Supplementary Information

Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1

Timothy HT Cheng¹, Deborah Thompson², Jodie Painter³, Tracy O'Mara³, Maggie Gorman¹, Lynn Martin¹, Claire Palles¹, Angela Jones¹, Daniel D. Buchanan^{4,5}, Aung Ko Win⁵, John Hopper⁵, Mark Jenkins⁵, Noralane M. Lindor⁶, Polly A. Newcomb⁷, Steve Gallinger⁸, David Conti⁹, Fred Schumacher⁹, Graham Casey⁹, Graham G Giles^{5,10,11}, Paul Pharoah^{2,12}, Julian Peto¹³, Angela Cox¹⁴, Anthony Swerdlow¹⁵, Fergus Couch^{16,17}, Julie M Cunningham¹⁶, Ellen L Goode¹⁷, Stacey J Winham¹⁷, Diether Lambrechts¹⁸, Peter Fasching^{19,20}, Barbara Burwinkel^{21,22}, Hermann Brenner^{22,23}, Hiltrud Brauch^{22,23}, Jenny Chang-Claude²³, Helga B. Salvesen²⁴, Vessela Kristensen²⁵, Hatef Darabi²⁶, Jingmei Li²⁶, Tao Liu²⁶, Annika Lindblom²⁶, Per Hall²⁷, Magdalena Echeverry de Polanco²⁸, Monica Sans²⁹, Angel Carracedo³⁰, Sergi Castellvi-Bel³¹, Augusto Rojas-Martinez³², Samuel Aguiar Jnr³³, Manuel R. Teixeira³⁴, Alison M Dunning¹², Joe Dennis², Geoffrey Otton³⁵, Tony Proietto³⁵, Elizabeth Holliday³⁶, John Attia³⁶, Katie Ashton³⁶, Rodney J Scott³⁶, Mark McEvoy³⁷, Sean C Dowdy³⁸, Brooke L Fridley³⁹, Henrica MJ Werner⁴⁰, Jone Trovik⁴⁰, Tormund S Njolstad⁴⁰, Emma Tham²⁶, Miriam Mints⁴¹, Ingo Runnebaum⁴², Peter Hillemanns⁴³, Thilo Dörk⁴⁴, Frederic Amant⁴⁵, Stefanie Schrauwen¹⁸, Alexander Hein²⁰, Matthias W Beckmann²⁰, Arif Ekici⁴⁶, Kamila Czene²⁷, Alfons Meindl⁴⁷, Manjeet K Bolla², Kyriaki Michailidou², Jonathan P Tyrer¹², Qin Wang², Shahana Ahmed¹², Catherine S Healey¹², Mitul Shah¹², Daniela Annibali⁴⁸, Jeroen Depreeuw⁴⁸, Australian Ovarian Cancer Study Group^{\$}, Nada A. Al-Tassan⁵⁰, Rebecca Harris⁵¹, Brian F. Meyer⁵⁰, Nicola Whiffin⁵², Fay | Hosking⁵², Ben Kinnersley⁵², Susan M. Farrington⁵³, Maria Timofeeva⁵³, Albert Tenesa⁵⁴, Harry Campbell⁵⁵, Robert W. Haile⁵⁶, Shirley Hodgson⁵⁷, Luis Carvajal-Carmona⁵⁸, Jeremy P. Cheadle⁵¹, Douglas Easton^{2,12}, Malcolm Dunlop⁵³, Richard Houlston⁵², Amanda Spurdle³, Ian Tomlinson^{1,59}

¹ Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK

² Centre for Cancer Genetic Epidemiology, Public Health and Primary Care, University of Cambridge, Cambridge CBI 8RN, UK

³ The Molecular Cancer Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia

⁴ Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Victoria, Australia

⁵ Centre for Epidemiology and Biostatistics, The University of Melbourne, Victoria, Australia

⁶ Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA

⁷ Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA

⁸ Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada

⁹ Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA

¹⁰ Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia

¹¹ Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia

¹² Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK

¹³ London School of Hygiene and Tropical Medicine, London, UK

¹⁴ Sheffield Cancer Research Centre, Department of Oncology, University of Sheffield, Sheffield, UK

¹⁵ Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK and 17 Division

of Breast Cancer Research, Institute of Cancer Research, London, UK

¹⁶ Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA

¹⁷ Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.

