Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation

Supplemental Information

Table of Contents

Figure S1. Summary of Literature Search	2
Table S1. Studies evaluating sleep disturbance and inflammation	3-4
Table S2. Studies evaluating sleep duration and inflammation	5
Table S3. Studies evaluating experimental sleep loss and inflammation	6
Figure S2. Sleep disturbance and tumor necrosis factor- $\!\alpha$	7
Figure S3. Sleep duration and tumor necrosis factor- α	8
Figure S4. Sleep duration categories and tumor necrosis factor- $\!\alpha$	9
Figure S5. Experimental sleep deprivation and tumor necrosis factor- α	10
Supplemental References	11-12

Figure S1. Summary of Literature Search

Table S1. Description of studies evaluating sleep disturbance and inflammation as indexed by C-reactive protein (CRP) and circulating levels of interleukin-6 (IL-6). Sleep disturbance was associated with CRP and IL-6 as a significant increase (+), significant decrease (-) or no difference (0). Sleep disturbance was assessed by single item (Item); symptom reporting (SX); questionnaire (Qu); polysomnography (PSG); or clinical diagnosis (DX).

Study	Design	Sample	N	Age	M/F	Sleep Assessment	Inflammation Assessment	Findings
Afshar et al., 2011 (49)	Experimental	End stage renal disease	28	51.9(20.2)	28/0	Qu	CRP	CRP+
Almeida et al., 2011 (26)	Epidemiologic	Community sample	3906	70-90	3906/0	SX	CRP	CRP 0
Bornivelli et al., 2008 (50)	Naturalistic	End stage renal disease	45	59 (16.2)	32/13	Qu	CRP	CRP+
Bower et al., 2009 (33)	Naturalistic	Breast / prostate cancer	48	62.7 (29-75)	20/28	Qu	CRP/IL-6*	CRP=0/IL-6=0
Bower et al., 2011 (51)	Naturalistic	Breast cancer	103	51.2(32-66)	0/103	Qu	CRP*	CRP 0
Burgos et al., 2006 (34)	Naturalistic	Insomniacs/Healthy controls	22	26-58	4/18	Qu/PSG	IL-6	IL6=+
Chiu et al., 2009 (35)	Naturalistic	End stage renal disease	114	56.8 (11.8)	60/54	Qu	CRP/IL-6/TNF*	CRP+/IL-6=0/TNF=+
Christian, 2011 (36)	Naturalistic	Caregivers/non-caregivers	250	63.8 (13.7)	65/185	Qu	CRP/IL-6	CRP+/IL-6=0
Clevenger et al., 2012 (Naturalistic	Ovarian cancer	136	60.4(12.39)	0/136	Qu	IL-6	IL-6+
Dowd et al., 2011 (38)	Epidemiologic	>53 yo	1020	66.1 (10.4)	540/480	Qu	CRP/IL-6	CRP 0/IL-6=0
Erten et al., 2005 (20)	Naturalistic	End stage renal disease / Healthy	18	39.4	14/4	SX	IL-6/TNF*	IL-6=0/TNF=+
Friedman et al., 2005 (39)	Naturalistic	Community sample	78	73.4 (6.9)	0/78	Qu/PSG	IL-6	IL-6+
Graff et al., 2011 (52)	Naturalistic	Inflammatory bowel disease	318	43 (14.1)	127/191	Qu	CRP	CRP=0
Heffner et al., 2011 (40)	Naturalistic	Chronic lower back pain/ Healthy	50	30.8(11.4)	20/30	Qu	IL-6	IL-6=0
Heffner et al., 2012 (41)	Naturalistic	Community sample	83	61.2 (8.8)	38/45	Qu	IL-6	IL-6=0
Hong et al., 2005 (21)	Naturalistic	Community sample	70	35.7(7.6)	36/34	PSG	IL-6	IL-6=0
Jackowska et al.,2013(27)	Epidemiologic	Community sample	2916	65.9	2916	SX	CRP	Mixed
Laugsand et al., 2012 (28)	Epidemiologic	Community sample	8547	43.4 - 53.7	3266/3744	SX	CRP	CRP+
Lavie et al., 2007 (29)	Case Control	Shift workers	129	56.3 (8.5)	129/0	SX	CRP	CRP-
Lee, et al., 2009 (22)	Naturalistic	End stage renal disease	30	56.1 (10.7)	21/9	PSG	CRP/IL-6	CRP=0/IL-6=0
Li et al., 2012 (53)	Naturalistic	End stage renal disease	212	49.9 (16.7)	114/98	Qu	CRP	CRP+

