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Two-Variance-Component Model
Improves Genetic Prediction in Family Datasets

George Tucker,1,2,3,10 Po-Ru Loh,2,3,10 Iona M. MacLeod,4,5 Ben J. Hayes,5,6,7 Michael E. Goddard,4,6

Bonnie Berger,1,8 and Alkes L. Price2,3,9,*

Genetic prediction based on either identity by state (IBS) sharing or pedigree information has been investigated extensively with best

linear unbiased prediction (BLUP) methods. Such methods were pioneered in plant and animal-breeding literature and have since

been applied to predict human traits, with the aim of eventual clinical utility. However, methods to combine IBS sharing and pedigree

information for genetic prediction in humans have not been explored. We introduce a two-variance-component model for genetic

prediction: one component for IBS sharing and one for approximate pedigree structure, both estimated with genetic markers. In simu-

lations using real genotypes from the Candidate-gene Association Resource (CARe) and Framingham Heart Study (FHS) family cohorts,

we demonstrate that the two-variance-componentmodel achieves gains in prediction r2 over standard BLUP at current sample sizes, and

we project, based on simulations, that these gains will continue to hold at larger sample sizes. Accordingly, in analyses of four quanti-

tative phenotypes from CARe and two quantitative phenotypes from FHS, the two-variance-component model significantly improves

prediction r2 in each case, with up to a 20% relative improvement.We also find that standardmixed-model association tests can produce

inflated test statistics in datasets with related individuals, whereas the two-variance-component model corrects for inflation.
Introduction

Mixed linear models (MLMs) are widely used for genetic

prediction and association testing in genome-wide associ-

ation studies (GWASs). In prediction, MLMs produce best

linear unbiased predictions (BLUPs); BLUP and its exten-

sions were first developed in agricultural genetics1–4 and

have since been applied to human genetics.5–10 In associa-

tion testing, MLMs model relatedness and population

stratification, correcting for confounding and increasing

power over linear regression (essentially by testing as-

sociation of the residual from BLUP).11–16 Mixed-model

methods harness information from either genetic markers

(identity by state [IBS] sharing) or known pedigree relation-

ships. Recent work on the estimation of components of

heritability17 has demonstrated the advantages of a model

with two variance components: one component for IBS

sharing (corresponding to SNP heritability, h2
g

18,19) and

one for approximate pedigree structure, estimated via

IBS sharing above a threshold (corresponding to total

narrow-sense heritability, h2 20). However, the potential

advantages of this model for genetic prediction (or

mixed-model association) have not been explored.

Through systematic simulations and analyses of quanti-

tative phenotypes in the Candidate-gene Association

Resource (CARe)21 and Framingham Heart Study (FHS)22,23

cohorts, we show that the two-variance-component model

improves prediction r2 over single-variance-component
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(standard BLUP) methods. Our simulations demonstrate

that this improvement is achieved both at current sample

sizes and for larger sample sizes, and our analyses of real

CARe and FHS phenotypes confirm relative improvements

in prediction r2 of up to 20%.We also consider the situation

in which phenotypes are available for ungenotyped indi-

viduals who are related to the genotyped cohort (e.g., via

family history24,25) and show that leveraging this additional

information for genetic prediction within a two-variance-

component model achieves similar gains.

Additionally, we investigate the utility of the two-vari-

ance-component model for association testing. We eval-

uate the standard prospective MLM association statistic15

in the context of familial relatedness and observe inflation

of test statistics over a range of simulation parameters,

contrary to previous findings.11,13–15,26 We show that the

two-variance-component model substantially reduces the

inflation in simulations and in GWASs of CARe and FHS

phenotypes.
Material and Methods

Overview of Methods
We use the two-variance-component model described in previous

work on the estimation of components of heritability.17 The first

variance component is the usual genetic relationship matrix

(GRM) computed from genetic markers (corresponding to h2
g ).

18

The second variance component is a thresholded version of the
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GRM in which pairwise relationship estimates smaller than a

threshold t are set to zero. The idea is to capture strong related-

ness structure, similarly to a pedigree relationship matrix. (If full

pedigree information is available, the pedigree relationship matrix

can also be used directly.) Explicitly modeling relatedness in

this way allows the two-variance-component mixed model to

capture additional heritability from untyped SNPs (corresponding

to h2 � h2
g ).

17 We used the two-variance-component model to

compute genetic predictions via BLUP and to compute test associ-

ation statistics via a Wald test.1,11,27 (We note that best linear

unbiased prediction, BLUP, is a general method for prediction

that can be applied once a covariance model has been established,

whether from one or many variance components. We will

therefore use ‘‘standard BLUP’’ to refer to BLUP with the GRM as

a single variance component, and we will use ‘‘BLUP’’ to more

generally refer to BLUP with any number of variance compo-

nents.) We further developed methods to treat the situation in

which phenotypes for ungenotyped relatives are available; in

brief, our approach uses pedigree information to impute the

missing information.28 Full mathematical details are provided

below and in the Appendix, and we have released an open source

Matlab implementation of these methods (FAMBLUP; see Web

Resources).
Standard Mixed Model for Prediction
Webegin by establishing notation and reviewing standard formulas

for mixed-model prediction (i.e., standard BLUP) and association

testing with one variance component.1,11,27 Let N be the number

of individuals in the study and M be the number of genotyped

SNPs. Denote phenotypes by y, fixed-effect covariates by X, and

normalized genotypes by W, all of which are mean-centered. We

normalize each genotype by dividing by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bpð1� bpÞq

, where bp is

the empirical minor allele frequency (MAF).18 We model pheno-

types by using the following mixed model:

y ¼ Xbþ g þ e; (Equation 1)

where g � Nð0;SgÞ is a random-effect term modeling genetic

effects, e � Nð0; s2e IÞ is a random-effect modeling noise, and b is

a vector of coefficients for the fixed effects. In the standard

marker-based mixed model, we assume g ¼ Wa is a linear combi-

nation of genotyped SNPs, where a is an M-vector of independent

and identically distributed (iid) normal SNP effect sizes (the infin-

itesimal model), so that

y ¼ XbþWaþ e: (Equation 2)

Then the genetic covariance satisfies Sg ¼ s2gWWT=M, where

WWT=M is the GRM and s2g and s2e are variance parameters typi-

cally estimated via restricted maximum likelihood (REML).29 In

pedigree-based models that do not use marker information,

Sg ¼ s2hQ, where Q is the pedigree relationship matrix, s2h and s2e
are again estimated via REML.

