Supplemental Table S2

Ingenuity Canonical Pathways	-log(p-value)
EIF2 Signaling	28.70
Protein Ubiquitination Pathway	25.80
Regulation of eIF4 and p70S6K Signaling	17.20
tRNA Charging	13.20
mTOR Signaling	11.80
p70S6K Signaling	11.20
Actin Cytoskeleton Signaling	10.30
Purine Nucleotides De Novo Biosynthesis II	7.35
PI3K/AKT Signaling	7.27
Systemic Lupus Erythematosus Signaling	6.58
RAN Signaling	6.15
14-3-3-mediated Signaling	6.01
Cell Cycle: G2/M DNA Damage Checkpoint Regulation	6.00
Breast Cancer Regulation by Stathmin1	5.84
VEGF Signaling	5.82
Role of NFAT in Regulation of the Immune Response	5.77
Signaling by Rho Family GTPases	5.71
ILK Signaling	5.60
Fcy Receptor-mediated Phagocytosis in Macrophages and Monocytes	5.40
Glycolysis I	5.20
Clathrin-mediated Endocytosis Signaling	5.10
Tight Junction Signaling	5.00
Germ Cell-Sertoli Cell Junction Signaling	4.90
Gap Junction Signaling	4.90
Ephrin B Signaling	4.80
Huntington's Disease Signaling	4.79
B Cell Development	4.67
Integrin Signaling	4.66
CD28 Signaling in T Helper Cells	4.65
B Cell Receptor Signaling	4.49
DNA Double-Strand Break Repair by Non-Homologous End Joining	4.44
RhoA Signaling	4.35
Methionine Degradation I (to Homocysteine)	4.24
CTLA4 Signaling in Cytotoxic T Lymphocytes	4.23
PKC0 Signaling in T Lymphocytes	4.10
Protein Kinase A Signaling	4.06
FAK Signaling	3.98
fMLP Signaling in Neutrophils	3.95
PRPP Biosynthesis I	3.88
5-aminoimidazole Ribonucleotide Biosynthesis I	3.88
G Beta Gamma Signaling	3.87
Virus Entry via Endocytic Pathways	3.81
RhoGDI Signaling	3.74
ERK/MAPK Signaling	3.69
PI3K Signaling in B Lymphocytes	3.57
Calcium Signaling	3.54
Cell Cycle Control of Chromosomal Replication	3.50
Phospholipase C Signaling	3.50
α-Adrenergic Signaling	3.41
Antigen Presentation Pathway	3.34
Telomerase Signaling	3.27
Crosstalk between Dendritic Cells and Natural Killer Cells	3.26
Telomere Extension by Telomerase	3.18
Sertoli Cell-Sertoli Cell Junction Signaling	3.18
Aldosterone Signaling in Epithelial Cells	3.13
Regulation of Actin-based Motility by Rho	3.06
Mismatch Repair in Eukarvotes	3.03
FcγRIIB Signaling in B Lymphocytes	3.03

Supplemental Table S2. PU-H71 proteomics reveals teHsp90 chaperoned pathways. (A) The union of the proteins identified in OCI-Ly1 and OCI-Ly7 PU-

H71 proteomics assay were subjected to Ingenuity Pathway Analysis. Significantly represented pathways are listed here. BCR pathway is highlighted in orange.