¹⁸ Department of Oncology, KU Leuven, Belgium

¹⁹ University of California at Los Angeles, Department of Medicine, Division of

Hematology/Oncology, David Geffen School of Medicine, Los Angeles, CA, USA

²⁰ Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

²¹ Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany

²² Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology Stuttgart, University of Tuebingen, Germany

²³ Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany

²⁴ Department of Clinical Science, Center for Cancer Biomarkers, University of Bergen, Norway

²⁵ Department of Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo,

Norway; The K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Oncology, Division of Medicine, Akershus University Hospital, Ahus, Norway

²⁶ Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

²⁷ Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

²⁸ Grupo de investigación Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima, Ibagué, Tolima, Colombia

²⁹ Departamento de Antropologia Biologica, Facultad de Humanidades, UDELAR, Magallanes 1577,
CP 11200, Montevideo, Uruguay

³⁰ Universidade de Santiago de Compostel,R/ San Francisco s/n 15782, Santiago de Compostela, Spain ³¹ Genetic Predisposition to Colorectal Cancer Group, Gastrointestinal & Pancreatic Oncology Team, IDIBAPS/CIBERehd/Hospital Clínic, Centre Esther Koplowitz (CEK), Rosselló 153 planta 4, 08036 Barcelona, Spain

³² Universidad Autónoma De Nuevo León, Pedro de Alba s/n, San Nicolás de Los Garza, Nuevo León, Mexico

³³ Hospital A.C. Camargo, São Paulo, Brazil

³⁴ Department of Genetics and IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal, and Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal

³⁵ School of Medicine and Public Health, University of Newcastle, NSW, Australia

³⁶ Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, Australia

³⁷ Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health,

University of Newcastle, NSW, Australia

³⁸ Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Mayo Clinic, Rochester, MN, USA

³⁹ Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA

⁴⁰ Centre for Cancer Biomarkers, Department of Clinical Science, The University of Bergen, Norway

⁴¹ Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden

⁴² Department of Gynaecology, Jena University Hospital - Friedrich Schiller University, Jena, Germany

⁴³ Hannover Medical School, Clinics of Gynaecology and Obstetrics, Hannover, Germany

⁴⁴ Hannover Medical School, Gynaecology Research Unit, Hannover, Germany

⁴⁵ Division of Gynaecological Oncology, University Hospital Leuven, Leuven, Belgium

⁴⁶ Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

⁴⁷ Department of Obstetrics and Gynecology, Division of Tumor Genetics, Technical University of Munich, Munich, Germany

⁴⁸ Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University

Hospitals, KU Leuven, University of Leuven, 3000, Belgium

⁴⁹ Vesalius Research Center, Leuven, 3000, Belgium

⁵⁰ Department of Genetics, King Faisal Specialist Hospital and Research Center, P.O.Box 3354,

Riyadh11211, Saudi Arabia

⁵¹ Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK ⁵² Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, UK

⁵³ Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh and MRC Human Genetics Unit, Western General Hospital Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK

⁵⁴ The Roslin Institute, University of Edinburgh, Easter Bush, Roslin, EH25 9RG, UK

⁵⁵ Centre for Population Health Sciences, University of Edinburgh, Edinburgh, EH8 9AG, UK

⁵⁶ Stanford Cancer Institute, Lorry Lokey Building/SIM 1, 265 Campus Drive, Ste G2103, Stanford, CA 94305-5456, USA.

⁵⁷ Department of Cancer Genetics, St. George's University of London, London SW17 0RE, UK

⁵⁸ Genome Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, USA

⁵⁹ Oxford NIHR Comprehensive Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.

\$ A list of participants and their affiliations appears in the Supplementary Information.

⁺ to whom correspondence should be addressed at Wellcome Trust Centre for Human Genetics, Roosevelt drive, Oxford OX3 7BN, United Kingdom. Email iant@well.ox.ac.uk

Consortium

The Australian Ovarian Cancer Study (AOCS) group.

