The Role of Charge Transfer State on the Reduced Langevin Recombination in Organic Solar Cells: A Theoretical Study

Yiming Liu¹, Karin Zojer^{2*}, Benny Lassen¹, Jakob Kjelstrup-Hansen¹, Horst-Günter

Rubahn¹, and Morten Madsen^{1*}

¹NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, DK-6400 Sønderborg, Denmark

²Institute of Solid State Physics, Graz University of Technology and NAWI Graz, Petersgasse 16, 8010 Graz, Austria

^{*} Corresponding authors: Dr. Karin Zojer, karin.zojer@tugraz.at; Assoc. Prof. Morten Madsen, madsen@mci.sdu.dk

S.1 The derivation of the Langevin reduction factor from Hilczer's continuum method

According to the theory of Hilczer¹, the Langevin reduction factor is given as:

$$\gamma = \frac{1}{1 - e^{-\frac{r_c}{R}} + \frac{Dr_c}{k_r R^3} e^{-\frac{r_c}{R}}}$$
(Eq. A1)

where the Onsager radius r_c is defined as $q^{2/4\pi\epsilon kT}$, R is the reaction radius, D is the sum of the diffusion coefficients of electrons and holes, and k_r is the rate with which a bound electron-hole pair ultimately recombines. In Ref. 1, R is assumed as 1 nm, and at room temperature $r_c \approx 14$ nm when $\epsilon = 4$, $D = 5.2 \times 10^{-6}$ cm²/s. Guided by the fitting results of the γ -T data of Deibel et al.², the temperature range of 180~300 K implies $\frac{Dr_c}{k_r R^3} e^{-\frac{r_c}{R}} \gg 1 \gg e^{-\frac{r_c}{R}}$. Hence, Eq. A1 can be rewritten as:

$$\gamma \approx \frac{k_r R^3}{Dr_c} e^{\frac{q^2}{4\pi\epsilon R}/kT}$$
 (Eq. A2)

When considering $\beta = 4\pi Dr_c$, $N_0 = 1/R^3$, $E'_b = \frac{q^2}{4\pi\epsilon R}$, and formally assigning $\tau_{CT} = 1/4\pi k_r$, the Eq. A2 formally resembles Eq. 11 with $\sigma_{CT} = 0$ V.

It is important to note at this point, that τ_{CT} is defined as the characteristic time with which CT states recombine to the ground state, rather than being the overall decay time (considering also a split of the bound electron-hole pair back into free carriers). Note further, that Hilczer and Tachiya assume that both the recombination rates as well as the diffusion coefficient are temperature-activated. Hence, the factor $\frac{D}{k_r R}$ is set to $Ae^{-\Delta E/kT}$, where ΔE is the activation energy difference between D and k_r . Joining the exponential terms yields:

$$\gamma \approx \frac{R^2}{r_c A} e^{(E'_b + \Delta E)/kT}$$
 (Eq. A3)

where r_c in the prefactor is a markedly less dependent on temperature than the exponential term.

Eq. A3 is now assuming a form corresponding to Eq. 11 in this work. Now we can associate $\tau_{CT} = Rr_c A/\beta$, indicating that τ_{CT} itself is negatively temperature dependent. The fitting the γ -T data of Ref. 1 gives ΔE =-0.239 eV for the data of Deibel et al..² The comparison between Eq. 11 and Eq. A3 implies that the binding energy $E'_b = \frac{q^2}{4\pi\epsilon R}$ overestimates the CT state binding energy E_b .

References

- (1) Hilczer, M.; Tachiya, M. Unified Theory of Geminate and Bulk Electron–Hole Recombination in Organic Solar Cells. *J. Phys. Chem. C* **2010**, *114*, 6808–6813.
- (2) Deibel, C.; Wagenpfahl, A.; Dyakonov, V. Origin of Reduced Polaron Recombination in Organic Semiconductor Devices. *Phys. Rev. B* 2009, *80*, 075203.