Supplementary Table S3

Α

	Toxicity Day 13								
					Day 27				
Test	Control	Ibrutinib	PUH71	Combination	Control	Ibrutinib	PUH71	Combination	Reference
WBC	6.87±2.09	7.78±3.36	4.67±1.82	5.17±0.87	8.17±3.36	6.77±0.76	6.64±3.01	7.12±0.37	6.4±2.5 K/uL
RBC	11.00±0.54	10.49±0.64	10±0.62	9.47±0.42	11.32±0.14	11.46±0.45	9.57±0.48	9.60±0.11	8.53±0.5 M/uL
Hemoglobin	16.03±0.74	15.5±0.53	14.4±0.79	14.33±0.61	16.67±0.25	16.67±0.50	14.63±0.31	14.55±0.07	14.5±1.1 g/dL
Platelets	878±17.35	491.67±138.60	562±229.1	681±230.12	713.67±299.95	612±369.78	1156±692.60	1385±31.11	799-1300 K/uL
Hematocrit	57.8±3.75	54.17±4.40	48.6±3.72	44.83±3.18	56.83±1.98	57.60±2.17	48.83±2.80	48.80±0.42	32-54 %
Neutrophils	1±0.89	0.98±0.97	0.77±0.23	1.54±0.92	1.51±1.81	1.64±1.05	1.04±0.22	1.31±0.28	0-1.8 K/uL
Lymphocytes	5.28±2.04	6.33±2.65	3.71±1.87	3.32±157	6.29±4.47	4.51±1.08	5.08±2.40	5.33±0.64	2.5-10 K/uL
Monocytes	0.35±0.19	0.34±0.15	0.11±0.04	0.22±0.13	0.28±0.33	0.44±0.35	0.31±0.31	0.25±0.00	0-0.2 K/uL
Eosinophils	0.23±0.22	0.12±0.04	0.07±0.07	0.08±0.05	0.08±0.02	0.16±0.01	0.18±0.07	0.24±0.01	0-0.5 K/uL
Basophils	0.01±0.00	0.007±0.006	0.01±0.00	0.02±0.01	0.01±0.00	0.01±0.01	0.02±0.02	0.01±0.01	0-0.4 K/uL
Albumin	4.35±0.07	3.13±0.12	2.7±0.17	3.15±0.64	3.23±0.06	3.87±0.06	3.3±0.61	3.1±0.26	2.5-3.9 g/dL
Total Protein	7.3±0.00	5.53±0.15	4.73±0.45	5.55±0.919	5.6±0.1	6.5±0.00	5.57±0.72	5.43±0.38	4.1-6.4 g/dL
Globulin	3.0±0.07	2.4±0.1	2.03±0.47	2.4±0.28	2.37±0.06	2.63±0.06	2.27±0.12	2.33±0.12	1.3-2.8 g/dL
Total Bilirubin	0.9±0.14	0.27±0.12	0.23±0.06	0.7±0.28	0.27±0.12	0.83±0.05	0.63±0.15	0.43±0.15	0-0.3 mg/dL
Creatinine	0.30±0.07	0.26±0.06	0.16±0.02	0.2±0.07	0.27±0.06	0.26±0.02	0.24±0.02	0.23±0.03	0.1-0.6 mg/dL
Cholesterol	246.5±3.54	111.33±16.01	155.5±23.33	159.5±58.69	95.67±8.74	154±13	117±27	97.67±15.63	70-100 mg/dL

Supplemental Table S3. Ibrutinib and PU-H71 combination is non-toxic in mice. (A) Blood from mice tested for ibrutinib-PU-H71 toxicity as in Supplementary

Figure 2 was collected after 12 days of treatment (Toxicity) and in a second cohort after a 2 week washout period (Washout). Blood was analyzed for differential

blood cell count and chemistry panel.

Supplemental Table S4

Α

Antigen	Clone	Catalog Number	Company
CD79A	HM47		Santa Cruz Biotechnology
CD79B	SN8		Santa Cruz Biotechnology
CD79B	FL-229		Santa Cruz Biotechnology
LYN	44		Santa Cruz Biotechnology
SYK	4D10		Santa Cruz Biotechnology
BTK	D3H5		Cell Signaling Technology
PLCy2	Q-20		Santa Cruz Biotechnology
BLNK	2B11		Santa Cruz Biotechnology
HSP90		ab13495	Abcam
HSP90	H9010		StressMarq
β-Actin	AC-15		Sigma Aldrich
pSYK Y352		2701	Cell Signaling Technology
pBTK Y223		5082	Cell Signaling Technology
pPLCγ2 Y759		3874	Cell Signaling Technology
pLYN Y507		2731	Cell Signaling Technology
pLYN Y396		1645-1	Epitomics
AlexFluor 488 Mouse anti- SYK (pY348)	I120-722	560081	BD Biosciences
AlexaFLuor 488 Mouse IgG1 K		2317666	BD Biosciences
PE Mouse anti-BTK (pY223)	N35-86	562753	BD Biosciences
PE Mouse IgG1 K		551436	BD Biosciences
AlexaFluor 647 Mouse anti-PLCy2 Y759 AlexaFluor647	K86-689.37	558498	BD Biosciences
AlexaFluor 647 MouseIgG1 K		557783	BD Biosciences

Supplemental Table S4. Antibodies used for experiments

OCI-Ly7

Cycloheximide exposure (hours)

Cycloheximide exposure (hours)

