇𝑇𝑇
2

2
 [nm]       (Equation S2.1) 

 
4.5 nm is the average tubulin monomer-monomer distance and the factor of 2 arises because Φ is a 
dimer ratio. The lowest Φ at which the transition is observed corresponds to a grafting distance of 20.3 
nm and 23.1 nm for –M and –L isoforms of Tau, respectively, which will be used as LPD, or the height of 
the projection domain. .  
 
The grafting distance (as a proxy for the polyelectrolyte brush height) is clearly an underestimate, as it is 
more appropriate for the height of Tau prior to the brush transition. However, it will serve as a useful 
estimate for our models.  
 
S2.2 Treatment of Tau Isoforms with Longer Projection Domains (3RM, 3RL) on microtubules (soft 
cylinder model) 
The 3RM isoform of Tau is also examined using the same system potential energy as before (Equation 
S1.16) with r = 1 (i.e. where charge renormalization is expected to be negligible because the 
combination of a low net ionization of the PD together with low Tau coverage leads to a low charge 
density polyelectrolyte layer surrounding the microtubule) and additional soft potential term for Tau 
with appropriate variable substitution (L3RM,PD=20.3nm, N3RM,PD=121, f3RM,PD=.120, and equation S2.1) 
(Figure S2.1).  
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Figure S2.1| The soft cylinder model did not capture the resultant increase in repulsion 
between microtubules coated with 3RM Tau. At osmotic pressures taken from selected 
experimental data points (top, dashed box), the normalized potential energy per unit length 
curves were plotted for Φ3RM=1/100, 1/20, 1/10 (bottom), with the color of each model curve 
corresponding to phase observed experimentally. The phase diagram (top) has been marked 
(pink-dashed line) at the pressure where bundling is expected, if bundling is assumed to occur at 
a potential energy depth of 7.5 kBT for 2 µm length MTs (see Fig. S1.6). The potential energy 
curves (bottom) also have a pink-striped zone, which corresponds to a potential energy depth of 
5 to 10 kBT. 

 
The soft cylinder model for the 3RM isoform of Tau does not capture the increase in repulsion, 
especially at Φ3RM=1/10, where phases that were experimentally observed to be in non-bundled phases 
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were, by our model, expected to be bundled. The model is similarly applied to the 3RL isoform of Tau, 
with appropriate substitution of variables (N3RL,PD=150, f3RL,PD=.120, L3RL,PD=23.1 nm) (Figure S2.2). 

 
Figure S2.2| The soft cylinder model did not capture the resultant increase in repulsion 
between microtubules coated with 3RL Tau. At osmotic pressures taken from selected 
experimental data points (dashed boxes, top), the normalized potential energy per unit length 
curves were plotted for Φ3RL=1/100, 1/20, 1/10 (bottom), with the color of each model curve 
corresponding to phase observed experimentally. The phase diagram (top) has been marked 
(pink-dashed line) at the pressure where bundling is expected, if bundling is assumed to occur at 
a potential energy depth of 7.5 kBT for 2 µm length MTs (see Fig. S1.6). The potential energy 
curves (bottom) also have a pink-striped zone, which corresponds to a potential energy depth of 
5 to 10 kBT. 
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Upon accounting for the Tau isoforms with the longer projection domains, there was not an appreciable 
increase in repulsion in the modeled MT-MT interactions. The soft cylinder model broke down for Tau 
and another model was required to recapitulate the increase in bundling pressure required to bundle MTs 
with higher coverage of the Tau isoforms with longer projection domains.  
 
S2.3 Treatment of Tau Isoforms with Longer Projection Domains (3RM, 3RL) on microtubules 
(charged brush model) 
The soft cylinder model for Tau is insufficient. Instead, we treat the PD as a brush (with appropriate 
modifications). While the theory was developed for polyelectrolytes (and not polyampholytes), a 
polyelectrolyte brush model is used to examine the scaling of the disjoining pressure.    
 
At high grafting density, interactions between polyelectrolytes on the same surface dominate and cause 
polyelectrolytes to stretch into a brush-like conformation (surface charge effects polyelectrolyte 
conformation, but the following model is chosen for its simplicity). Previously, Witten and Pincus (19) 
theorized that for a given polyelectrolyte solution (of counterion concentration c0), the osmotic pressure 
in the presence of salt (cs) is given by 
 

 










+
≅ 22

0

2
0

0
s

BTkcP
κκ

κ         (Equation S2.2) 

 
Where 0

2
0 4 clBπκ =  and ( )sBs cl 242 πκ =  is the inverse square of the Debye-length of counterions and 

added monovalent salt, respectively. In the limit of high salt ( 2
0

2 κκ >>s ) the pressure can be solved (20) 
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polymerization and Ld2 is the space in which the polymers occupy) and net ionization fraction f 
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The disjoining pressure, ∏Plane, as a function of the surface-to-surface distance h is then 
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The Derjaguin approximation is used as before (but instead, for force) to arrive at the equivalent 
disjoining pressure for two cylinders18 
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Equation S2.5 can be integrated to obtain the disjoining potential energy for the appropriate limits 
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This gives the reduced potential energy, with appropriate insertion of variables (and equation S2.1): 
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The system potential energy is modeled, as before, but the contribution from Tau utilizing the soft 
cylinder model (4th term) is replaced with a contribution from Tau utilizing the polyelectrolyte brush 
model (Equation S2.7) and the 2nd term is taken to include remaining anionic surface charge of the MT 
surface (without the tubulin CTT) and the positive contribution from the bound Tau (which excludes the 
PD, σMT-CTT,3RTau-NT=-(-0.387+0.253×ΦTau) e nm-2) 
 
 tauPDbrush

cyl
CTTsoft

cyl
tauMThard

cylDepletion
Brush

TauMT VVVVV ,,, +++=+    (Equation S2.8) 
 