Management Group: D Bowtell (Peter MacCallum Cancer Centre), G Chenevix-Trench, A Green, P Webb (QIMR), A deFazio (Westmead Institute for Cancer Research, WMI), D Gertig (Victorian Cervical Cytology Registry)

Project Managers: N Traficante, S Fereday, K Alsop (Peter MacCallum Cancer Centre), S Moore (QIMR), J Hung (Westmead Institute for Cancer Research, WMI)

Data Managers: S Fereday (Peter MacCallum Cancer Centre), K Harrap, T Sadkowsky, N Pandeya (QIMR)

Research Nurses and Assistants: ACT- M Malt; NSW- A Mellon, R Robertson (John Hunter Hospital), T Vanden Bergh, M Jones, P Mackenzie (Royal Hospital for Women), J Maidens (Royal North Shore Hospital), K Nattress (Royal Prince Alfred Hospital), YE Chiew, A Stenlake, H Sullivan, (Westmead Hospital); QLD- B Alexander, P Ashover, S Brown, T Corrish, L Green, L Jackman, K Ferguson, K Martin, A Martyn, B Ranieri (QIMR); SA- J White (Flinders Medical Centre, Royal Adelaide Hospital, Queen Elizabeth); TAS- V Jayde (Royal Hobart Hospital); VIC- L Bowes (Freemasons Hospital, Mercy Hospital for Women, Royal Women's Hospital); P Mamers (Monash Medical Centre); L Galletta, D Giles, J Hendley, K Alsop (Peter MacCallum Cancer Centre); WA- T Schmidt, H Shirley, C Ball, C Young, S Viduka, Hoa Tran, Sanela Bilic, Lydia Glavinas (WARTN), Julia Brooks (St John of God Hospital)

Clinical Collaborators: ACT- R Stuart-Harris (Canberra Hospital); NSW- F Kirsten (Bankstown); | Rutovitz (Hornsby); P Clingan, A Glasgow (Illawarra Area Health Services); A Proietto, S Braye, G Otton (John Hunter Hospital); J Shannon (Nepean Hospital); T Bonaventura, J Stewart (Newcastle Mater Misericordiae); S Begbie (Port Macquarie Base Hospital); M Friedlander (Prince of Wales Hospital); D Bell, S Baron-Hay, A Ferrier (dec.), G Gard, D Nevell, N Pavlakis, S Valmadre, B Young (until mid 2003) (Royal North Shore Hospital); C Camaris, R Crouch, L Edwards, N Hacker, D Marsden, G Robertson (Royal Hospital for Women); P Beale, | Beith, | Carter, C Dalrymple, R Houghton, P Russell, L Anderson (Royal Prince Alfred Hospital); M Links (St George Hospital); J Grygiel (St Vincent's Hospital); J Hill (Wagga Wagga Base Hospital); A Brand, K Byth, R Jaworski, P Harnett, R Sharma, G Wain (Westmead Hospital); QLD- B Ward, D Papadimos (Mater Misericordiae Hospitals); A Crandon, M Cummings, K Horwood. A Obermair, L Perrin, D Wyld (Royal Women's Hospital); | Nicklin (Royal Women's Hospital and Wesley Hospital); SA- M Davy, MK Oehler, C Hall, T Dodd, T Healy, K Pittman (Royal Adelaide Hospital, Burnside Memorial Hospital); D Henderson (Flinders Medical Centre); | Miller, | Pierdes (Queen Elizabeth Hospital); A Achan (ICPMR); TAS- P Blomfield, D Challis, R McIntosh, A Parker (Royal Hobart Hospital); VIC- B Brown, R Rome (Freemasons Hospital); D Allen, P Grant, S Hyde, R Laurie M Robbie, (Mercy

Hospital for Women), D Healy, T Jobling, T Manolitsas, J McNealage, P Rogers, B Susil, E Sumithran, I Simpson, (Monash Medical Centre); K Phillips, D Rischin, S Fox, D Johnson, P Waring, S Lade, M Loughrey, N O'Callaghan, W Murray, L Mileshkin, P Allan (Peter MacCallum Cancer Centre); V Billson, J Pyman, D Neesham, M Quinn, A Hamilton, O McNally (Royal Women's Hospital); C Underhill (Border Medical Oncology); Prof R Bell (Andrew Love Cancer Centre); LF Ng (Ballarat Base Hospital); R Blum (Bendigo Health Care Group); V Ganju (Peninsula Health); WA- I Hammond, Y Leung (School for Women's and Infants' Health, University of Western Australia and the Western Australian Gynaecologic Cancer Service); A McCartney (dec.), C Stewart (King Edward Memorial Hospital); M Buck (Mount Hospital) Scientific Collaborators: I Haviv (Peter MacCallum Cancer Centre); D Purdie, D Whiteman (QIMR);

N Zeps (WARTN)

Scientific Advisory Board: P Gurry, A Hamilton, S Hankinson, P Meltzer

SUPPLEMENTARY DATA

Supplementary Information. Primary data sources for the 29 previously-reported CRC and EC SNPs.