*Studies that have evaluated sleep disturbance and inflammation as indexed by other cytokines including interleukin-1 β (IL-1) (*n* = 4) (1-4); IL-1 receptor antagonist (IL-1ra) (*n* = 3) (1, 2, 5); soluble IL-6 receptor (sIL6R) (*n* = 2) (5, 6); IL-8 (*n* = 5), tumor necrosis factor receptor I (TNFRI) (*n* = 1) (7); and TNFRII (*n* = 1) (1).

Table S1 continued.

Study	Design	Sample	N	Age	M/F	Sleep Assessment	Inflammation Assessment	Findings
Liukkonen et al., 2007(30)	Epidemiologic	Community cohort	4011	31	2104/1907	SX	CRP	CRP+
Matthews et al., 2010(54)	Epidemiologic	Community sample	340	52 (IQR 3)	0/340	Qu/PSG	CRP	CRP+
McDade et al., 2006(31)	Naturalistic	Community sample	188	59.5(4.3)	45/55	Qu	CRP	CRP=0
Mills et al., 2007 (23)	Naturalistic	Community sample	124	38.6 (6.8)	59/65	Qu	IL-6	IL-6+
Okun et al., 2007a (63)	Naturalistic	Pregnant	35	31.0 (3.7)	0/35	Qu	CRP/IL-6/TNF*	CRP 0/IL-6=0/TNF+
Okun et al., 2009 (42)	Naturalistic	Healthy controls	43	28.2(5.2)	0/43	Qu	CRP/IL-6/TNF*	CRP +/IL-6=0/TNF=0
Okun et al., 2011 (58)	Naturalistic	4 groups	128	74.3 (6.6)	54/74	DX	IL-6	IL-6=0
Prather et al., 2009 (44)	Prospective	Hepatitis C	95	47.3 (11.8)	64/31	Qu	IL-6	IL-6=0
Razeghi et al., 2012(55)	Epidemiologic	End stage renal disease	108	56 (15)	62/46	Qu/DX	CRP	CRP+
Song et al., 1998 (59)	Experimental	3 groups	24	42.3	15/9	DX	IL-6*	IL-6+
Sabbagh et al., 2008 (56)	Epidemiologic	End stage renal disease	46	61.9(16.9)	30/16	Qu	CRP	CRP=0
Sprod et al., 2010 (4)	Experimental	Breast/Prostate cancer	38	60(12.1)	11/27	Qu	IL-6/TNF*	IL-6=0/TNF=0
Suarez, 2008 (45)	Epidemiologic	Community sample	210	28.9 (9.7)	115/95	Qu	CRP/IL-6	CRP=0/IL-6=0
Valentine et al., 2009 (57)	Epidemiologic	Community sample 60+	127	70.5 (5)	47/80	Qu	CRP	CRP=0
Valentine et al., 2011 (46)	Epidemiologic	Community sample 60+	182	69.2(6.7)	98/84	Qu	CRP/IL-6*	CRP+/IL-6=0
van Mark et al., 2010 (47)	Experimental	Shift/daytime workers	274	37.8 (8.7)	NA	Qu	IL-6/TNF	IL-6=0/TNF=0
Vgontzas et al., 2002 (60)	Experimental	Insomnia/controls	22	29.4(6.6)	14/8	DX/PSG	IL-6/TNF	IL-6=0/TNF-
von Kanel et al., 2006(25)	Experimental	Caregivers/non-caregivers	100	70.7 (7.9)	30/70	PSG	IL-6	IL-6+
von Kanel et al., 2010 (48)	Experimental	Caregivers/non-caregivers	145	70.9(8.1)	104/41	Qu/PSG	CRP/IL-6	CRP=0/IL-6=0
Zhang et al., 2013 (32)	Epidemiologic	National sample	10908	20-85+	5295/5613	SX	CRP	CRP+

