Supplementary Information

POST-TRANSCRIPTIONAL REGULATION BY DISTAL SHINE-DALGARNO SEQUENCES IN THE GRPE-DNAK INTERGENIC REGION OF STREPTOCOCCUS MUTANS

Sara R. Palmer and Robert A. Burne*

Department of Oral Biology, University of Florida, College of Dentistry,

Gainesville, Florida 32610 USA

Running title: Control of molecular chaperone expression

*Corresponding Author: Department of Oral Biology University of Florida 1395 Center Drive P.O. Box 100424 Gainesville, FL 32610 Email: rburne@dental.ufl.edu

Strains	Source		
UA159	S. mutans clinical isolate		
SP50	pSP01-2 (Full length IGR66 pLDH and CAT		
SP51	pSP02-pLDH-CAT deletion of IGR		
SP52	pSP03 Δ5' loop (-244bp 5' end)		
SP53	pSP04 Δ5' loop (-214bp 5' end)		
SP54	pSP05 Δ81bp from 5' end		
SP55	pSP06 Δ48bp from 5' end		
SP56	pSP07 Δ5' loop (-301 bp from 5' end)		
SP57	pSP08 Δ3' loop (-229-350 bp from 3' end)		
SP58	pSP09 1-86 of 5' end intact (-86-350 bp from 3' end)		
SP59	pSP10 Partial deletion of 3' loop (-302-350bp of IGR 66)		
NC-RBS #1 & #2 G to C	NC-RBSs GAAGGAAUUAAGAAAGG to CACCAAATTAACAAACC	This stud	
NC-RBS #1 & #2 G to A	NC-RBSs GAAGGAAUUAAGAAAGG to AAAAAAUUAAAAAAA	This stud	
NC-RBS #1 G to A	NC-RBS #1 GAGG to AAAA		
NC-RBS #2 G to A	NC-RBS #2 GAAAGGA to AAAAAAA		
Δ 3'SL	Deletion of 3'SL bp 265-358 of <i>igr</i> 66	This stud	
Plasmids			
pGEMT	Cloning vector	Promeg	
pJL105	<i>S. mutans</i> integration vector <i>-phnA-mtlA</i> locus (Kan ^r , Spec ^r and Erm ^r)	Burne la	
pSP01	pJL105 with <i>Pldh-igr66-cat</i>	This stud	
pSP02	Q5-mutagenesis of pSP01 primers: SP31F-A and SP31R-B	This stud	
pSP03	Q5-mutagenesis of pSP01 primers: SP32F-E and SP31R-B	This stud	
pSP04	Q5-mutagenesis of pSP01 primers: SP34F-F and SP31R-B	This stud	
pSP05	Q5-mutagenesis of pSP01 primers: SP35F-G and SP31R-B	This stud	
pSP06	Q5-mutagenesis of pSP01 primers: SP37F-I and SP31R-B	This stud	
pSP07	Q5-mutagenesis of pSP01 primers: SP31F-A and SP38R-J	This stud	
pSP08	Q5-mutagenesis of pSP01 primers: SP35F-G and SP31R-B	This stud	
pSP09	Q5-mutagenesis of pSP01 primers: SP31F-A and SP36R-H	This stud	
pSP10	Q5-mutagenesis of pSP01 primers: SP31F-A and SP39R-K	This stud	

