
Supplementary Math Note 

1. Analytic expression of changes of firing rates with learning and application to the 
covariance learning rule 

In the main text, we showed the relation between the synaptic plasticity rule and changes 
in input currents and network activity with learning (Eq. (1)-(3)).  Based on such a relation, here 
we derive an analytic expression that describes how network activity changes with learning when 
the transfer functions and the synaptic plasticity rule are known.  Then, we apply this expression 
to an example Hebbian learning rule that cannot reproduce the key feature of changes of activities 
observed during visual learning (Fig. 2a).  

The expression for the changes of neuronal response Δri can be found using the following 
relations 
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The first equation is Eq. (3) in the main text and the second is obtained from the definition of the 
transfer function given in Eqs. (1)-(2).  If we assume that Wij is either uniform (Wij =w/N where 
N is the network size), or is random with a mean w/N and independent of Δrj, then we can obtain 
an analytic expression for Δri, 
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Next, to build intuition about how a synaptic plasticity rule affects the distribution of firing rates, 
we consider a linear transfer function Φ i(x) = x, a uniform initial connectivity matrix Wij = w/N 
and the `covariance rule’37 ( , ) ( mean( ))( mean( ))i jj iW r r r r r rα∆ = − −  , where the mean is an 

average response across the population.  Note that this population average is equal to the activity 
averaged in time over multiple stimuli in a homogeneous network.  Then, with a linear transfer 
function and the covariance learning rule, Eq. (S1) becomes   
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so that the average rate change over the whole population is zero.  The above expression shows 
that initially strong responses are strengthened by this learning rule, while initially weak responses 



are weakened.  Hence, the covariance rule broadens the distribution of firing rates, leading to an 
increase in variance.  Such a broadening of the distribution of firing rates is expected for any 
Hebbian synaptic plasticity rule.  While this learning rule reproduces qualitatively some aspects of 
the changes of the distributions of firing rates between familiar and novel stimuli such as the 
broadening of the distribution, it fails to reproduce another important aspect - the average decrease 
in rates with familiarity.  
 

2. Proof that the rank preservation assumption minimizes ∑(Δri)2  among all possible set of 
Δri 

We assume that the numbers of novel and familiar stimuli are equal, denoted as n, and the 
firing rates in response to novel and familiar stimuli are denoted as nov

ir  and fam
ir , respectively, for 

i = 1 to n.   We first show that the rank preservation assumption minimizes ( )2fam nov
i i

i
r r−∑    for 

n = 2 as follows: we denote the lower firing rates for novel and familiar stimuli as rnov and rfam, 
respectively, and the higher firing rates as rnov+Δrnov and rfam+Δrfam with an increment from the 
lower rates denoted as Δrnov and Δrfam.  Then, there are two combinations to match the firing rates, 
either i) matching the novel and familiar stimuli at the same rank or ii) switching the ranks as 

matching rnov with rfam+Δrfam, and rnov+Δrnov with rfam.  In each case, ( )2fam nov
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Since the second case has larger ∑(Δri)2 than the first one, ∑(Δri)2 is minimized when the rank is 
preserved for n=2. 

Using the case for n = 2, we can show that the statement holds for any n:  we denote the 
rank of the familiar stimuli matching the novel stimuli with the rank i as k(i).  Then, if the rank is 
not preserved, there is some i where k(i)>k(i+1).  According to the case for n = 2, ∑(Δri)2  gets 
smaller by changing k(i) and k(i+1).  We can continue such a procedure to lower ∑(Δri)2  until k(i) 
is an increasing function, that is, k(i) = i, where the rank is preserved with learning.  Thus, the rank 
preservation assumption minimizes ∑(Δri)2  among all possible sets of Δri for arbitrary n. 
 



3. Comparison of the effects of synaptic plasticity in different recurrent connections 

In this section, we explore what types of plasticity in recurrent connections can reproduce 
experimental observations shown in Figs. 3 and 4.  In the networks composed of excitatory (E) 
and inhibitory (I) neurons, there are 4 types of connections, E-to-E, E-to-I, I-to-E and I-to-I 
connections.  Here, we show that to reproduce the increase of maximal response of excitatory 
neurons, plasticity in connections onto excitatory neurons (E-to-E, and/or I-to-E connections) is 
required, and further find the functional form of plasticity in connections onto excitatory neurons 
that reproduce changes of firing rates with learning.   