Applying the charged brush model to the isoforms with the longer projection domains of Tau did 
recapitulate a jump in 20k PEO required to bundle the microtubules, especially at higher Tau coverages 
(Figure S2.3 and S2.4).  The brush model seemed to be a more appropriate (despite assumptions made!) 
for high coverages of the Tau isoforms with longer projection domains (3RM, 4RM, 3RL, 4RL).  
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Figure S2.3| The charged brush model for 3RM Tau at higher coverages of Tau is in closer 
agreement with experimental behavior. At osmotic pressures taken from selected experimental 
data points (top), the normalized potential energy per unit length curves were plotted for 
Φ3RM=1/20, 1/13, 1/10 (bottom), with the color of each model curve corresponding to phase 
observed experimentally. The phase diagram (top) has been marked (pink-dashed line) at the 
pressure where bundling is expected, if bundling is assumed to occur at a potential energy depth 
of 7.5 kBT for 2 µm length MTs (see Fig. S1.6). The potential energy curves (bottom) also have a 
pink-striped zone, which corresponds to a potential energy depth of 5 to 10 kBT. 
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Figure S2.4| The charged brush model for 3RL Tau at higher coverages of Tau is in closer 
agreement with experimental behavior. At osmotic pressures taken from selected experimental 
data points (top), the normalized potential energy per unit length curves were plotted for 
Φ3RL=1/20, 1/13, 1/10 (bottom), with the color of each model curve corresponding to phase 
observed experimentally. The phase diagram (top) has been marked (pink-dashed line) at the 
pressure where bundling is expected, if bundling is assumed to occur at a potential energy depth 
of 7.5 kBT for 2 µm length MTs (see Fig. S1.6). The potential energy curves (bottom) also have a 
pink-striped zone, which corresponds to a potential energy depth of 5 to 10 kBT. 
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SI Figure S1 

 
Increasing concentrations of Tau stabilize microtubule radii under increasing osmotic pressure. 
(a-f) The inner radii, a fit parameter, plotted as a function of increasing pressure for different reactions 
mixtures of (a) 3RS, (b) 3RM, (c) 3RL, (d) 4RS, (e) 4RM and (f) 4RL. For all isoforms, high molar 
concentrations of Tau led to stabilized inner radii (and thus, protofilament numbers) at pressures as high 
as 250,000 Pa. This behavior was not unique to any isoform, and was more a function of Tau molar 
concentration, indicating the effect that Tau MTBRs had on stabilizing the mechanical properties of 
MTs. The change in MT radius for lower coverages of Tau could possibly be due to either Tau falling 
off at higher osmotic pressures (leading to a concomitant decrease in MT radii (18)) or the stabilization 
of MTs with smaller radii at higher pressure.  
 
 
 SI Figure S2 – 1D X-ray scattering plots for Φ3RS=1/10 
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SI Figure S3 – 1D X-ray scattering plots for Φ3RS =1/13 

 
 

SI Figure S4 – 1D X-ray scattering plots for Φ3RS =1/20 

 
 
SI Figure S5 – 1D X-ray scattering plots for Φ3RS =1/40  
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SI Figure S6 – 1D X-ray scattering plots for Φ3RS =1/100  

 
 
SI Figure S7 – 1D X-ray scattering plots for Φ3RM =1/10 

 
 
SI Figure S8 – 1D X-ray scattering plots for Φ3RM=1/13 
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SI Figure S9 – 1D X-ray scattering plots for Φ3RM=1/20 

 
 
SI Figure S10 – 1D X-ray scattering plots for Φ3RM=1/40 

 
 
SI Figure S11 – 1D X-ray scattering plots for Φ3RM=1/100 
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SI Figure S12 – 1D X-ray scattering plots for Φ3RL=1/10 

 
 
SI Figure S13 – 1D X-ray scattering plots for Φ3RL=1/13 

 
 
SI Figure S14 – 1D X-ray scattering plots for Φ3RL=1/20 
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SI Figure S15 – 1D X-ray scattering plots for Φ3RL=1/40 

 
 
SI Figure S16 – 1D X-ray scattering plots for Φ3RL=1/100 

 
 
 
SI Figure S17 – 1D X-ray scattering plots for Φ4RS=1/10 
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SI Figure S18 – 1D X-ray scattering plots for Φ4RS=1/13 

 
 
SI Figure S19 – 1D X-ray scattering plots for Φ4RS=1/20 

 
 
 
SI Figure S20 – 1D X-ray scattering plots for Φ4RS=1/40 
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SI Figure S21 – 1D X-ray scattering plots for Φ4RS=1/100 

 
 
SI Figure S22 – 1D X-ray scattering plots for Φ4RM=1/10 

 
 
 
SI Figure S23 – 1D X-ray scattering plots for Φ4RM=1/13 
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SI Figure S24 – 1D X-ray scattering plots for Φ4RM=1/20 

 
 
SI Figure S25 – 1D X-ray scattering plots for Φ4RM=1/40 

 
 
 
SI Figure S26 – 1D X-ray scattering plots for Φ4RM=1/100 
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SI Figure S27 – 1D X-ray scattering plots for Φ4RL=1/10 

 
 
SI Figure S28 – 1D X-ray scattering plots for Φ4RL=1/13 

 
 
 
SI Figure S29 – 1D X-ray scattering plots for Φ4RL=1/20 
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SI Figure S30 – 1D X-ray scattering plots for Φ4RL=1/40 

 
 
SI Figure S31 – 1D X-ray scattering plots for Φ4RL=1/100 

 
 
 
SI Figure S32 – 1D X-ray scattering plot for no Tau 
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