Broderick et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet. 2007;39:1315–1317.

Dunlop et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet. 2012 May 27;44(7):770-6.

Houlston et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet. 2008 Dec;40(12):1426-35.

Houlston et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet. 2010 Nov;42(11):973-7. Jia et al. Genome-wide association analyses in east Asians identify new susceptibility loci for colorectal cancer. Nature Genetics 45, 191–196 (2013)

Kinnersley et al. The TERT variant rs2736100 is associated with colorectal cancer risk. Br J Cancer. 2012 Sep 4;107(6):1001-8.

Peters et al. Identification of genetic susceptibility loci for colorectal tumors in a genome-wide metaanalysis. Gastroenterology. 2013 Apr;144(4):799-807.e24.

Peters et al. Meta-analysis of new genome-wide association studies of colorectal cancer risk. Hum Genet. 2012 Feb;131(2):217-34.

Rafnar et al. Sequence variants at the TERT-CLPTMIL locus associate with many cancer types. Nat Genet. 2009 Feb;41(2):221-7.

Setiawan et al. Two estrogen-related variants in CYPI9A1 and endometrial cancer risk: a pooled analysis in the Epidemiology of Endometrial Cancer Consortium. 2009 Jan;18(1):242-7.

Spurdle et al. Genome-wide association study identifies a common variant associated with risk of endometrial cancer. Nat Genet. 2011 May;43(5):451-4.

Tenesa et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet. 2008 May;40(5):631-7.

Tomlinson et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 2007 Aug;39(8):984-8.

Tomlinson et al. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet. 2008;40:623–630.

Tomlinson et al. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet. 2011 Jun;7(6):e1002105.

Whiffin et al. Identification of susceptibility loci for colorectal cancer in a genome-wide meta-analysis. Hum Mol Genet. 2014 Sep 1;23(17):4729-37.

Zhang et al. Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. Nature Genetics 46, 533–542 (2014)

SNP	Chr	Position 37	(build)	Nearby gene	Reference allele	Allele frequency	OR	L95	CI	U95	CI	p-value	1 ²	iCOGS EC samples
rs3184504	12	111	.884.608	SH2B3	С	0.520	1.10		1.06		1.13	8.23E-09		0.00 Yes
rs6051080	20	25	5,975,674	NANP	A	0.649	1.12		1.08		1.17	1.23E-07	(0.00 No
rs2052678	12	29	, 9,833,329	TMTC1	G	0.861	0.86		0.81		0.91	1.38E-07	(0.31 No
rs11085466	19	21	L,751,811	ZNF429	G	0.782	1.15		1.09		1.22	1.53E-07	(0.00 No
rs17503919	6	89	9,565,737	RNGTT	А	0.862	1.17		1.11		1.25	1.66E-07	(0.00 No
rs76225372	10	19	9,320,086	ARL5B	А	0.912	1.21		1.13		1.31	1.68E-07	(0.00 No
rs7740797	6	155	5,121,259	SCAF8	G	0.513	1.12		1.07		1.16	2.20E-07	(0.36 No
rs3181245	6	24	4,651,320	TDP2	С	0.514	1.12		1.07		1.16	2.23E-07	(0.45 No
rs4378954	3	115	5,650,448	LSAMP	С	0.898	1.15		1.09		1.21	4.05E-07	(0.10 Yes
rs10457678	6	139	9,122,240	ECT2L	А	0.773	1.10		1.06		1.14	4.12E-07	(0.00 Yes
rs17035310	4	106	6,064,754	TET2	С	0.876	1.13		1.08		1.18	6.10E-07	(0.00 Yes
rs9901225	17	4(),755,811	PSMC3IP	т	0.551	1.11		1.06		1.16	1.13E-06	(0.49 No
rs1512436	11	106	5,306,871	GUCY1A2	т	0.553	0.93		0.90		0.95	1.22E-06	(0.00 Yes
rs10217586	9	22	2,121,349	CDKN2B-AS1	т	0.539	0.93		0.90		0.96	1.83E-06	(0.74 Yes
rs12446552	16	11	L,720,066	LITAF	т	0.723	0.92		0.89		0.95	3.05E-06	(0.24 Yes
rs4853036	2	7(),059,824	GMCL1	G	0.736	0.92		0.89		0.95	6.43E-06	(0.00 Yes
rs4789378	17	74	1,930,366	MGAT5B	С	0.648	0.93		0.90		0.96	8.85E-06	(0.51 Yes
rs2200650	11	7	7,326,195	SYT9	G	0.635	1.08		1.04		1.11	1.19E-05	(0.00 Yes

Supplementary Table 1. Association statistics of SNPs previously undiscovered by GWAS with strongest evidence of effects on combined CRC and EC predisposition.