*Studies that have evaluated sleep disturbance and inflammation as indexed by other cytokines including interleukin-1 β (IL-1) (n = 4) (1-4); IL-1 receptor antagonist (IL-1ra) (n = 3) (1, 2, 5); soluble IL-6 receptor (sIL6R) (n = 2) (5, 6); IL-8 (n = 5), tumor necrosis factor receptor I (TNFRI) (n = 1) (7); and TNFRII (n = 1) (1).

Table S2. Description of studies evaluating sleep duration and inflammation as indexed by C-reactive protein (CRP) and circulating levels of interleukin-6 (IL-6). Sleep duration was associated with CRP and IL-6 as a significant increase (+), significant decrease (-) or no difference (0). Sleep duration was assessed by single item (Item); symptom reporting (SX); questionnaire (Qu); polysomnography (PSG); or clinical diagnosis (DX).

Study	Design	Sample	N	Age	M/F	Sleep Assessment	Inflammation Assessment	Findings
Burgos et al., 2006 (34)	Naturalistic	Insomniacs/Healthy controls	22	26-58	4/18	Qu/PSG	IL-6	IL6 mixed
Dowd et al., 2011 (38)	Epidemiologic	>53 yo	1020	66.1 (10.4)	540/480	ltem/Qu	CRP/IL-6	Mixed
Ferrie et al., 2013 (71)	Epidemiologic	Civil service	5003	49.3	3592/1411	ltem	CRP/IL-6	CRP+/IL6+
Friedman et al., 2005 (39)	Naturalistic	Community sample	78	73.4 (6.9)	0/78	Qu/PSG	IL-6	IL-6=0
Hong et al., 2005 (21)	Naturalistic	Community sample	70	35.7(7.6)	36/34	PSG	IL-6	IL-6 mixed
Jackowska et al., 2013(27)	Epidemiologic	Community sample	2916	65.9	2916	Item	CRP	CRP mixed
Larkin et al., 2005 (70)	Naturalistic	Adolescents(13-18) w/wo SDB	143	13.8(0.8)	72/71	ltem/PSG	CRP	CRP +
Lee et al., 2009 (22)	Naturalistic	End stage renal disease	30	56.1 (10.7)	21/9	PSG	CRP/IL-6	CRP=0/IL-6+
Marsland et al., 2008 (61)	Naturalistic	Community sample	76	45(6.5)	32/44	Item	IL-6	IL-6=0