Thesemodels naturally yield formulas for standard BLUP predic-

tion.1 Explicitly, if we denote training individuals (i.e., those with

observed phenotypes) with subscript �i and test individuals (i.e.,

those with phenotypes to be predicted) with subscript i, predic-

tions are given by

byi ¼ s2
gWiW

T
�i

�
s2
gW�iW

T
�i þ s2

e I
��1�

y�i �X�ib
�þ Xib:

(Equation 3)
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Standard Mixed-Model Association Test
To test a candidate SNP (w) for association with the phenotype (y),

we augment the marker-based model by including w as an addi-

tional fixed-effect covariate:

y ¼ wbþXbþWaþ e; (Equation 4)

where b is the coefficient for the SNP (w) and we wish to

test whether bs0. To do so, we estimate the variance parameters

(s2g , s
2
e ) by using REML and estimate the fixed-effect coefficients

ðb; bÞ by using maximum likelihood.27 We then compute the

Wald statistic to test bs0 as follows. Let

V ¼ cs2
gWWT

�
M þcs2

e I (Equation 5)

denote the total phenotypic covariance and let Q ¼ ½w;X� denote
the combined fixed effects. Then bb is equal to the first entry of

ðQTV�1QÞ�1QTV�1y and varðbbÞ is equal to the first entry of

ðQTV�1QÞ�1. The Wald chi-square test statistic is given by

c2
Wald ¼

bb2

var
�bb� (Equation 6)

and is asymptotically c2 distributed with 1 degree of freedom (df)

under the null distribution. (We note that, theoretically,

comparing the square root of Equation 6 to a t distribution is

more precise, but in practice, the distinction is negligible at sample

sizes of many thousands.)

Wemake one slightmodification to the above association test to

avoid proximal contamination (i.e., masking of the association

signal by SNPs included in the random-effects term that are in

linkage disequilibrium [LD] with the SNP being tested). Specif-

ically, we use a leave-one-chromosome-out procedure in which,

when testing SNPw, we exclude all SNPs on the same chromosome

as w from the genotype matrix W used to model random genetic

effects.15,30,31
Two-Variance-Component Mixed Model
Our use of a two-variance-component mixed model is motivated

by the idea that in a sample containing related individuals,

the pedigree relationship matrix (or an approximation thereof)

can model additional heritable variance explained by untyped

SNPs.17 More precisely, consider expanding the marker-based

model (Equation 2) to

y ¼ XbþWaþ Ugþ e; (Equation 7)

where Ug is the analog of Wa for untyped SNPs, U, so that the

total genetic effect is g ¼ Waþ Ug. Ideally, we would use this

model for prediction and its augmentation for association testing,

but U is unobserved. Because the BLUP andWald statistic formulas

only require UUT , however, we can still improve upon the stan-

dard model (Equation 2) by using an approximation of UUT . If

we let Mh denote the number of untyped SNPs, the matrix

UUT=Mh is the realized relationship matrix from untyped SNPs.

Assuming a fixed pedigree relationship matrix ðQÞ we have

E
�
UUT

�
Mh

	 ¼ Q; (Equation 8)

where the expectation is computed over possible realizations of

genotypes passed down by descent (e.g., siblings share half of their

genomes on average). When the study samples include close rela-

tives, off-diagonal entries of Q can be large, in which case these
er 5, 2015



entries are good approximations of the corresponding entries of

UUT=Mh and hold additional information not fully harnessed

by models that use only the usual GRM from typed SNPs

(WWT=M). Substituting Q for UUT=Mh gives the model

y � N
�
Xb;s2

gWWT
.
M þ s2

hQþ s2
e I
�
: (Equation 9)

In our case, the pedigree relationship matrix ðQÞ is also unavai-

lable, so we need to make a further approximation in which we

replace Q with the estimator

Qz
�
WWT

�
M
�
>t
; (Equation 10)

obtained from the usual GRM by keeping only those entries larger

than a threshold t and setting all other entries to zero.17 This

approximation gives the model

y � N
�
Xb;s2

gWWT
.
M þ s2

h

�
WWT

�
M
�
>t

þ s2
e I
�
: (Equation 11)

In theory, the optimal threshold (t) depends on M;N, and the

amount of relatedness in the dataset, but in our genetic prediction

analyses using human datasets, we found that the results were

robust to the choice of t, so we set t ¼ 0:05. For association testing,

we found t ¼ 0:05 to generally be robust (and we expect this

choice to be appropriate in human genetics settings), but in

more extreme simulation scenarios in which we built the GRM

fromonly a few chromosomes, we observed that higher thresholds

were required to model relatedness accurately enough to produce

well-calibrated statistics. We therefore optimize t in all association

analyses (all of which we conduct by using a leave-one-chromo-

some-out procedure15,30,31) by using the following approach. For

each chromosome c in turn, we choose t tominimize the deviation

between the thresholded GRM, ðW�cW
T
�c=M�cÞ>t , computed with

all chromosomes but c, and the GRM, WcW
T
c =Mc, computed on

the left-out chromosome c. We measure this deviation with the

Frobenius norm

kWcW
T
c

.
Mc �

�
W�cW

T
�c

�
M�c

�
>t
k22; (Equation 12)

i.e., the sum of squared differences between matrix entries. Predic-

tion and association testing proceed as before, once the threshold

(t) has been set: we estimate s2g ; s
2
h; and s2e by REML to enable

calculation of BLUP predictions, and for association testing, we

again introduce an additional fixed-effect term,wb, for the SNP be-

ing tested and construct aWald statistic. (Again, for computational

efficiency, we apply a leave-one-chromosome-out procedure

within which we reuse variance parameters fitted once per left-

out chromosome.13,15,16) We note that the computation of predic-

tions, by, can no longer be expressed as a simple matrix-vector

product of genotypes with a vector ðbbÞ of SNP weights, as is the

case for standard (one-variance-component) genomic BLUP.

Instead, the formula for by (given in the Appendix) involves two

terms, only one of which has the above form; the other involves

combining training and testing genotypes and has substantially

greater computational cost ðOðN3ÞÞ. Although performing predic-

tion with the first term alone would be computationally efficient,

we found that such an approach yields suboptimal results; see the

Appendix for details.

We have released Matlab code that implements these methods

in a stand-alone software package, FAMBLUP (see Web Resources).

Although our implementation uses standard OðN3Þ-time eigende-

composition-based variance components methods, we have taken

care to optimize its central processing unit (CPU) andmemory use:
The American
for example, FAMBLUP association analysis ofN¼ 20,000 samples

requires z 16 GB RAM and z 1 single-threaded CPU day per

chromosome. Memory usage scales with N2, and computation

time scales with N3, so for N ¼ 30,000 samples, the requirements

are z 36 GB RAM and z 4 CPU days per chromosome. These

computations are automatically multithreaded on multi-core

machines and can be parallelized across chromosomes.
Extension to Ungenotyped Individuals
In the Appendix, we derive extensions of two-variance-compo-

nent mixed-model prediction and association testing to make

use of data available from additional phenotyped but ungeno-

typed relatives of genotyped individuals. In this setup, we assume

that the full pedigree relationship matrix (containing both typed

and untyped individuals) is known, whereas some entries of the

SNP GRM—namely, those in rows or columns corresponding to

untyped individuals—are unknown. Our procedure amounts to

replacing the unobserved GRM with the expected GRM (based

on known pedigree),32–34 similar in spirit to regression imputa-

tion; mathematical derivations are presented in the Appendix.
CARe and FHS Datasets
We analyzed 8,367 African-American CARe samples from the