Table S2. Primers used in this study

Promoter IGR66 fusion to CAT				
SP27F	LDH promoter with BamHI site	AAA GGATCC TGTGACGGTAAGACCACCATT		
SP27R	LDH promoter (IGR66 overhang)	GGACAAATTGTTAAGTATATATTCTATACATTTTCATT		
SP28F	IGR66 with pLDH overhang	GAATATATACTTAACAATTTGTCCGAAACGACAGTAAA		
SP28R	IGR66 with CAT overhang	ATTAAAGTTCATAATAATGTTACCAAGAACGCCGAAA		
SP29F	CAT with IGR66 overhang	GGTAACATTATTATGAACTTTAATAAAATTGATTTAGACAA		
SP29R	CAT with Sph1 site	AAA GCATGC TTATAAAAGCCAGTCATTAGGCCTA		
IGR66 deletion constructs- Loop-out mutagenesis				
SP31F-A	SP51, SP57, SP58, SP59	CGGCGTTCTTGGTAACATTATT		
SP31R-B	SP51-SP56	AAGTATATATTCTATACATTTTCATT		
SP32R-D	SP57	TTTGCTATTTCCCTTAGTAGTG		
SP32F-E	SP52	GAGGAATTAAGAAAGGATTTGAA		
SP34F-F	SP53	GGGAAATAGCAAAAAAGAAAAATA		
SP35F-G	SP54	ACTACAGCGATATTTCCCGAT		
SP36R-H	SP58	GTAGTTTGCTTCGCTCACTGTA		
SP37F-I	SP55	GAGCTCAGCTTTGCCTACAGT		
SP38F-J	SP56	CTAGCACTTATTGAATGCGTCGT		
SP39R- K	SP59	GCGGTTTATCTATTTTCCGAAGT		
IGR66 NC-RBS mutation				
SP81F	NC-RBS G's to C's	ACAAACCATTTGAACCCGAACTAATAC		
SP81R	NC-RBS G's to C's	TAATTGGTGTTTAAATATTTTTCTTTTTGCTATTTCC		
SP86F	NC-RBS G's to A's	ΑΑΑΑΑΑΑΑΑΤΤΤGAACCCGAACTAATAC		
SP86R	NC-RBS G's to A's	ΑΑΤΤΤΤΤΤΤΤΤΑΑΑΤΑΤΤΤΤΤΤΩΤΤΤΤΤΤΩΟΤΑΤΤΤΩΟ		
SP101F	NC-RBS-1 G's to A's			
SP102R	NC-RBS-1 G's to A's			
SP103F	NC-RBS-2 G's to A's	ΑΔΑΤΤΤGΔΑCCCGAACTAATAC		
SP103R	NC-RBS-2 G's to A's	TTTTTTAATTCCTCTTTAAATATTTTTCTTTTTG		
SP83E-new	Λ3' SI	CTTGGTAACATTATTATGAACTTTAATAAAATTG		
SP83R	Δ3' SI	ΔΑΔΤΟΟΤΤΤΟΤΤΑΔΤΤΟΟΤΟΤΤΤΑΔΔΤΔΤΤΤΤΤΟ		
SP80F	888-910-bp in <i>hrcA</i>	GGGTTTGGAATTTTGACCGTAA		
SP80R	924-944-bp in <i>dnaK</i>	CGTGTTGAACCGCCGACTAA		
SP105F	NC-RBS-2 G's to A's MM	GAGGAATTAAAAAAAAATTTGAACCCGAA		
SP105R	NC-RBS-2 G's to A's MM	TTCGGGTTCAAATTTTTTTTTTTTTTTTTTTTTTTTTTT		
Real-time pri	imore			
RT-Cal-F	RT-FCR UI Cal			
RT-Gal				
RI-103 F				
RT-103 R	RT-FOR 103 RNA			
RT-Dilar F	RT-FCR IOI DIIdR			
		TGAACCGCCGACTAAGATAAC		
Probes for Northern Blot				
IGR66 FW0	IGR66-217 bp probe			
IGR66 Rev	IGR66-5' BIOTIN IADEI	5'BIOTIN-GI GUTAGGUGGTTTATUTATI		
Dnak Fwo	Drak for Northern probe			
	Dhak for Northern Biol Probe			
HrcA Fwd	HrcA for Northern probe	GIGATIACCCAGCGICAAAAGGAI		
HICA Rev	HICA for Northern probe	GUUAGTUAGATTUGUUAAAA		
anak_GSP1				
anak_GSP2				
dnak_GSP3		GUATUGTTAAAGTAAGUAGGAA		

Cultures were placed in 37°C water bath and aliquots were removed at indicated times. * Indicates100 µg/ml rifampicin was added

Figure S1. Northern blot analysis of *dnaK* operon transcripts at 37°C.

A) Ethidium bromide stained agarose gel with 5 μ g of total RNA loaded per lane. Northern analysis using a probe against (B) *hrcA*, (C) *igr66* or (D) *dnaK*. Samples were incubated at 37°C. Cells were collected at time 0, then at the 3' time point rifampicin was added to a final concentration of 100 μ g/ml. Aliquots were collected at the 3, 5, 7, 9 and 11 minute time points. RNA was prepared and Northern blots were performed as detailed in the methods section. The location of the 2.5 kb transcript recognized by the DnaK probe is indicated on the right of Panel D with an open arrow.

