Supplementary Information

Absence of *Elovl6* attenuates steatohepatitis but promotes gallstone formation in a lithogenic diet-fed *Ldlr^{-/-}* mouse model

Motoko Kuba, Takashi Matsuzaka, Rie Matsumori, Ryo Saito, Naoko Kaga, Hikari Taka, Kei Ikehata, Naduki Okada, Takuya Kikuchi, Hiroshi Ohno, Song-iee Han, Yoshinori Takeuchi, Kazuto Kobayashi, Hitoshi Iwasaki, Shigeru Yatoh, Hiroaki Suzuki, Hirohito Sone, Naoya Yahagi, Yoji Arakawa, Tsutomu Fujimura, Yoshimi Nakagawa,

Nobuhiro Yamada, and Hitoshi Shimano

Supplementary Table S1

Composition	%	
Cacao butter	7.500	
Cholesterol	1.250	
Cholate	0.500	
Milk casein	7.500	
Cellulose	1.250	
Vitamin mix	1.000	
Mineral mix	1.000	
Sucrose	1.625	
Glucose	1.625	
Dextran	1.625	
Choline chloride	0.125	
Lard	3.000	
CRF-1	72.000	
Total	100.000	

The Composition of the Lithogenic Diet (LD)

Supplementary Table S2

Gene	Forward primer	Reverse primer
name	(5' to 3')	(5' to 3')
Acat2	CCCGTGGTCATCGTCTCAG	GGACAGGGCACCATTGAAGG
Nr1h3	AGCAACAGTGTAACAGGCGCT	ACGATGGCCAGCTCAGTAAAGT
Ces3a	ACTGGGACCTCTTCGGTTCT	GGTGAATCTGCTGTTGCTCA
Ces3b	CACAGACCGCATGGTAAATG	TTGATGCTGGCATCTCTCAC
Nr1h4	CTCTGCTCACAGCGATCGTC	CACCGCCTCTCTGTCCTTGA
Nr5a2	ATACAAACTCCCGCTGATCG	AAGTCGCGTTCAACAACCTC
Nr0b2	CGATCCTCTTCAACCCAGATG	AGGGCTCCAAGACTTCACACA
Cyp7a1	GCTGAGAGCTTGAAGCACAAGA	TTGAGATGCCCAGAGGATCAC
Cyp8b1	CTAGGGCCTAAAGGTTCGAGT	GTAGCCGAATAAGCTCAGGAAG
Cyp27a1	CCAGGCACAGGAGAGTACG	GGGCAAGTGCAGCACATAG
Cyp7b1	AGCCGATTATCAGCGAAAGCC	GCATCCAAAGGTTTGCCTTGT
Slc10a1	AGGGGGACATGAACCTCAG	TCCGTCGTAGATTCCTTTGC
Slco1a1	ACTCCCATAATGCCCTTGG	TAATCGGGCCAACAATCTTC
Abcb11	CAATGTTCAGTTCCTCCGTTCA	TCTCTTTGGTGTTGTCCCCATA
Abcc1	GATGGCTCCGATCCACTCT	AGGTAGAAACAAGGCACCCA
Abcc2	TCCAGGACCAAGAGTTTGC	TCTGTGAGTGCAAGAGACAGGT
Abcc3	TGAAGACTGCACCGTACTGAC	AGAAACCCTTGGAATGCATC
Abcc4	AGCTTCAACGGTACTGGGATA	TCGTCGGGGGTCATACTTCTC
Slc51b	AGAGAAAGCTGCAGCCAATG	CCAGGACCAGGATGGAATAA
<i>Cd14</i>	GAAGCAGATCTGGGGGCAGTT	CGCAGGGCTCCGAATAGAAT
Cybb	TTGGGTCAGCACTGGCTCTG	TGGCGGTGTGCAGTGCTATC

Sequence information for the quantitative Real-time PCR analysis

Supplementary Figure Legends

Supplementary Figure S1. Bile and fecal lipid profiles of LD-fed $Ldlr^{-/-}$ mice lacking Elov16. (A) Bile total cholesterol (TC), total bile acid (TBA), and phospholipid (PL) levels (n = 3–8 per group) and (B) fecal TC and TBA levels (n = 7–10 per group) of $Elov16^{+/+}Ldlr^{-/-}$ and $Elov16^{-/-}Ldlr^{-/-}$ mice fed a SD or a LD for 4 weeks.