ARIC, CARDIA, CFS, JHS, and MESA cohorts, comprising high-

quality genotypes at 770,390 SNPs from an Affymetrix 6.0 array;

the CARe dataset and quality-control procedures used to obtain

the sample and SNP sets we analyzed are described in Lettre

et al. and Pasaniuc et al.21,35 We analyzed all samples in analyses

of simulated phenotypes (for which real genotypes were used);

in analyses of real CARe phenotypes—including BMI, height,

high density lipoprotein cholesterol (HDL), and low density lipo-

protein cholesterol (LDL), each available for 5,000–8,000 sam-

ples—we removed outlier individuals with phenotype values in

the top or bottom 0.1%, individuals younger than 18 years old,

and individuals with missing age or sex, given that regression re-

sults can be quite sensitive to outliers; we then applied a Box-

Cox transformation to remove skewness. We analyzed 7,476 FHS

SHARe samples with high-quality genotypes at 413,943 SNPs

from an Affymetrix 500K array and with BMI and height pheno-

types available; the FHS dataset and quality-control procedures

are described in Dawber et al., Splansky et al., and Chen

et al.22,23,36 Our analyses were performed under the oversight of

the Harvard institutional review board.
Genetic Prediction: Simulations with Real Genotypes
To assess the accuracy of genetic prediction methods, we simu-

lated phenotypes based on genotypes from the CARe and FHS da-

tasets; both CARe and FHS are family studies containing many

close relatives. Because the CARe individuals are admixed, we pro-

jected out the first five principal components (equivalent to

including them as fixed-effect covariates29) from genotypes and

phenotypes in all analyses of both CARe and FHS data to avoid

confounding from population structure.37 We simulated pheno-

types by generating causal effects for two subsets of SNPs: a set

of M ‘‘observed SNPs,’’ which we used for both phenotype simula-

tion and BLUP prediction, and a set of Mh ‘‘untyped SNPs,’’ which

we used for phenotype simulation but did not provide to predic-

tion methods. In this simulation framework, the standard GRM

built by MLM methods accurately models variation due to

observed SNPs, but direct or inferred pedigree information is

necessary to capture variation due to untyped SNPs. We generated
Journal of Human Genetics 97, 677–690, November 5, 2015 679



effect sizes for observed and untyped SNPs from independent

normal distributions Nð0;h2
g=MÞ and Nð0; ðh2 � h2

g Þ=MhÞ, respec-
tively, where h2

g denotes heritability explained by observed SNPs

and h2 denotes total narrow-sense heritability. To build pheno-

types, we multiplied the simulated effect sizes with the genotypes

and added random noise from Nð0; ð1� h2ÞÞ. We used SNPs on

chromosome 1 as untyped SNPs and SNPs on varying subsets of

chromosomes 2–22 as observed SNPs so as to simulate different

values of N=M (which is a key quantity affecting performance of

mixed-model prediction38 and association15) and thereby esti-

mate projected performance at larger N. We used h2
g ¼ 0:25 and

h2 ¼ 0:5 as typical values of these parameters.39

We note that under the above setup, untyped SNPs are

completely untagged by typed SNPs, whereas in real data, untyped

SNPs might be partially tagged by typed SNPs. In either case, the

phenotype can be written as a sum of ‘‘genetic value explained

by typed SNPs,’’ ‘‘remaining genetic value,’’ and ‘‘environmental

value’’ (with variance parameters h2
g , h

2 � h2
g , and 1� h2 corre-

sponding to the same covariance structures in either case), so we

expected that our results would be insensitive to this distinction.

To verify this expectation, we also performed a set of simulations

in which we selected the set of observed SNPs to be the 90% of

SNPs with highest MAF and the set of untyped SNPs to be the

10% of SNPs with lowest MAF—similar to the simulation frame-

work of Yang et al.18—to produce a realistic gap between h2
g and

h2 as a result of untyped rare variants. (The MAF cutoff corre-

sponding to this split was 5.4%.)

Genetic Prediction: Simulations with Simulated

Genotypes
To assess the potential performance of genetic predictionmethods

at extremely large sample sizes, we also simulated genotypes

for sets of sib-pairs (relatedness ¼ 0.5) with M ¼ 100 SNPs and

N=M ¼ 10,20,.,100. We generated unlinked markers for

simplicity by randomly generatingMAFs uniformly in the interval

½0:05;0:5� and sampling genotypes of unrelated individuals from a

binomial distribution with the generated MAF. For sib-pairs, with

probability 0.5, the pair shared an allele drawn randomly; other-

wise, the alleles for the pair were drawn independently. (We ran

this procedure twice per SNP to create diploid genotypes.) We

simulated phenotypes as above.

Genetic Prediction: Assessing Performance on Real

Phenotypes
To compare the predictive performance of the two-variance-

component model versus standard BLUP on real phenotypes, we

performed cross-validation studies in which we repeatedly

selected 10% of the phenotyped samples (from either CARe or

FHS) as test data and used the remaining 90% of samples to train

each predictor. For each training/test split (s) we thus obtained a

pair of observed prediction r2 values ðr22VC;s; r2BLUP;sÞ. We then esti-

mated the improvement of the two-variance-component model

over standard BLUP asbr22VC � r2BLUP ¼ mean
�
r22VC;s � r2BLUP;s

�
; (Equation 13)

where the mean is taken over the random splits (s). We estimated

the SE of this quantity as:

SE
�br22VC � r2BLUP

�
zSD

�
r22VC;s � r2BLUP;s

�. ffiffiffiffiffiffi
10

p
: (Equation 14)
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The numerator is the SD of the per-split differences in r2 (across

random 90% training and 10% test set splits [s]), which measures

the variability in observed performance differences between the

two methods when assessed on 10% of the data. The division byffiffiffiffiffiffi
10

p
accounts for the 103 larger sample size of the full dataset.

This estimate is approximate due to the complexities of estimating

variance under cross-validation (specifically, the overlap among

different test sets and amongdifferent training sets); in general, un-

biased estimators of variance under cross-validation do not exist.40

Finally, in the Results section, we estimate relative improve-

ments and SEs (i.e., we divide Equations 13 and 14 by the esti-

mated baseline, meanðr2BLUP;sÞ) to put our absolute estimates in

context.
Association Testing: Simulations with Simulated

Genotypes
We conducted a suite of mixed-model association simulations by

using genotypes simulated in a similar manner as above. We sys-

tematically varied the number of related individuals, the degree

of relatedness, the number of markers (M) in the genome, and

the SNP heritability ðh2
g Þ and total heritability ðh2Þ of the simulated

trait. Specifically, we simulated sets of N ¼ 1,000 diploid individ-

uals, in which Nrel ¼ 50, 125, 250, or 500 pairs of individuals

whowere related (leaving 900, 750, 500, or 0 unrelated individuals,

respectively). Each pair of individuals shared a proportion, namely

p ¼ 0, 0.1, 0.2, 0.3, 0.4, or 0.5, of their genomes in expectation.