Martinez-Gomez, 2011 (62)	Naturalistic	Adolescents (13-17)	183	14.8 (1.3)	95/88	Item	CRP/IL-6	CRP+/IL-6=0
Matthews et al., 2010 (54)	Epidemiologic	Community sample	340	52 (IQR 3)	0/340	Qu/PSG	CRP	CRP mixed
McDade et al., 2006 (31)	Naturalistic	Community sample	188	59.5(4.3)	45/55	Qu	CRP	CRP=0
Miller et al., 2009 (71)	Epidemiologic	Civil service	4624	49.1(5.9)	3382/0	ltem	CRP/IL-6	CRP+/IL-6+
Motivala et al., 2005 (67)	Case Control	Depression/controls	40	42.6(8.3)	40/0	PSG	IL-6*	IL-6=0
Okun et al., 2007a (63)	Naturalistic	Pregnant	35	31.0 (3.7)	0/35	Qu	CRP/IL-6/TNF*	CRP=0/IL-6=0/TNF=0
Okun et al., 2009 (42)	Naturalistic	Healthy controls	43	28.2(5.2)	0/43	Qu	CRP/IL-6/TNF*	CRP=0/IL-6=0/TNF=0
Patel et al., 2009 (73)	Epidemiologic	OSA and non-OSA	614	46.1(14.4)	275/339	Item/PSG	CRP/IL-6/TNF*	Mixed
Ramey et al., 2012 (64)	Epidemiologic	Police officers (shift work)	85	39.6 (9.0)	85/0	ltem/Qu	CRP	CRP-
Rief et al., 2010 (68)	Naturalistic	Community sample	130	34.9(9.6)	74/56	Qu/PSG	CRP/IL-6*	CRP=0/IL-6=0
Sprod et al., 2010 (24)	Experimental	Breast/Prostate cancer	38	60(12.1)	11/27	Qu	IL-6/TNF	IL-6 -
Suarez, 2008 (45)	Epidemiologic	Community sample	210	28.9 (9.7)	115/95	Qu	CRP/IL-6	CRP=0/IL-6=0
Stenholm et al., 2011(74)	Epidemiologic	>=65	751	72.9 (6.0)	335/416	ltem	CRP/IL-6/TNF	Mixed
Taheri et al., 2007 (65)	Epidemiologic	Community sample	907	52.5(8.1)	500/407	Item/PSG	CRP	CRP=0/TNF=0
Taveras et al., 2011 (66)	Epidemiologic	Post-partum females	479	37.8(5.1)	0/479	Item	CRP/IL-6	CRP=0/IL-6=0
Tuomilehto et al., 2009 (75)Experimental	Overweight with IGT	515	55(7)	230/285	Item	CRP/IL-6	CRP+/IL-6=0
Vgontzas et al., 1997 (69)	Experimental	4 groups	41	33.1(2.5)	31/10	PSG	IL-6/TNF*	IL-6+/TNF+
von Kanel et al., 2006 (25)	Experimental	Caregivers/non-caregivers	100	70.7 (7.9)	30/70	PSG	IL-6	IL-6=0