Supplement	ary Table 2. Functio	nal annotatio	n of the regio	on around rs3	184504.															
SNP	Position on chr 12 (build 37)	LD (r²) rs3184504	LD (D')	Referece allele	Allele Frequency (Europeans)	RefSeq genes	Location	GERP cons	SiPhy cons	Promoter histone marks	Enhancer histone marks	DNAse	Proteins	TCGA/Gtex eQTL	Motifs changed	RegulomeD B Score	Phast Cons	ENCODE RNA-seq RegTFBS- clustered	FunSeq ENCODE annotation	
rs10774624	111,833,788	0.81	0.92	G	0.53	10kb 5' of SH2B3	intergenic								Ets,Nr2f2					
rs7310615	111,865,049	0.93	0.98	с	0.53	SH2B3	intronic				GM12878, Huvec				ERalpha-a					
rs3184504	111,884,608	1	1	т	0.53	SH2B3	missense				Huvec, GM12878				HES1,Mtf1	За				
rs4766578	111,904,371	0.9	0.99	т	0.51	ATXN2	intronic				NHLF				ERalpha- a,GATA,GCNF,LRH1,F ORalpha1,RXRA,SF1	6				
rs10774625	111,910,219	0.9	0.98	A	0.52	ATXN2	intronic				K562				Cdx,Foxf1,Foxi1,Foxj 2,Foxl1,Foxo,Foxp1,F oxq1,Zfp105	5				
rs7137828	111,932,800	0.87	0.93	С	0.53	ATXN2	intronic								SP1	5				
rs597808	111,973,358	0.75	0.92	A	0.51	ATXN2	intronic								BCL,ERalpha- a,Ets,Irf,SP1,ZBRK1,Z nf143					
rs653178	112,007,756	0.78	0.89	с	0.53	ATXN2	intronic			8 organs	NHLF, GM12878, HSMM, HMEC, K562, Huvec, NHEK				Esr2	5			Enhancer(2)	
						20kb 3' of														
rs11065979	112,059,557	0.61	-0.83	С	0.44	BRAP	intergenic								Myf	5				
rs11065987	112 072 424	0.51	-0.78	Δ	0.42	7.5KD 3 OT BRAP	intergenic				K562	K562			Mrg1··Hoxa9	3a			DHS, Enhancer(2)	
1911003307	112,072,121	0.01	0.70		0.12	510 1	lincergenie				1002	1002			mgimoxas	50			Enhancer,	
rs11065991	112.083.162	0.5	-0.77	с	0.42	BRAP	intronic								Mvc	4			TFP(FOXA1, GATA3)	
	,,			-	=														0,	
	han based location dir	tanco from D-	frog gopor ID	Bhast core (EDD CiDby	+	+	ar All CNDs ····	th blank CERR		location that		l is regarded -	not hoing	lutionarily concorned/a	+		with blank		
P	astcons scores repres	ent SNPs that o	iseq genes, LD	within conserv	ed regions. Reg	ulomeDB score	e (http://regula	omedb.org/1 hz	ased on Known	and predicted	regulatory DN	score <2 and so A elements fro	m GFO, the FN	CODF project	and published literature	Tissue-specif	ic eOTL search	wich blank es were made		
us	ing Gtex. (http://www	.gtexportal.org	g/home/) and ⁻	TCGA data. Fur	Seq annotatio	n usinghttp://fu	unseq.gerstein	lab.org.					SEO, are En		published meruture					
	• • • • •							-				1				1	1			
I				I																