Additionally, we varied the number of markers, using M ¼ 1,000,

5,000, 10,000, or 20,000.We generated unlinkedmarkers as above;

for pairs of related individuals, with probability equal to the relat-

edness (p), the pair shared an allele drawn randomly; otherwise,

the alleles for the pair were drawn independently. (As above, we

ran this procedure twice per SNP to create diploid genotypes.) We

also generated 100 additional candidate causal SNPs and500 candi-

date null SNPs (at which to compute association test statistics) in

the same way. We used an infinitesimal model to generate the

phenotype: that is, we generated effect sizes for the observed

SNPs fromNð0;h2
g=MÞ. We also generated effect sizes for the candi-

date causal SNPs from Nð0; ðh2 � h2
g Þ=100Þ. Because these SNPs are

distinct from theM SNPs used for model building, they effectively

served as untyped causal loci. Finally, we formed the phenotype by

multiplying the effect sizes with the genotypes and adding inde-

pendent noise distributed as Nð0; ð1� h2ÞIÞ.
Association Testing: Simulations with Real Genotypes
We also assessed mixed-model association methods in simulation

studies by using simulated phenotypes based on genotypes from

the CARe and FHS datasets. To avoid proximal contamina-

tion,15,30,31 we tested SNPs on chromosomes 1 and 2 for associa-

tion and used M observed SNPs on subsets of chromosomes 3–22

to compute GRMs, varying the number of chromosomes used in

order to vary N=M. We generated quantitative phenotypes in

which observed SNPs collectively explained 25% of variance and

250 causal SNPs from chromosome 1 explained another 25% of

variance; all SNPs on chromosome 2 were null SNPs.
Results

Genetic Prediction: Simulations

To analyze the predictive power of the two-variance-

component model, we simulated phenotypes based on
er 5, 2015



Table 1. Prediction Accuracy for Simulations Using CARe and FHS
Genotypes

Observed SNPs

Prediction r2ðgÞ

BLUP BLUP w/ Thresh. 2VC BLUP

CARe genotypes

chr 2–22 0.062 (0.002) 0.061 (0.002) 0.071 (0.002)

chr 3–6 0.084 (0.002) 0.063 (0.002) 0.094 (0.002)

chr 3–4 0.098 (0.002) 0.059 (0.002) 0.108 (0.002)

FHS genotypes

chr 2–22 0.225 (0.003) 0.225 (0.003) 0.238 (0.003)

chr 3–6 0.246 (0.003) 0.230 (0.003) 0.269 (0.003)

chr 3–4 0.263 (0.003) 0.231 (0.003) 0.291 (0.003)

Phenotypes were simulated to have h2 ¼ 0:5 and h2
g ¼ 0:25, and we measured

prediction r2ðgÞ by using a random 90% of samples as training data and the
remaining 10% as test data. Reported values are mean prediction r2ðgÞ and
SEM over 100 independent simulations (in which phenotypes were re-simu-
lated and training-test splits resampled). ‘‘BLUP w/ Thresh.’’ denotes BLUP pre-
diction using the thresholded relationship matrix instead of the standard
approach of using the GRM (denoted simply as ‘‘BLUP’’). ‘‘2VC BLUP’’ denotes
two-variance-component BLUP. ‘‘Prediction r2ðgÞ’’ denotes r2 between pre-
dicted phenotypes and true genetic components of the simulated phenotypes.
genotypes from the CARe and FHS datasets as described in

Material and Methods. In each simulation, we used the

following procedure to measure the prediction accuracies

of BLUP with the standard GRM as a single variance

component, BLUP with the thresholded GRM as a single

variance component, and BLUP with the two-variance-

component model. First, we simulated phenotypes for all

individuals (independently for each simulation replicate).

Second, we randomly split the dataset, setting aside 90%

of the individuals for training and 10% for testing. We

then used each BLUP method to predict held-out test phe-

notypes by using the training samples to estimate genetic

effects, and we calculated r2 between the predicted

phenotypes and the true genetic components of the

simulated phenotypes (i.e., eliminating the added noise)

on the test samples. (We chose to compute r2 because it

is a very widely used metric for assessing prediction accu-

racy;2–4,6,7,9 however, other metrics such as mean square

error are also sometimes used.5) We call this quantity ‘‘pre-

diction r2ðgÞ’’; on average, prediction r2ðgÞ is 1=h2 times as

large as standard prediction r2, i.e., r2 computed to simu-

lated phenotypes that include both genetic and noise com-

ponents. Relative performance of prediction methods is

the same (on average) whether measured with prediction

r2 or prediction r2ðgÞ.
The two-variance-component model provided signifi-

cant increases in r2ðgÞ over both standard BLUP and

BLUP using the thresholded GRM alone (Table 1), and

the improvements were consistent across simulation

replicates (Figure S1). We observed much larger predic-

tion r2ðgÞ values (across all methods) for the FHS simula-

tions than for the CARe simulations, as expected given

the much greater number of close relatives in the FHS

dataset (18,415 pairs of individuals with genetic related-
The American
ness > 0.2 among 7,476 FHS individuals versus 4,954 pairs

among 8,367 CARe individuals). However, the relative im-

provements achieved by the two-variance-component

model were fairly similar in these two distinct pedigree

structures, and importantly, increasing values of N=M

(mimicking larger sample sizes) also yielded similar relative

improvements (Table 1). We also observed that the herita-

bility parameter estimated by the standard mixed model

was intermediate to h2
g and h2, whereas the two-variance-

component model accurately estimated h2
g and h2 � h2

g

(Table S1), as expected in samples with related individ-

uals.17 (We note that because the sum of the entries of

the thresholded GRM is nonzero, we used the general for-

mula given in Speed et al.41 to estimate heritability param-

eters.)We also verified that in simulations with no untyped

causal SNPs, the two-variance-component model pro-

duced no improvement over standard BLUP, indicating

that our cross-validation scheme was immune to differ-

ences in model complexity (Table S2). Finally, we verified

that simulations involving linkage disequilbrium between

typed and untyped SNPs (achieved by setting typed SNPs

to be the 90% of SNPs with highest MAF and untyped

SNPs to be the 10% of SNPs with lowest MAF) produced

similar results (Table S3). In these simulations, we also var-

ied the fraction of heritability explained by typed versus

untyped SNPs, and we observed that the two-variance-

component model achieved larger gains for h2
g � h2 and

smaller gains for h2
g approaching h2 (Table S3), consistent

with our intuition that, if typed SNPs explain most of her-

itable variance, prediction using only typed SNPs achieves

most of the available predictive power.

We further assessed the potential performance of the

two-variance-component approach at very large values of

N=M (up to 100) by simulating both genotypes and pheno-

types (Material and Methods). (We note that human geno-

typing arrays typically contain z 60,000 independent

SNPs,15,42 so N=M ¼ 8 in this simulation corresponds to

a dataset the size of UK Biobank, N ¼ 500,000; see Web Re-

sources.) In these simulations, we continued to observe

gains when using the two-variance-component approach;

two-variance-component prediction r2 exceeded h2
g for

very large N, whereas standard BLUP prediction r2 was

limited to less than h2
g (Figure S2).

Genetic Prediction: Real Phenotypes

Next, we evaluated the prediction accuracy of each

method on CARe phenotypes—BMI, height, LDL, and

HDL—and on FHS phenotypes—height and BMI. We

adjusted phenotypes for age, sex, study center (for CARe

phenotypes), and the top five principal components.