Supplementary Figure S2. Bile acid composition in (A) liver, (B) bile, and (C) plasma in $Elovl6^{+/+}Ldlr^{-/-}$ and $Elovl6^{-/-}Ldlr^{-/-}$ mice fed a SD or a LD for 4 weeks (n = 3–9 per group). individual BA species were examined by LC/MS. CA, cholic acid; GCA, glycocholic acid; DCA, deoxycholic acid; TDCA, taurodeoxycholic acid; TCA, taurocholic acid; CDCA, chenodeoxycholic acid; α MCA, alpha-muricholic acid; β MCA, beta-muricholic acid; ω MCA, omega-muricholic acid; UDCA, ursodeoxycholic acid; HDCA, hyodeoxycholic acid; TCDCA, taurochenodeoxycholic TUDCA, tauroursodeoxycholic acid; acid; THDCA, taurouhyodeoxycholic acid; T α MCA, tauro- α -muricolic acid; T β MCA, tauro- β -muricolic acid; TωMCA, tauro-ω-muricolic acid; LCA, lithocholic acid; TLCA, taurolithocholic acid; GDCA, glycodeoxycholic acid; GCDCA, glycochenodeoxycholic acid; GUDCA, glycoursodeoxycholic acid; GHDCA, glycouhyodeoxycholic acid. * P < 0.05, ** P < 0.01.

Supplementary Figure S3. Quantitative real-time PCR (qPCR) analysis of genes involved in bile acid homeostasis in the ileum. $Elovl6^{+/+}Ldlr^{-/-}$ and $Elovl6^{-/-}Ldlr^{-/-}$ mice were fed a SD or a LD for 4 weeks and sacrificed following 4 h of food deprivation (n = 4–7 per group). qPCR analysis of genes for (A) *Elovl6*, *Nr1h4*, *Slc10a2*, *Abcc2*, *Fabp6*, *Slc51b* and (B) *Fgf15*. * *P* < 0.05, ** *P* < 0.01.

Supplementary Figure S4. Proposed mechanism of Elovl6-mediated metabolic alteration in LD-induced liver injury and gallstone formation.

Supplementary Methods

Individual bile acid analysis by Liquid Chromatography/Mass Spectrometry

We determined individual bile salt compositions by liquid chromatography/mass spectrometry. BA standards were purchased from Sigma. For liver samples, approximately 100 mg of liver was homogenized in 2.5 volumes of H_2O . d4-CA (Internal standard: IS) and 400 μ l of ice-cold ethanol were added to 200 µl liver homogenate. Samples were vortexed, centrifuged, and the supernatants were evaporated before being reconstituted in a 200 µl of 50:50 solution of ethanol and water. For plasma samples, 450 µl of ice-cold EtOH was added to 50 µl plasma-spiked with IS, vortexed, and centrifuged. The supernatants were evaporated and reconstituted in a 100 μ l of 50:50 solution of ethanol and water. Bile samples were diluted 100- and 2000-fold with a 50:50 solution of ethanol and water, and IS was added. The LC system used was a HPLC (Gilson) equipped with an autoinjector. The HPLC was connected to a TSQ Quantum Ultra (Thermo Scientific). Individual BAs were eluted with gradient at a 0.2 ml/min flow rate for a mobile phase A (10 mM AcONH₄ in H₂O) and mobile phase B (10 mM AcONH₄ in a 23:17 solution of CH₃CN and ethanol). The samples were eluted with 80% mobile phase A and 20% mobile phase B for an initial 5 min after injection, and then with a linear gradient of mobile phase B of 20% to 75% over 55 min, which was held for 5 min. The injection volume of all samples was 5 µl. Quantitative analysis was performed in negative ionization mode using the selected reaction

monitoring transitions specific for each BA.