First, we claim that plasticity only in E-to-I or I-to-I connections cannot explain the input 
changes observed in excitatory neurons (Fig. 4c).  This is because without plasticity in connections 
onto excitatory neurons, input changes in excitatory neurons arise only from changes of firing rates 

~E EE E EI Irh W W r∆ −∆ ∆ , which are independent of the post-synaptic firing rates of excitatory 
neurons when the connectivity matrix W is uniform or random with independent and identically 
distributed entries.  Such constant input changes in excitatory neurons are inconsistent with the 
experimental observations.  On the other hand, input changes observed in inhibitory neurons that 
are almost constant regardless of the post-synaptic rates (Fig. 4d) can be reproduced without 
plasticity onto inhibitory neurons but with plasticity onto excitatory neurons, E-to-E or I-to-E 
connections.   

Next, we determine the functional forms of the learning rules in the E-to-E, and I-to-E 
connections that are consistent with data.  As explained in equation (4) in the main paper, with 
plasticity in the E-to-E connections and under the assumption of its separable form as 
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Thus, ( )EE E
post if r  has a similar form to ( )E E

ih r∆ , showing depression for low rates and potentiation 

for high rates.  

Similarly, in the case with the plasticity in I-to-E connections having a product form 
( ) ( )EI EI E EI I

post i pre jW f r f r∆ = , the post-synaptic dependence can be expressed as 
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Thus, unless ( )I I
j

EI
pr je

j
f r r∑   is negative, ( )EI E

post if r   has a similar form to ( )E E
ih r−∆  , showing 

potentiation for low rates and depression for high rates, that is, an anti-Hebbian learning rule.   

However, the form of plasticity of inhibitory to excitatory connections suggested 
theoretically (Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. Inhibitory plasticity 
balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569-
1573 (2011)) and experimentally (Vogels, T.P., et al. Inhibitory synaptic plasticity: spike timing-
dependence and putative network function. Frontiers in neural circuits 7, 119 (2013); D'Amour J, 
A. & Froemke, R.C. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory 
cortex. Neuron 86, 514-528 (2015)) is Hebbian, which would lead to exactly the opposite changes 
in firing rates from  those observed in the data (increase in rates for initially low rate responses, 
and decrease for initially high rate responses), consistent with their hypothesized homeostatic role.  
Our results therefore suggest we can rule out a dominant role of Hebbian plasticity from I-to-E 
connections.  Therefore plasticity in E-to-E connections is the simplest, yet biological plausible 
scenario that is consistent with experimental observations. 

 

4. Effects of bounds and other constraints on synaptic weights 

In the derivation of the dependence of a learning rule on the post-synaptic firing rates (Eq. 
(1)-(4)), the bounds on the synaptic weights were not taken into consideration.  Ignoring such 
bounds may lead to unrealistic situations after learning a stream of novel stimuli, such as negative 
synaptic weights or unbounded growth of synaptic weights.  Thus, we need to introduce bounds 
and/or other constraints on synaptic weights to maintain synaptic strengths in a proper range.  
Consequently, we also need to examine their effects on the learning rule and the changes of firing 
rates.   

We consider two types of constraints on the synaptic weights under which either the total 
sum of synaptic weights onto post-synaptic neurons (a constant total presynaptic weight constraint) 
or the total sum of synaptic weights from pre-synaptic neurons (a constant total postsynaptic 
weight constraint) is preserved.  To maintain the total sum, for each learning rule, we subtract mean 
of synaptic changes34.  Combined with the assumption that the learning rule is a separable function 
of pre- and post-synaptic rates as ( , ) )( ( )i j post i p jreW r r f fr r∆ =  , each constraint leads to the 

modification of synaptic learning rule as 
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 Under the constant total presynaptic weight constraint, while the pre-synaptic dependence 



is replaced with ( )( ) mean ( )pre j k pre kf r f r−  , ( )post irf   derived in Eq. (4) is unchanged, and the 

experimental data can be reproduced using a suitable function ( )post irf  unless mean of synaptic 

weights is too close to the bounds.  On the other hand, the constant total postsynaptic weight 
constraint affects the post-synaptic dependence without changing the pre-synaptic dependence.  
Such a modification of the post-synaptic dependence lead to inconsistencies with data – in 
particular, it prevents the decrease in mean rates – for instance, if the system is linear with transfer 
function Φi(x) = x, then mean changes of firing rates can be obtained by taking the mean of Eq.  
(S1), given as  
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Thus, in contrast to the constant total postsynaptic weight constraint that modifies the post-synaptic 
dependence obtained from the experimental data, the constant total presynaptic weight constraint 
only affects the pre-synaptic dependence which is undetermined from the data, and thus, is able to 
reproduce the experimental data.  Note that the constant total presynaptic weight constraint is 
consistent with the experimental observation that the summed synaptic surface area is maintained 
following plasticity induction35. 