(The complexities of the impact of ancestry on genetic pre-

diction are discussed in Chen et al.43) To measure perfor-

mance, we created 100 independent random 90%/10%

splits of the dataset, as before, and calculated r2 between

predicted and true phenotypes on the test samples of

each split. We observed that, for all phenotypes, the two-

variance-component model increased prediction accuracy
Journal of Human Genetics 97, 677–690, November 5, 2015 681



Table 2. Prediction Accuracy for CARe and FHS Phenotypes

Phenotype

Prediction r2 Prediction r2 Relative to BLUP (SE)

BLUP BLUP w/ Thresh.
2VC
BLUP BLUP w/ Thresh. 2VC BLUP

CARe prediction

BMI 0.023 0.027 0.029 þ14% (9%) þ18% (5%)

height 0.063 0.067 0.079 þ5% (5%) þ20% (3%)

LDL 0.017 0.017 0.019 þ2% (15%) þ11% (5%)

HDL 0.034 0.032 0.038 �7% (10%) þ11% (4%)

FHS prediction

BMI 0.103 0.104 0.107 þ1.0% (2.3%) þ3.5% (1.2%)

height 0.344 0.342 0.354 �0.7% (1.1%) þ2.9% (0.5%)

CARe prediction with genome-wide significant SNPs as fixed-effect covariates

BMI 0.023 0.026 0.028 þ14% (9%) þ19% (5%)

height 0.063 0.066 0.078 þ5% (5%) þ20% (3%)

LDL 0.038 0.039 0.041 þ3% (6%) þ6% (2%)

HDL 0.051 0.049 0.055 �4% (6%) þ7% (3%)

FHS prediction with genome-wide significant SNPs as fixed-effect covariates

BMI 0.105 0.107 0.109 þ1.2% (2.3%) þ3.5% (1.2%)

height 0.344 0.341 0.354 �0.8% (1.1%) þ2.8% (0.5%)

Prediction r2 values are means over 100 random 90% training and 10% test data splits. Relative performance values reported are ratios of means minus 1; SEs are
estimated as SDs of per-split differences in r2 (over the random 10% test sets) divided by

ffiffiffiffiffiffi
10

p
(to account for the 103 larger sample size of the full dataset; see

Material and Methods). ‘‘BLUP w/ Thresh.’’ denotes BLUP prediction using the thresholded relationship matrix instead of the standard approach of using the GRM
(denoted simply as ‘‘BLUP’’). ‘‘2VC BLUP’’ denotes two-variance-component BLUP.
over both single-variance-component BLUP approaches,

with a maximum relative improvement of 20% for height

(Table 2); this improvement was consistent across different

training/test splits (Figure S4). We observed no significant

difference between the performance of the the two

single-variance-component BLUP approaches (Table 2).

As in our simulations, we observed a larger absolute predic-

tion r2 in FHS than in CARe, due to strong relatedness

(consistent with de los Campos et al.6), and we observed

that the heritability parameter estimated by the standard

mixed model was intermediate to the heritability parame-

ters bh2

g and bh2
estimated by the two-variance-component

model (Table S4). We verified in the CARe data that evalu-

ating prediction accuracy by using the mean square error

metric produced near-identical results (Table S5).

For phenotypes with a small number of large-effect loci,

methods that explicitly model a non-infinitesimal genetic

architecture can have substantially better prediction accu-

racy than standard BLUP.2 A two-variance-component

approach could be combined with such models, and as

an initial exploration of this approach, we examined a

non-infinitesimal extension of two-variance-component

BLUP in which we included large-effect loci as fixed-effect

covariates.8 Explicitly, we first identified genome-wide sig-

nificant SNPs ðp < 5310�8Þ according to a two-variance-

component mixed-model association statistic. (As we

show below, the standard MLM statistic is miscalibrated
682 The American Journal of Human Genetics 97, 677–690, Novemb
in scenarios with pervasive relatedness, precluding its

use.) We then added these SNPs as fixed-effect covariates

in all of the models we previously compared and recom-

puted predictions (Table 2). Including large-effect loci re-

sulted in substantial improvements in prediction r2

achieved by each model for the CARe HDL and LDL phe-

notypes (Table 2), both of which are known to have several

large-effect loci.44 As before, for all phenotypes, we

observed an increase in r2 when using the two-variance-

component model. We expect that the two-variance-

component model will provide similar improvements in

prediction r2 if incorporated in more sophisticated non-

infinitesimal models (e.g., Erbe et al. and Zhou et al. 3,5).

Additionally, we explored the scenario in which some

phenotypes are available for ungenotyped relatives of gen-

otyped individuals. We simulated data with ungenotyped

individuals by randomly masking the genotypes of 25%

of the training individuals. Results on simulated and real

phenotypes when using this masking were broadly consis-

tent with the results reported above in which all individ-

uals were typed (Tables S6–S9).

Association Testing

We next compared mixed-model association testing using

the two-variance-component approach to standard MLM

association testing12,15 in datasets with related individuals,

measuring calibration and power for each method. We
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began by running a suite of tests using simulated geno-

types and phenotypes, systematically varying the number

of related individuals, the degree of relatedness, the num-

ber of markers in the genome, and the heritability of the

simulated trait (see Material and Methods). Each simula-

tion included both causal SNPs and ‘‘null SNPs,’’ i.e.,

SNPs with no phenotypic effect. For null SNPs, Wald statis-

tics computed by mixed-model association tests follow a

1 df chi-square distribution, under the assumption that

the mixedmodel accurately models the phenotypic covari-

ance. If the mixed model does not accurately model the

covariance, as we expect for phenotypes with h2
g < h2 in

datasets containing relatedness, then the distribution of

association statistics at null SNPs is miscalibrated, i.e.,

approximately follows a scaled 1 df chi-square.45 We there-

fore measured calibration of MLM association methods

by computing the mean Wald statistic over null SNPs.

We measured power by dividing the mean Wald statistic

over causal SNPs by the mean Wald statistic over null

SNPs. Computing the ratio in the latter benchmark

ensured that all methods, including those susceptible to

inflation of test statistics, were equally calibrated before

we compared power.

Contrary to previous work suggesting thatmixedmodels

fully correct for relatedness,11,13–15,26 we found that for

many parameter settings, standard MLM association anal-

ysis produced significantly inflated test statistics (up to

11% inflation, increasing with trait heritability, sample

size, and extent of relatedness; Figure 1). In contrast, intro-

ducing a second variance component—either the thresh-

olded GRM (Figure 1) or the true pedigree (Figure S4)—

nearly eliminated the inflation. For all parameter settings,

we observed that, compared to standard MLM associa-

tion, the two-variance-component model maintained or

slightly increased power (Figure S4).

Next, we simulated phenotypes based on genotypes

from the CARe and FHS datasets (Material and Methods).

Consistent with the previous simulations, standard MLM

association produced inflated statistics (as measured in

test statistics from chromosome 2, simulated to contain

no causal SNPs) whereas the two-variance-component

model alleviated inflation (Table 3; also see type I errors

in Table S10). Importantly, these results suggest that the

levels of relatedness that are required for inflation are pre-

sent in real datasets.