*Studies that have evaluated sleep duration and inflammation as indexed by other cytokines including interleukin-1 β (IL-1) (n = 2) (8, 9), IL-1 receptor antagonist (IL-1ra) (n = 0), soluble IL-6 receptor (sIL6R) (n = 1) (10); IL-8 (n = 0); tumor necrosis factor receptor I (TNFRI) (n = 1) (11); and TNFRII (n = 0).

Table S3. Description of studies evaluating sleep duration as experimentally shortened, i.e., sleep deprivation or sleep restriction, and inflammation as indexed C-reactive protein (CRP) and circulating levels of interleukin-6 (IL-6). Sleep deprivation as partial night sleep deprivation (PSD) or total night sleep deprivation (TSD) was associated with CRP and IL-6 as a significant increase (+), significant decrease (-) or no difference (0).

Study	Sleep deprivation	Sample	N	Age	M/F	Inflammation Assessment	Findings
Abedelmalek et al., 2012 (82)	PSD	Tunisian athletes	12	21.2 (1.2)	12/0	IL-6	IL-6+
Bollinger et al., 2010 (83)	TSD	German	6	21-32	6/0	IL-6/TNF*	IL-6=0/TNF=0
Chennaoui et al., 2011 (78)	TSD	French	12	29.1(3.3)	12/0	CRP/IL-6/TNF*	CRP=0/IL-6=0/TNF=0
Faraut et al., 2011 (79)	PSD/napping	Belgian	40	18-27	40/0	CRP*	CRP=0
Frey et al., 2007 (80)	TSD		19	28.1(8.6)	10/9	CRP/IL-6*	CRP=0/IL-6=0
Haack et al., 2002 (84)	TSD	German	12	28.1(4.6)	12/0	IL-6	IL-6=0
Haack et al., 2007 (89)	PSD 12 days		18	27.3(5.8)	12/6	CRP/IL-6	CRP=0/IL-6=0
Irwin et al., 2004 (85)	PSD	Alcoholics, controls	50	40.6 (7.7)	50/0	IL-6/TNF	IL-6=0/TNF=0
Meier-Ewert et al., 2004 (90)	TSD/PSD		10	27.2	10/0	CRP	CRP=0
Redwine et al., 2000 (86)	PSD		31	35.8 (10.1)	31/0	IL-6	IL-6=0
Sauvet et al., 2010 (81)	TSD	French	12	29.1(3.3)	12/0	CRP/IL-6/TNF*	CRP=0/IL-6=0/TNF=0
Schmid et al., 2011 (92)	PSD	German/Swiss	15	27.1(1.3)	15/0	IL-6	IL-6=0
Shearer et al., 2001 (93)	TSD		21	28.7 (21-47)	21/0	IL-6/TNF*	IL-6=0/TNF=0
van Leeuwen et al., 2009 (91)	PSD	Finnish	19	23.1(2.5)	19/0	CRP	CRP=0
Vgontzas et al., 1999 (87)	TSD		8	23.6(1.0)	8/0	IL-6	IL-6=0
Vgontzas et al., 2004 (94)	PSD		25	25.2 (3.7)	12/13	IL-6/TNF	IL-6=0/TNF=0
Vgontzas et al., 2007 (88)	TSD		41	23.3 (0.7)	20/21	IL-6/TNF*	IL-6=0

*Studies that have evaluated sleep duration as experimentally shortened and inflammation as indexed by other cytokines including interleukin-1 β (IL-1) (n = 2) (12, 13), IL-1 receptor antagonist (IL-1ra) (n = 1) (12), soluble IL-6 receptor (sIL6R), IL-8 (n = 1) (14); tumor necrosis factor receptor I (TNFRI) (n = 1) (15-17), and TNFRII (n = 1) (16).

Sleep disturbance and inflammation: $TNF\alpha$

Figure S2. Forest plot of sleep disturbance associated with inflammation as indexed by circulating levels of tumor necrosis factor (TNF)- α . Sleep disturbance is assessed by self-reported symptoms and questionnaires. Results are expressed as effect sizes (ES) and 95% confidence intervals (95% CI). See references in main text for studies included in the figure.

Sleep duration assessed continuously and inflammation: $\mathsf{TNF}\alpha$

Figure S3. Forest plot of sleep duration associated with inflammation as indexed by circulating levels of tumor necrosis factor- α . Sleep duration is assessed continuously by subjective and objective measures. Results are expressed as effect sizes (ES) and 95% confidence intervals (95% CI). See references in main text for studies included in the figure.

Sleep duration assessed categorically and inflammation: TNF α

Figure S4. Forest plot of sleep duration associated with inflammation as indexed by circulating levels of tumor necrosis factor- α . Sleep duration is assessed categorically with normal sleep being defined by sleep duration 7-8 h per night, and short sleep as < 7 h per night, and long sleep as > 8 h per night. Results are expressed as effect sizes (ES) and 95% confidence intervals (95% CI). See references in main text for studies included in the figure.

Experimental sleep deprivation and inflammation: $\mathsf{TNF}\alpha$

Figure S5. Forest plot of experimentally shortened sleep duration associated with inflammation as indexed by circulating levels of tumor necrosis factor- α . Sleep duration was shortened by either partial- or total night sleep deprivation for one night or for multiple nights. Results are expressed as effect sizes (ES) and 95% confidence intervals (95% CI). See references in main text for studies included in the figure.