SNP	Chr	Position (build 37)	Nearby gene	Reference allele	Allele freq.	OR	L95 CI	U95 CI	p-value	1 ²	iCOGS EC samples included?
rs2270539	1	78,047,628	ZZZ3	Т	0.979	0.80	0.72	0.88	1.60E-05	0.00 Ye	5
rs34462569	2	166,552,918 (CSRNP3	G	0.934	1.22	1.12	1.33	3.75E-06	0.03 No	,
rs10510663	3	35,559,240	ARPP21	Т	0.948	0.86	0.80	0.92	2.28E-05	0.53 Ye	5
rs1735546	3	128,075,398	EEFSEC	Т	0.752	1.08	1.04	1.12	3.11E-05	0.29 Ye	5
rs1852266	7	48,340,033	ABCA13	С	0.741	0.92	0.89	0.96	2.27E-05	0.00 Ye	5
rs4727012	7	148,740,493	EZH2	С	0.891	1.18	1.10	1.26	9.64E-07	0.34 No	
rs112541862	9	97,483,158	FBP1	А	0.962	1.30	1.16	1.45	4.10E-06	0.03 No	,
rs77922938	9	111,060,196	KLF4	G	0.953	0.85	0.79	0.91	8.33E-06	0.00 Ye	5
rs606460	11	75,248,457	GDPD5	G	0.725	1.11	1.06	1.17	3.58E-06	0.29 No	1
rs11607499	11	81,811,229	PRCP	Т	0.954	1.27	1.15	1.40	1.75E-06	0.00 No	1
rs997275	11	110,454,876	ARHGAP20	А	0.578	1.07	1.04	1.11	2.36E-05	0.00 Ye	ŝ
rs12817211	12	50,579,398	LIMA1	С	0.767	1.12	1.07	1.18	2.76E-06	0.50 No	1
rs3117967	13	22,508,254	FGF9	G	0.896	0.89	0.85	0.94	1.33E-05	0.17 Ye	5
rs9592895	13	73,813,982	KLF5	т	0.655	1.08	1.04	1.11	1.42E-05	0.39 Ye	ŝ
rs1952157	14	34,289,438	NPAS3	С	0.690	1.08	1.05	1.12	6.26E-06	0.52 Ye	5
rs3001371	14	105,242,831	AKT1	С	0.691	0.93	0.90	0.96	1.29E-05	0.30 Ye	\$
rs11150038	16	78,076,559	CLEC3A	G	0.944	1.27	1.15	1.39	9.89E-07	0.00 No	1
rs76525880	17	46,614,250	HOXB1	А	0.929	1.16	1.09	1.24	6.68E-06	0.58 Ye	\$
rs12970291	18	73,011,336	TSHZ1	т	0.965	1.27	1.16	1.38	4.82E-08	0.00 Ye	5
rs4816890	21	24,420,502	NCAM2	Т	0.637	0.90	0.86	0.94	2.13E-06	0.24 No	1

Supplementary Table 3. Association statistics of SNPs previously undiscovered by CRC or EC GWAS with strongest evidence of effects in opposite directions on CRC and EC predisposition.