Finally, we analyzed MLM association statistics for the

CARe and FHS phenotypes (adjusted for covariates as

before). Because we do not know the identity of causal

and null SNPs in this case, we calculated the average

Wald statistic over all SNPs by using leave-one-chromo-

some-out analysis,15,30 noting that we expected the statis-

tics to be slightly larger than 1 due to polygenicity.15,42

Consistent with simulations, the average Wald statistics

were higher for standard MLM association than for the

two-variance-component method, suggesting that stan-

dard MLM statistics are slightly inflated, with an up to

1.05-fold inflation in FHS data (Table 4). Analysis of
The American
genomic inflation factors lGC
46 corroborated these results

(Table 4). We also compared our test statistics (which

involve approximations, as in previous work13,15,16; see

Material and Methods) to exact likelihood ratio test statis-

tics under the two-variance-componentmodel and verified

that the approximate versus exact statistics were near iden-

tical (r2 ¼ 0.999997; Figure S5).
Discussion

We have shown that a mixed model with two variance

components, one modeling genetic effects of typed SNPs

and the other modeling phenotypic covariance from close

relatives, offers increased prediction accuracy over stan-

dard BLUP and corrects miscalibration of standard

mixed-model association analysis in human datasets con-

taining strong relatedness. For current sample sizes and

levels of relatedness, the absolute increase in prediction

accuracy is modest (similar to other recent work on

improving prediction accuracy for human complex

traits,5,7–10 in contrast to agricultural traits2–4) and the

inflation of standard mixed-model test statistics is small.

However, our simulations suggest that, for larger sample

sizes, the effects of relatedness will become more pro-

nounced, so we expect the two-variance-component

model to become increasingly relevant as sample sizes

increase.

Although we are not aware of prior work in human ge-

netics that involves using two variance components to

model effects of typed SNPs as well as additional pheno-

typic covariance from close relatives, other methods for

combining these two sources of information for prediction

have been proposed; however, these methods either use

only a limited number of genome-wide significant

SNPs24 or use only limited information about family his-

tory.25 Separately, several studies have applied different

multiple-variance-component models to improve mixed-

model prediction and association in other ways. Widmer

et al.26 recently proposed a two-variance-component

model that uses the standard GRM along with a GRM

created from selected SNPs (as in FaST-LMM-Select31) that

improves association power and calibration in family

studies. (We note that, although Widmer et al. observe

that standard mixed-model association is properly cali-

brated in their simulated family datasets, their simulations

do not include untyped causal SNPs.) In another direction,

Speed et al.7 recently proposed a multiple variance compo-

nent model that partitions SNPs into contiguous blocks,

each used in a distinct variance component, and showed

that this approach improves prediction accuracy. Incorpo-

ration of a variance component modeling relatedness—

either from pedigree, thresholding the GRM, or other

approaches47—into these methods or into recently pro-

posed non-infinitesimal models for genetic prediction

(e.g., weighted G-BLUP,6 BayesR,3,10 or BSLMM5) is a

possible direction for future research.
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Figure 1. Calibration of Standard and Two-Variance-Component Mixed-Model Association Statistics on Simulated Genotypes and
Phenotypes
We computed mean Wald statistics over null SNPs by using the standard mixed-model association test (MLM) and a two-variance-
component model (2 var. comp. MLM) using GRM and thresholded GRM (i.e., approximate pedigree) components. Each panel shows
results from a set of simulations with selected values of the simulation parameters N=M, h2, and h2

g . The set of simulations contained
within each panel varies one additional parameter, NS, which measures the amount of relatedness in the simulated data. (S denotes
the average squared off-diagonal entry of the pedigree relationship matrix.) Plotted values are mean Wald statistics and SEM over 100
simulations.
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Table 3. Calibration of Standard and Two-Variance-Component
Mixed-Model Association Statistics in CARe and FHS Simulations

Observed
SNPs

No. of SNPs
(M)

Standard
Mixed
Model Two Variance Components

Mean Wald Mean Wald Threshold (t)

CARe genotypes

chr 3–22 615,445 1.013 (0.002) 1.000 (0.002) 0.024

chr 3–6 195,333 1.024 (0.002) 1.002 (0.002) 0.051

chr 3–4 99,690 1.028 (0.002) 1.003 (0.002) 0.081

chr 22 9,713 1.036 (0.002) 1.014 (0.002) 0.387

FHS genotypes

chr 3–22 346,005 1.032 (0.003) 1.003 (0.003) 0.021

chr 3–6 110,203 1.071 (0.003) 1.008 (0.003) 0.040

chr 3–4 55,480 1.097 (0.003) 1.014 (0.003) 0.055

chr 22 5,277 1.189 (0.004) 1.055 (0.003) 0.258

Mean Wald statistics on candidate null SNPs for simulations with CARe or FHS
genotypes and a trait with h2 ¼ 0:5;h2

g ¼ 0:25. Reported values are means and
SEM over 100 simulations. The two-variance-component model selected the
specified threshold (t) to estimate the relatedness matrix. In simulations using
only SNPs on chromosome 22 to compute GRMs, we observed slight inflation
when using the two-variance-component model; given the large thresholds
ðt > 0:25Þ chosen by the model in these scenarios, we hypothesize that the
number of SNPs was too small to distinguish relatedness from noise in the
GRM, causing an incomplete correction. For corresponding type I error at
different a levels, see Table S10.
A challenge facing all genetic prediction methods is the

very large sample sizes that will be required to achieve

clinically relevant prediction accuracy.25,48 Indeed, in ab-

solute terms, the prediction accuracy we achieved on real

datasets of up to 8,000 samples was low, similar to other

methods when applied to traits without large-effect

loci.5,6,10 Our simulations show that the two-variance-

component approach we have proposed will maintain

its relative improvement over standard BLUP as sample

sizes increase; however, both of these methods face

computational barriers at large N. (Standard BLUP does

have the advantage that OðN3Þ-time computation is

required only for fitting the model but not for computing

predictions on new samples; in contrast, a straightforward

implementation of our two-variance-component method

for prediction requires OðN3Þ time per REML iteration

when estimating variance parameters as well as when

computing predictions, a consequence of the need to

combine training and target genotypes.) These limitations

could potentially be overcome by using a combination of

rapid relationship inference,49 fast multiple-variance-

component analysis (e.g., as implemented in BOLT-

REML50), and iterative solution of the mixed-model

equations.51,52 Similarly, the computational challenge of

large-scale two-variance-component association analysis

could potentially be addressed by extending fast iterative

methods for mixed-model association.16 An alternative,

computationally simple solution to inflation of associa-

tion-test statistics is LD score regression;53 however, this
The American
approach might incur slight deflation as a result of atten-

uation bias.16,53

We also note four additional limitations of our two-

variance-component approach. First, the method is only

applicable to datasets with related individuals for which ge-

notypes are available for analysis; however, large human

datasets of this type are now being generated: deCODE Ge-

netics has genotyped >30% of the Icelandic population,54

the UK Biobank will soon have genotypes for N ¼
500,000 individuals (close to 1% of the UK population;

see Web Resources), and 23andMe has assembled an even

larger cohort.55 Second, the improved predictive perfor-

mance of the two-variance-component approach is a func-

tion of the relatedness structure. Our parallel work in cattle

has reported improved prediction accuracy when using a

two-variance-component model incorporating exact pedi-

gree information56 or breed information;57 however, the

two-variance-component model did not produce an

improvement in analyses of Holstein dairy cattle (Table

S11), perhaps because of the very small effective population

size of this breed.58 Third, although the intuition behind

the two-variance-component model is to capture effects

of rare variants not tagged by SNP arrays, our observed gains

in prediction accuracy could also be partially explained by

the approximate pedigree component picking up shared

environment or epistasis; as such, care is needed in

interpreting fitted variance parameters as heritability esti-

mates.17 Fourth, our approach does not address case-con-

trol ascertainment. Although many large family datasets

are not ascertained for phenotype, investigating whether

techniques employed bymethods that domodel ascertain-

ment8 can be integrated into our two-variance-component

approach is a possible avenue for future work.
Appendix A

Formulas for Two-Variance-Component Mixed-Model

Prediction

Here, we provide explicit formulas for computing best

linear unbiased predictions under the two-variance-

component model

y � N
�
0;WWTs2

g

.
M þ �WWT

�
M
�
>t
s2
h þ Is2

e

�
;

combining Equation 9 with the approximation of pedigree

by using thresholded IBS, Equation 10, and leaving out

fixed effects for simplicity. We assume that we have a set

of training individuals (denoted with subscript � i) for

whomwe have both genotype and phenotype information

and that we have a set of testing individuals (denoted with

subscript i) for whom we have only genotype information

andwish to predict phenotypes. Thus, under this notation,

Wi denotes the submatrix of genotypes from testing indi-

viduals and W�i denotes the submatrix of genotypes

from training individuals.