Figure S2. Agarose gel (1.3%) of 5'-RACE products using a *dnaK* gene-specific primer and RNA isolated from wild-type *S. mutans* UA159 grown at 37°C or heat shocked at 42°C for 3 minutes.

Figure S3. Sequence alignment of *grpE-dnaK intergenic* regions from genomically diverse *S. mutans* clinical isolates. Sequence alignment was made with the Geneious 8.0.5 program using the ClustalW algorithm. Sequence #1 is *S. mutans* UA159 and #2 through #11 correspond to selected isolates of *S. mutans* for which whole genome sequence is available (See Palmer *et al.* 2013 for details on isolates.)

Chromosomal integration of *cat* fusions into the mannitol PTS locus

Figure S4. Schematic diagram of the vector used to integrate reporter-gene fusions in single copy in the *S. mutans* **chromosome.** Gene fusion-constructs were inserted into the chromosome by double cross-over recombination,

replacing the mannitol PTS operon. See the methods section for more details.

cat mRNA expression

Figure S5. *cat* mRNA expression in various constructs. qRT-PCR results for *cat* gene mRNA expression in selected constructs, displayed as copies per μ g of total RNA. See Figure 4 for methodological details.

Perfect RBS 5'AAGGAGGUGA 3'

3 ' A<u>UUCCUCCACUAGGU</u>UGGCG 5 ' *E. coli* K-12 16S rRNA 3' terminus 3 ' UCU<u>UUCCUCCACUAGGU</u>CGGC 5 ' *S. mutans* UA159 16S rRNA 3' terminus

Figure S6. The 3' termini of the 16S rRNA of *E. coli* and *S. mutans*. The sequence of a canonical Shine-Dalgarno (SD) sequence is on top. The sequences of the 3' termini of the 16S rRNAs from *E. coli* and *S. mutans*; the regions that are predicted to base pair with SD sequences in the mRNA are underlined.

Figure S7. Predicted secondary structure of *igr66* **point mutants.** Secondary structures were predicted using the latest version of the mfold Web Server (<u>http://mfold.rna.albany.edu</u>). The predicted secondary structures shown are those that result from mutating the guanines in the NC-RBSs to adenines (Panel A) or cytosines (Panel B).

cat mRNA expression-normalized to 16S rRNA

Figure S9. Location of point mutations in the NC-RBS#2 markerless mutant, and the resulting predicted secondary structure. A red box indicates the location of point mutations in NC-RBS #2. The location of additional mutations is also indicated, see text for details. The *dnaK* gene is shown as a red arrow. The construct was found to contain a silent point mutation at position 57 in the *dnaK* structural gene.

Distribution of 90 Blast Hits on the Query Sequence

Figure S10. Blastn results using *igr*66 against Oral Microbial Genomes

annotated at the Human Oral Microbiome Database (www.homd.org). (A)

Multi-sequence alignment with areas of significant similarity indicated by a lines

of the top 32 sequence hits. (B) The top 20 best hits with corresponding Blast

scores and E-values. The HOMD database used contains 46,296 sequences;

1,195,875,138 total letters.

Α

CLUSTAL 2.1 multiple sequence alignment

Figure S11. ClustalW (Version 2.1) of *grpE-dnaK* intergenic regions from streptococci that share the highest degree of conservation with *S. mutans* **UA159** *igr66*. Bold sequences indicate the location of predicted secondary structures (See Figure 4). The box indicates the location of highly conserved sequences in the predicted 5'-SL of *igr66* from *S. mutans*.

Figure S12. Predicted secondary structures of the *grpE-dnaK* intergenic regions from selected streptococci. Predicted structures were determined using the latest version of the mfold Web Server (http://mfold.rna.albany.edu). Predicted secondary structures of the *grpE-dnaK* intergenic regions from: *S. mutans* (A), *S. mitis* (B), *S. anginosus* (C), and *S. oralis* (D). The location of a strong RBS, weak RBS, and/or NC-RBS is indicated for each predicted structure in black boxes. The location of a processing site in *S. mutans igr66* that was identified using 5'RACE is highlighted with a red box. See text for additional details.