Supplementar	y Table 4. Fun	ctional annota	ation of t	he region :	around rs1297	0291.														
SNP	Position on chr 18 (build 37)	LD (r²) rs12970291	LD (D')	Referece allele	Allele Frequency (Europeans)	RefSeq genes	Location	GERP cons	SiPhy cons	Promoter histone marks	Enhancer histone marks	DNAse	Proteins	TCGA/ Gtex eQTL	Motifs changed	RegulomeD B Score	Phast Cons	ENCODE RNA-seq RegTFBS- clustered	FunSeq ENCODE annotation	
rs12969532	72,984,262	0.52	0.74	с	0.03	TSHZ1	intronic								Arnt,BHLHE40,GR	5				
rs71359079	72,984,455	0.5	0.71	с	0.03	TSHZ1	intronic								6 altered motifs	6				
rs12965321	72,986,176	0.59	0.83	G	0.02	TSHZ1	intronic								Hand1,Nanog,Sox,Zb tb12	5	Score 452; lod 38			
rs34981053	72,989,467	0.59	0.83	т	0.02	TSHZ1	intronic				Huvec, HSMM	35 cell types			HNF4,NRSF,SP1	5			DHS, TFP(ZNF263)	
rs28420499	72,989,742	0.5	0.71	G	0.03	TSHZ1	intronic				Huvec, HSMM	5 cell types			7 altered motifs	5			DHS, TFP(ZNF263)	
rs77026922	72,991,038	0.68	0.85	т	0.03	TSHZ1	intronic					7 cell types			13 altered motifs	5			DHS	
rs56280961	72,991,193	0.4	0.78	с	0.02	TSHZ1	intronic					Medullo			Pax-5,Pax-6	5		7NF263	DHS DHS_TEP(7NE263)	
rs34551261	72,991,577	0.68	0.85	G	0.03	TSHZ1	intronic					6 cell types	ZNF263		8 altered motifs	4			,	
rs36046989	72,996,430	0.73	0.85	с	0.03	TSHZ1	intronic					ProgFib			Foxa,Hsf,LXR,RXRA	4				
	72 000 000					701174						HMEC,GM12891,GM19			a					
rs33930274	72,998,899	0.77	0.9	-	0.03	1.7kb 3' of	missense					239,Medulio			POUZTZ	5			DHS	
rs34242916	73,003,598	0.73	0.85	-	0.03	1.8kb 3' of	intergenic				HepG2	HepG2			NRSF	5			DHS	
rs34704942	73,003,694	0.73	0.85	c	0.03	6.5kb 3' of	intergenic					LNCaP, Th1, ProgFib, IPS			5 altered motifs	5				
rs12969489	73,008,360	0.81	0.95	с -	0.03	9.4kb 3' of	intergenic								5 altered motifs					
rs9946654	73,011,336	0.81	0.95		0.03	1SHZ1 11kb 3' of	intergenic								BRCA1,Foxp1,Nkx2				DHS	
rs36104458	73,012,489	0.81	0.95	A	0.03	1SHZ1 11kb 3' of	intergenic					cu			Gfi1	5			-	
rs12962160	73,013,181	0.57	0.95	A	0.03	12kb 3' of	Intergenic					The shi			HNF1,PLZF				DHS	
rs34227877	/3,013,811	0.57	0.93	A	0.02	15H21	intergenic					FIDFODI			BCI NF-	5			DHS	
rs17056795	73,016,067	0.69	1	G	0.04	TSHZ1 15kb 3' of	intergenic					Fibrobl			kappaB,ZBTB33	5				
rs12970291	73,017,234	1	1	G	0.03	TSHZ1	intergenic								9 altered motifs	5				
rs12968532	73,020,946	1	1	с	0.03	19kb 3' of TSHZ1	intergenic								Hoxd10,LRH1,Mef2,P ax-1					
rs35969565	73,022,413	1	1	с	0.03	21kb 3' of TSHZ1	intergenic								GLI					
rs12959779	73,023,486	1	1	G	0.03	22kb 3' of TSHZ1	intergenic					Medullo,Osteobl			9 altered motifs	5			DHS	
rs12965434	73,024,810	1	1	G	0.03	Z3kb 3' of TSHZ1	intergenic													
rs12961817	73 024 904	1	1	c	0.03	23kb 3' of TSH71	intergenic					Melano			EWSR1- FULLEts GATA TATA	5			DHS	
rs78784067	73.025.962	0.91	1	c	0.03	24kb 3' of TSHZ1	intergenic								Hmx.Sox	5				
rs2581665	73,030,498	1	-1	с	0.97	29kb 3' of TSHZ1	intergenic								BCL,NRSF,SP1	5				
rs12955930	73.030.682	1	1	с	0.03	29kb 3' of TSHZ1	intergenic								HDAC2.Pax-6.Pax-8	5				
rs35185115	73,032,159	1	1	A	0.03	30kb 3' of TSHZ1	intergenic					Panislets			Foxp3,Mef2	5			TFP(PAX5)	
rs34521731	73,032,447	0.91	1	тс	0.03	31kb 3' of TSHZ1	intergenic					Th1,FibroP,Medullo			11 altered motifs					
rs12969979	73,032,676	1	1	G	0.03	31kb 3' of TSHZ1	intergenic					LNCaP			YY1	5				
				_		31kb 3' of									Nrf-					
1512966313	72 022 200	1	1	د ۸	0.03	31kb 3' of	intergenic					INCaB Eibrobi Outor: 11			2, rc+11::Mato,ZID	26	Score 358;		DHS	
rc12050950	72 024 222	1	1	6	0.02	32kb 3' of	intergenic					Eibroß Banlslots			CACD ERE Inf	20	10d 38			
1512959858	73,034,322	1	1	c	0.03	36kb 3' of	intergenic					ribror,ranisiets			7 altered motifs	5				
rs12963413	73,039,236	1	1	c	0.03	37kb 3' of	intergenic								7 altered motifs	6				
rc4452502	73,033,230	0.95	1	т	0.03	39kb 3' of	intergenic								Pad21 7pf142 p200					
rs34468146	73.047.740	0.95	1	т	0.03	46kb 3' of TSH71	intergenic					Osteobl			Gm397.M#1				DHS, TFP(SRF)	
rs71359085	73.048.187	0.95	1	G	0.03	46kb 3' of TSH71	intergenic					Medullo			5 altered motifs				DHS	
rs34240979	73.052.310	0.95	1	c	0.03	50kb 3' of TSHZ1	intergenic								12 altered motifs	5				
rs12953745	73.053.195	0.66	1	c	0.02	51kb 3' of TSHZ1	intergenic					Th1.Medullo			Irf.SIX5				DHS	
rs71359086	73,053.690	0.95	1	с	0.03	52kb 3' of TSHZ1	intergenic					,			5 altered motifs	5				
rs12956810	73,058.905	0.95	1	с	0.03	57kb 3' of TSHZ1	intergenic					H1-hESC			RXRA	5				
	Annotation a	s in Supp. Tabl	le 2.		<u> </u>		active													
1	ι		-	-	/	1	i	1				1	1		i	l i	1	l		