Under the assumption that the variance parameters

s2g ; s
2
h; and s2e have already been fitted (e.g., by using
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Table 4. Calibration of Standard and Two-Variance-Component Mixed-Model Association Statistics for CARe and FHS Phenotypes

Phenotype N

Standard Mixed Model Two Variance Components

Mean Wald lGC bh2

g Mean Wald lGC bh2

g
bh2

CARe phenotypes

BMI 7,987 1.044 1.044 0.35 1.029 1.027 0.17 0.46

height 7,988 1.110 1.099 0.73 1.080 1.070 0.38 0.95

LDL 4,965 1.030 1.026 0.32 1.021 1.017 0.18 0.44

HDL 5,184 1.054 1.046 0.50 1.037 1.028 0.26 0.66

FHS phenotypes

BMI 7,476 1.060 1.058 0.43 1.032 1.032 0.21 0.47

height 7,476 1.126 1.112 0.81 1.070 1.058 0.39 0.87

We report the number of individuals (N) phenotyped for each trait and the mean Wald statistics and heritability parameters computed by the standard and two-
variance-component mixed models (averaged over 22 leave-one-chromosome-out runs).
REML on the training individuals), the BLUP predictions

for the test phenotypes are given by

byi ¼ Wi
bb þ s2

h

�
WiW

T
�i

�
M
�
>t

�
W�iW

T
�is

2
g

.
M

þ �W�iW
T
�i

�
M
�
>t
s2
h þ Is2

e

��1

y�i;

where

bb ¼ s2
gW

T
i

�
W�iW

T
�is

2
g

.
M þ �W�iW

T
�i

�
M
�
>t
s2
h þ Is2

e

��1

y�i:

We note that the first term of the formula for byi, namely

Wi
bb, has the form of a simple matrix-vector product be-

tween genotypes of testing individuals and a vector ðbbÞ
of SNP weights, as is the case for standard (one-variance-

component) genomic BLUP. This term is easy to compute

on testing individuals once we have estimated bb by using

the training data, whereas the second term of the predic-

tion formula requires more computation.

This observation suggests the possibility of performing

prediction by using only the first term as a computationally

efficient alternative to carrying out the full two-variance-

component computation. We tested the performance of

this approach on the CARe height phenotype but found

no significant difference in its performance versus that of

standard BLUP: –1% (SE 3%) change in prediction r2, in

contrast to the þ20% (SE 3%) change in prediction r2 of

the full two-variance-component approach over standard

BLUP (Table 2). This observation indicates that the gain in

prediction accuracy achieved by the two-variance-compo-

nentmodel is largely a result of capturing effects of rare var-

iants and requires the use of both variance components.
Two-Variance-Component Mixed Model with

Ungenotyped Individuals

Here, we derive extensions of two-variance-component

mixed-model prediction and association testing to make

use of data available from additional phenotyped but un-

genotyped relatives of genotyped individuals. In this
686 The American Journal of Human Genetics 97, 677–690, Novemb
case, we assume that we are given the pedigree relationship

matrix ðQÞ among all individuals, both typed and untyped.

We will use subscripts u and t to denote submatrices of

genotype and relationship matrices corresponding to un-

typed and typed individuals (e.g., Wu is the matrix of

[unobserved] genotypes for the ungenotyped individuals,

and Wt is the matrix of genotypes for the typed individ-

uals, so that Wu and Wt together comprise the genotype

matrixW). BecauseWu is unknown, we need a distribution

on W to describe the relationship between the genotypes

of typed and untyped individuals. For modeling purposes,

we assume that normalized SNPs in Wu are independently

drawn from a multivariate normal distribution according

to the pedigree structure: Nð0;QÞ.
To adapt our pedigree-based two-variance-component

model (Equation 9),

y � N
�
Xb;WWTs2

g

.
M þQs2

h þ Is2
e

�
;

to deal with the fact that W now has a subset of unknown

entries, we would ideally marginalize over the unobserved

genotypes, assuming the above distribution on Wu. How-

ever, this approach leads to an intractable integral. Instead,

we assume that y is normally distributed conditional on

the observed genotypes, in which case it suffices to

compute the mean and covariance of y. It is straightfor-

ward to see that the mean of y is Xb (assuming that we

observe the covariates for all individuals), and the covari-

ance of y is

V :¼ CovðyÞ ¼ s2
g E
�
WWT

�
M j Wt

	þ s2
hQþ s2

e I:

Therefore, this procedure amounts to replacing the un-

observed GRM with the expected GRM,

EWu

�
WWT

�
M j Wt

	
;

where the expectation is over the unobserved genotypes.

By using standard properties of the normal distribution,

we can compute the required moments
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E½Wu j Wt � ¼ QutQ
�1
tt Wt

E
�
WuW

T
u j Wt

	 ¼ MQuu �MQutQ
�1
tt Qtu

þ E½Wu j Wt �E
�
WT

u j Wt

	
¼ MQuu þQut

�
WtW

T
t �MQ�1

tt

�
Qtu:

Thus,
EWu

�
WWT

�
M j Wt

	 ¼ 
Quu þQut

�
WtW

T
t

�
M �Q�1

tt

�
Qtu QutQ

�1
tt WtW

T
t

�
M

WtW
T
t Q

�1
tt Qtu

�
M WtW

T
t

�
M

�
:

Legarra, Misztal, and Aguilar developed the same vari-

ance component to incorporate genetic marker informa-

tion with pedigree information in the context of cattle

phenotype prediction.32–34

The new phenotype model
y � N
�
Xb; s2

g E
�
WWT

�
M j Wt

	þ s2
hQþ s2

e I
�
¼ NðXb;VÞ

immediately enables BLUP prediction as before. However,

for association testing, the test SNP w ¼ ½wu;wt � is not

completely specified, so we need a novel association statis-

tic that accounts for the uncertainty in w. Assuming that

w � Nð0;QÞ, the model for y simplifies to
Uð0Þ2
�vU=vbð0Þ ¼

ð~wTV�1ðy � XbÞÞ2
~wTV�1 ~w þ traceðV�1AÞ � ðy � XbÞTðV�2AÞðy � XbÞ;
y �N

 "
QutQ

�1
tt wt

wt

#
bþ Xb;

"
Quu �QutQ

�1
tt Qtu 0

0 0

#
b2

þ V

!
:

and ~w ¼ ½QutQ
�1
tt wt ;wt � can be interpreted as the BLUP

imputation of the missing genotypes.