Supplemental References

- 1. Bower JE, Ganz PA, Irwin MR, Kwan L, Breen EC, Cole SW (2011): Inflammation and behavioral symptoms after breast cancer treatment: do fatigue, depression, and sleep disturbance share a common underlying mechanism? J Clin Oncol 29:3517-22.
- Bower JE, Ganz PA, Tao ML, Hu W, Belin TR, Sepah S, Cole S, Aziz N (2009): Inflammatory biomarkers and fatigue during radiation therapy for breast and prostate cancer. Clin Cancer Res 15:5534-40.
- Chiu YL, Chuang YF, Fang KC, Liu SK, Chen HY, Yang JY, Pai MF, Peng YS, Wu KD, Tsai TJ (2009): Higher systemic inflammation is associated with poorer sleep quality in stable haemodialysis patients. Nephrol Dial Transplant 24:247-51.
- Erten Y, Kokturk O, Yuksel A, Elbeg S, Ciftci TU, Pasaoglu H, Ozkan S, Bali M, Arinsoi T, Sindel S (2005): Relationship between sleep complaints and proinflammatory cytokines in haemodialysis patients. Nephrology (Carlton) 10:330-5.
- Song C, Lin A, Bonaccorso S, Heide C, Verkerk R, Kenis G, Bosmans E, Scharpe S, Whelan A, Cosyns P, de Jongh R, Maes M (1998): The inflammatory response system and the availability of plasma tryptophan in patients with primary sleep disorders and major depression. J Affect Disord 49:211-9.
- Valentine RJ, Woods JA, McAuley E, Dantzer R, Evans EM (2011): The associations of adiposity, physical activity and inflammation with fatigue in older adults. Brain Behav Immun 25:1482-90.
- Sprod LK, Palesh OG, Janelsins MC, Peppone LJ, Heckler CE, Adams MJ, Morrow GR, Mustian KM (2010): Exercise, sleep quality, and mediators of sleep in breast and prostate cancer patients receiving radiation therapy. Community Oncol 7:463-471.
- 8. Patel SR, Zhu X, Storfer-Isser A, Mehra R, Jenny NS, Tracy R, Redline S (2009): Sleep duration and biomarkers of inflammation. Sleep 32:200-4.
- Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K, Chrousos GP (1997): Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab 82:1313-6.

- 10. Motivala SJ, Sarfatti A, Olmos L, Irwin MR (2005): Inflammatory markers and sleep disturbance in major depression. Psychosom Med 67:187-94.
- 11. Rief W, Mills PJ, Ancoli-Israel S, Ziegler MG, Pung MA, Dimsdale JE (2010): Overnight changes of immune parameters and catecholamines are associated with mood and stress. Psychosom Med 72:755-62.
- 12. Frey DJ, Fleshner M, Wright KP, Jr. (2007): The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. Brain Behav Immun 21:1050-7.
- Sauvet F, Leftheriotis G, Gomez-Merino D, Langrume C, Drogou C, Van Beers P, Bourrilhon C, Florence G, Chennaoui M (2010): Effect of acute sleep deprivation on vascular function in healthy subjects. J Appl Physiol 108:68-75.
- Faraut B, Boudjeltia KZ, Dyzma M, Rousseau A, David E, Stenuit P, Franck T, Van Antwerpen P, Vanhaeverbeek M, Kerkhofs M (2011): Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction. Brain Behav Immun 25:16-24.
- 15. Chennaoui M, Sauvet F, Drogou C, Van Beers P, Langrume C, Guillard M, Gourby B, Bourrilhon C, Florence G, Gomez-Merino D (2011): Effect of one night of sleep loss on changes in tumor necrosis factor alpha (TNF-α) levels in healthy men. Cytokine 56:318-324.
- Shearer WT, Reuben JM, Mullington JM, Price NJ, Lee BN, Smith EO, Szuba MP, Van Dongen HP, Dinges DF (2001): Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol 107:165-70.
- 17. Vgontzas AN, Pejovic S, Zoumakis E, Lin HM, Bixler EO, Basta M, Fang J, Sarrigiannidis A, Chrousos GP (2007): Daytime napping after a night of sleep loss decreases sleepiness, improves performance, and causes beneficial changes in cortisol and interleukin-6 secretion. Am J Physiol Endocrinol Metab 292:E253-61.