				Endometi	rial Cancer			
		P<1x10 ⁻³	P≥1x10 ⁻³	P<1x10 ⁻²	P≥1x10 ⁻²	P<0.05	P≥0.05	
	P<1x10 ⁻³	1	435	8	428	38	398	
<u>ر</u>	P≥1x10 ⁻³	420	246040	3361	243099	14957	231503	
Cance		P=0.	766	P=0.3	397	P=0.0	0208	
	P<1x10 ⁻²	7	3346	50	3319	224	3129	
ctal	P≥1x10 ⁻²	414	243129	3303	240224	14771	228772	
ore		P=0.	589	P=0.5	524	P=0.).138	
Solo	P<0.05 24		14448	193	14279	913	13559	
Ū	P≥0.05	397	232027	3176	229248	14082	218342	
		P=0.	888	P=0.5	524	P=0.	.222	

Supplementary Table 5. Tests for excess sharing of potential predisposition SNPs by CRC and EC cases at various statistical thresholds

 $^{*}\chi2$ tests in genome-wide enrichment using 246,896 SNP with r2<0.1 No SNPs had p-values of less than 10 $^{-4}$ for both CRC and EC

Regional association plots of TSHZ1 region using **A** CRC and EC GWAS **B** CRC GWAS **C** EC GWAS. rs12970291 ($P_{CRC/ECmeta}$ =4.82×10⁻⁸, top SNP typed in iCOGS for CRC and ERC analysis), rs35185115 ($P_{CRC/ECmeta}$ =1.08×10⁻⁶, top SNP typed or well-imputed in EC and CRC GWAS), rs71359086 (P_{CRC} =2.24×10⁻⁴, top SNP in CRC GWAS), rs36104458 (P_{EC} =4.35×10⁻⁵, top SNP in EC GWAS) all lie between 10.5 - 51.8kb downstream of TSHZ1, and are in perfect LD (r^2 =1). The similarity of these three plots suggests that there may be a single causal variant downstream of TSHZ1 present in EC and CRC acting in opposite directions. An additional peak, rs17263435 (P=4.35×10⁻⁵) is observed in the EC GWAS, but is not significant in CRC (P=0.10). rs17263435 is not typed on iCOGS and has a CRC and EC meta-analysis p-value of 2.21×10⁻⁴.

Supplementary Figure 2. LD and haplotype structure at TERT-CLPTMIL locus

Plots were produced using HaploView for NSECG samples, showing pairwise LD (r²) with standard colouring, left, and predicted haplotypes, right. SNPs were selected on the basis of reported associations from the literature with EC and/or CRC risk, albeit not a genome-wide levels of significance. rs2736100 was associated with CRC (Kinnersley, 2012). rs401681(Rafnar, 2009) and rs2853668 (Peters, 2009) have also been shown to be associated with CRC in previous studies of smaller scale. rs7705526, rs13174814 and rs62329728 have been recently associated with EC (Carvajal-Carmona 2014).