Β

Supplemental Figure 1. HSP90 inhibition induces degradation of SYK and BTK. HBL-1 and OCI-Ly7 cells were exposed to cycloheximide (100 µg/mL) and/

or PU-H71 (1 µM) for the times indicated. Lysates were subjected immunoblotting for the indicated proteins. The relative abundance of each protein relative to t =

Oh was quantified by densitometry and is shown in the bar graph below. (B) Cells were exposed to PU-H71 (1 μM) for the times indicated. Lysates were subjected

to immunoblotting with the indicated antibodies

Supplemental Figure 2. HSP90 complexes in DLBCL and normal cells. (A) Lysates from CD19⁺ cells from peripheral blood and OCI-Ly1 cells were subjected

to immunoprecipitation with antibodies to IgG or HSP90 or chemical precipitation with PU-H71 (PU) or control chemical (CO) beads followed by immunoblotting

for the indicated proteins. The relative abundance of protein precipitated by PU-H71 beads relative to input was quantified by densitometry and is shown

numerically.

PU-H71(h) 0 1 2 4 0 1 2 4 0 1 2 4

pLYN Y396 (activating) pLYN Y507 (inhibitory) LYN

HBL-1TMD8OCI-Ly10

Chronic Active BCR Signaling

Supplemental Figure 3. PU-H71 induces loss of LYN activity in DLBCL cells. HBL-1, TMD8 and OCI-Ly10 cells were exposed PU-H71 (1 µM) for increasing

time as indicated. Lysates were subjected to immunoblotting with the indicated antibodies.

Β

PU-H71(h): 0 1 2 4 0 1 2 4 0 2 4 0 2 4

D RAMOS-BLUE

Supplemental Figure 4. Inhibition of teHsp90 induces broad attenuation of BCR signaling at multiple nodes. (A) IgM and filipin staining in HBL-1 and OCI-Ly10 cells exposed to vehicle or PU-H71 (1 μ M, 4h) were visualized by confocal microscopy (60X). Colocalization was quantified (Costes method) for at least 10 high power fields. Two independent experiments. Unpaired t-test. (B) Lysates of DLBCL cell lines exposed to vehicle or PU-H71 (1 μ M) were immunoblotted with the indicated antibodies. These immunoblots are the inputs for the immunoprecipitation experiments shown in Figure 4A. (C) OCI-Ly1 and OCI-Ly7 cells were treated with vehicle or PU-H71 (1 μ M, 2h) then incubated with a fluorescent calcium indicator (Fluo 4AM, 2 μ M, 30min). Calcium release was measured over time by flow cytometry before and after BCR stimulation (IgM+IgG 10 μ g/mL at 120sec). Three biological replicates, unpaired t-test. (D) Ramos-Blue cells were treated with vehicle, PU-H71 (1 μ M), IgM+IgG (10 μ g/mL) or PU-H71 and IgM+IgG (6h). NF κ B reporter activity was measured by colorimetric assay. Unpaired t-test.

Combination

Supplemental Figure 5. PU-H71 and BCR pathway inhibitors combine in GCB DLBCL cells. (A) OCI-Ly1, OCI-Ly7 and OCI-Ly3 cells were treated with a

dose curve of ibrutinib, PU-H71 or the combination. Cell viability was measured using a luminescent ATP method and normalized to vehicle-treated controls.

Dose-effect curves show mean ± SEM, 3 biological replicates. (B) OCI-Ly1 and OCI-Ly7 cells were treated with a dose curve of sotrastuarin, PU-H71 or the

combination. Cell viability was measured using a luminescent ATP method and normalized to vehicle-treated controls. Dose-effect curves show mean ± SEM, 3

biological replicates. (C) OCI-Ly1 and OCI-Ly7 cells were treated with a dose curve of R406 or BKM120, PU-H71 or the combination indicated. Cell viability was

measured using a luminescent ATP method and normalized to vehicle-treated controls. Synergy was assessed using Compusyn. Combination Index values < 0.9

are synergistic. Mean ± SEM, 3 biological replicates.

С

Α

Supplemental Figure 6. Ibrutinib and PU-H71 combination is non-toxic in mice. (A) C57 Black mice (n=6/group until day 13) were treated with vehicle,

ibrutinib (12.5 mg/kg/d ad libitum), PU-H71 (75 mg/kg/d i.p.) or the combination for 12 days. Animals were weighed every other day. Half of each group (n=3) was

sacrificed after treatment for microscopic analysis of organs and blood. The other half (n=3) continued untreated for two weeks to serve as a "washout" group and

were weighed every other day until sacrifice for organ and blood analysis.