Supporting Information and Appendices

Appendix A: Sensitivity of the stochastic growth rate

The stochastic growth rate of the perturbed population, a(s), can be calculated from the
products of the perturbed matrices X, where at time ¢: X;(t) = X*(t) + sH;(t). Given

M independent sample paths of T time steps each, for any sample path j:

A(T) = Vi X5(T)X5(T = 1) ... X;(1)U;(0)

]’
log A;(T

Now if we expand in the above product in orders of s, O(s),we have:

Aj(s) = A;(0) + sVT <ZX i)X;(i—1).. X](1)> U;(0) + O(s?)
Therefore,
L groloflog ( (0)+5VT( ) (ZX]-(T)...Hj(i)Xj(i—1)...Xj(l)> U(0)+O(52))

Retaining only terms O(s):

a(s) =log(A, + dA) = log A, + i—A

This leads to, for any sample path:

(VI(T) Z L X(T)X(T—-1).. H(z’)X(i —-1)...X(1)U(0)
log As) =log Ao+ s im 7 ( VI X(TX(T —1)... X(0) 0) )
)
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For sample path 7, at time ¢, define:

Vi) H;(H)U;(t — 1)

&t = N (Vi (8)TU;(t)

The mean of these for that sample path is:

T—oo 1’

T T B
— i L Z j U(t 1)

and the mean of these quantities across all runs is:
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Appendix B: Sensitivity of the variance in long run
population growth

We take the variance of the stochastic growth of our reference population to be:

M
1
oy Z log A;(T) — Ta)? (12)

After a small perturbation, s, the value of v(s) will be changed by some small value v
where v(s) = v(0) + sdv + O(s?) . We wish to estimate the change dv. For simplicity,
hereafter take log A; to indicate log A;(T), and retain only terms of O(s).
After perturbation, the new values of log A; will be:
log Aj(s) =log A;(0) + sT¢;
a(s) =a(0) + s&

s oL
+M;fj
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and

Then we can approximate the variance of the perturbed population as:

o(s) =7 S (log Ay(T)(s) — Ta(s))?

:% <<Z(10g Aj(t) +Sz;§j(t))> — T (a(0) +3§))

:ﬁ Z (log A;(0) + T's&;) — T(a(0) + Tsﬁ))2

T « 3 2
- Z ((a;(0) — a(0)) + s(&; — &)

1 2 c._ ¢ 2
M & (a;(0) — a(0))* +2(a;(0) — a(0)s(&; — &) + O(s”)
=v(0) + 2_]\2 > (a;(0) = a(0)(&; — &) + O(s*)

(a; —a)(& =€) (13)

Appendix C. Probability of quasiextinction and its
sensitivity

We define a population to be quasi-extinct if it falls to 1 percent of its current size. Call

this quasi-extinction threshold #. Then the probability of quasi-extinction will be (after
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Caswell 2001):

1 ifa<0
P =

q 2alogf .
T ifa>0

By taking the log and applying the chain rule to the above, we get the sensitivity of

the log extinction probability when a > 0 :

log P, =2log 0 + a
v

g S, a
10 P, = - — v
gy 2
Since we are interested in Sp, we write:
Spq S Sa a S
— =PlogP, = — — 5
P, Ty 2
and rearrange to get:
S a
Sp, = P,(— — —=S,)
e oy 02

When dealing with elasticities of a and v instead of sensitivities, (recalling that S, = aE,),

this becomes:

ak, aF,
SPq = P‘]( v - N )
= Pq(Ea — EU)

Appendix D. Cumulative Extinction Risk

The probablity that a population will ever reach a given extinction threshold, (say, 0 =

(2alog 6

N./N,) is P, = ¢~ + ) when a > 0. In practice, when a is often less than 0 and
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extinction is certain, it is more useful to know the probability that a population will reach
the threshold before some time horizon, ¢t. If we condition on the quasiextinction threshold
eventually being reached, time to extinction (7}) is a positive real-valued random variable
with a continuous probability distribution that can be written in terms of a standard
normal cdf (Lande and Orzack 1988, Dennis et al 1991):

log 0 — at 2log0ay _ log + at
( )

- _|_ e v @ -

Vot ) ( Vot )

where ® is the standard normal probability integral:

P(T, <t) =G(t;0,a,v) = O( (14)

1 x
O(x) = E/ e 2dz

Now we define P,(t) to be the probability of quasiextinction, P,, before some time
horizon, t. For any given ¢, this probability of quasiextinction, P,(t), is the cumulative
probability defined above as P(7, < t) (Lande and Orzack 1988, Dennis et al 1991, Morris
and Doak 2002).

The sensitivities of this time-horizon-specific P, are its derivatives with respect to

some perturbation, call it a.

For now, let’s also define x = log\/evit“t,y = 218% apd 2 = logeﬁ such that P(T; < t) =
O(x) + e¥d(2)
Now we take the derivative to find that:

dd(z) dz

dPy(t) d®(z)dx dy ,
= — 4 Ze¥D v~ - 1
do dr do + dae () +e dz da (15)

Since the normal pdf is the derivative of the cdf, we can simplify:

0 ()5 1 W evaz) + ()% (16)

Now we find expressions for dx/da, dy/da and dz/da:
_logf —at

Vot
do —t3(Vot) = VIS (log§ — at)

do vt
1 tda N (log 6 — at) dv

\/ﬁ( da 2v da)

X
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~ 2logfa

v
;l_z :((2 log 95—2)2} — (2log 0&)(3—2))(1}_2)
2logf , da dv
=2 Vi ‘d)
_logf + at
T
dz  t2(Vot) — VIR (log § + at)
do B vt
tVotde — \/t(log 6 + at) 5= ge

vt
_ [tda log 0 + at. dv
Vot~ T2over Via
1 tda _ (logf +at) dv

:ﬁ( da 2v da)

Subbing back in our expressions for z, y, z and their derivatives, we get a general

expression for the sensitivity of P,(t) to a perturbation a:

dP,(t)  /Jogf—at, —1  da (logh —at)dv
do =9 Vot )\/ﬁ(tda+ 20 dOz)

210000 (2l0g 0, da dv, _logf+at 1 . da (log+at)dv,  /Jogb+ at
e ( @ )+ )0 =)

= a== p— —xer v
v? <Ud04 ad&)( Vot \/ﬁ( da 20 da Vot

Note that terms 9% and 22 are the sensitivities of a and v (S, and S,) to the same

perturbation. A change of notation clarifies our final expression for the sensitivity of

cumulative extinction probability:

-1 | ,logf — at (log 6 — at)

= (P s+ 5,

2log fa 2 log 9 . log9 + a/t 1 . (loge + &Zf) log 6 + a/t
e (TS, —aS)@(ZE=) ) = (15— RS o)

(17)

Sp, (1) Sy)
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Appendix E. Supplementary Figures.

Figure E: Upper quantile of stationary stage distributions

Figure F': Probability of and expected time to quasiextinction as a function of ¢

Figure G: Stochastic growth rate and its variance as a function of ¢
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