This distribution for y gives rise to a score statistic as fol-

lows. We start from the log likelihood function

logpðy j V;X;W; ~w;Q; bÞ ¼ � 0:5
�
log j V þ Ab2 j

þ ðy � ~wb� XbÞT�V þ Ab2
��1

3 ðy � ~wb� XbÞ
�

(up to a constant that does not depend on y or b), where

A ¼


Quu �QutQ

�1
tt Qtu 0

0 0

�

The American
is the adjustment to the variance. Expanding around

b ¼ 0, the log likelihood simplifies to

�2log pðy j V ;X;W; ~w;Q; bÞ ¼ log j V j þ trace
�
V�1A

�
b2

þ ðy � ~wb� XbÞTV�1ðy � ~wb� XbÞ
� ðy � XbÞT�V�2A

�ðy � XbÞb2 þ O
�
b3
�
;

so the score function is

UðbÞ ¼ vlogpðy j V;X;W; ~w;Q; bÞ
vb

¼ �
�
trace

�
V�1A

�
bþ ðy � XbÞTV�1 ~w þ ~wTV�1 ~wb

� ðy � XbÞT�V�2A
�ðy � XbÞb

�
þ O

�
b2
�
;

and

vU

vb
¼ �

�
trace

�
V�1A

�þ ~wTV�1 ~w

� ðy � XbÞT�V�2A
�ðy � XbÞ

�
þ OðbÞ

Hence, the score statistic to test the hypothesis that

b ¼ 0 is
where the nuisance parameters ðb; s2g ; s2h; s2e Þ are set to their

maximum likelihood values when b ¼ 0. The score statistic

is asymptotically distributed as c2 with 1 df. It is possible to

adjust the statistic slightly to produce a nearly equivalent

statistic that is easier to compute and precisely c2-distrib-

uted under the null distribution. Observe that

E
h
ðy � XbÞT�V�2A

�ðy � XbÞ
i
¼

E
h
trace

�
ðy � XbÞT�V�2A

�ðy � XbÞ
�i

¼ trace
�
Eðy � XbÞðy � XbÞT

i
V�2A

�
¼ traceðVV�2AÞ
¼ traceðV�1AÞ;

resulting in the simplified statistic

ð~wTV�1ðy � XbÞÞ2
~wTV�1 ~w

;

which is c2-distributed under the null distribution.

Notably, when V only incorporates pedigree information
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(i.e., V ¼ Qs2h þ Is2e ), we recover a prospective analog to

the retrospective MASTOR statistic.28

Alternatively, in a similar manner, we can compute a

retrospective statistic by considering the score statistic pro-

duced by log pðw j yÞ instead. Analogous manipulations

yield the retrospective statistic

ð~wTV�1ðy � XbÞÞ2
ðy � XbÞTV�1Q,tQ

�1
tt Qt,V�1ðy � XbÞ:

Given that the results from the retrospective model and

prospectivemodel are similar (data not shown), we focused

on the more commonly used prospective approach.
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Figure S1. Comparison of prediction r2(g) estimates for simulated phenotypes with CARe

genotypes. We compare two variance component BLUP (2 VC BLUP) and BLUP using the

thresholded matrix (BLUP w/ thresh) vs. standard BLUP. Plotted values correspond to the 100

random 90/10 train/test data splits summarized in Table 1a.
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Figure S2. Performance of two variance component prediction vs. standard BLUP on

simulated genotypes and phenotypes. We simulated genotypes for sets of sib-pairs (relatedness

= 0.5) using the simulation procedure described in Material and Methods with M=100 SNPs and

N/M=10,20,. . . ,100. We simulated phenotypes with h2

g=0.25 and h2=0.5. We computed

predictions using both standard BLUP and two variance component prediction for 10% of the

data, using the remaining 90% for training. We ran standard BLUP using the genetic relationship

relationship; for the two variance component approach, we included the true pedigree as a second

variance component and also assumed the ratio of variance parameters was known to be equal to

(h2 − h2

g)/h
2

g = 1. These results are therefore an upper bound for the performance of the two

variance components approach we have described in this manuscript (which approximates the

true pedigree with a thresholded GRM and estimates the ratio of variance parameters). Plotted

curves are means over 100 simulation replicates; error bars, s.e.m.
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Figure S3. Comparison of prediction r2 estimates for CARe phenotypes. We compare two

variance component BLUP (2 VC BLUP) and BLUP using the thresholded matrix (BLUP w/

thresh) vs. standard BLUP. Plotted values correspond to the 100 random 90/10 train/test data

splits summarized in Table 2a.
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Figure S4. Inflation and power for mixed models on simulated genotypes and phenotypes.

Over a range of simulation parameters, we plot our metrics for inflation (left) and power (right) of

association testing using the standard mixed model (MLM) and the two variance component

model (2 var. comp. MLM) against a two variance component model that replaces the thresholded

GRM with the true pedigree matrix. Each plotted point corresponds to a simulation parameter

setting (i.e., choice of N/M , h2, h2

g, and NS) plotted in Figure 1. Plotted values are means over

50 simulations. The two variance component method produces near-identical results whether

using the thresholded GRM or the true relatedness matrix, whereas standard MLM association

produces inflated statistics in many cases and sometimes suffers decreased power.
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Figure S5. Comparison of approximate vs. exact two variance component association test

statistics for CARe height phenotype. We computed exact likelihood ratio test statistics at 110

random SNPs (5 per chromosome) under the two variance component model and compared them

to the approximate statistics we computed genome-wide. (The exact likelihood ratio test is

computationally expensive, as it requires performing full maximum likelihood computations

independently at each SNP.) We observed that our approximate method produced near-identical

results (r2 = 0.999997).



Table S1. Heritability parameters for simulations using CARe and FHS genotypes

(a) CARe genotypes

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

Chrom. 2 - 22 0.380 (0.004) 0.507 (0.004) 0.225 (0.006) 0.285 (0.007)

Chrom. 3 - 6 0.323 (0.003) 0.491 (0.004) 0.238 (0.004) 0.256 (0.006)

Chrom. 3 - 4 0.303 (0.003) 0.482 (0.004) 0.244 (0.003) 0.242 (0.005)

(b) FHS genotypes

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

Chrom. 2 - 22 0.440 (0.002) 0.495 (0.002) 0.250 (0.006) 0.247 (0.005)

Chrom. 3 - 6 0.393 (0.002) 0.489 (0.002) 0.243 (0.003) 0.248 (0.003)

Chrom. 3 - 4 0.364 (0.002) 0.475 (0.002) 0.231 (0.003) 0.248 (0.002)

Phenotypes were simulated to have h2 = 0.5, h2

g = 0.25, and heritability parameters were

estimated using a random 90% of samples as training data. Reported values are mean prediction

r2 and s.e.m. over 100 independent simulations (in which phenotypes were re-simulated and

train/test splits resampled). BLUP w/ thresh. denotes BLUP prediction using the thresholded

relationship matrix instead of the standard approach of using the GRM (denoted simply “BLUP”).



Table S2. Prediction accuracy for simulations using CARe genotypes with no untyped

causal SNPs

Prediction r2(g)
Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

Chrom. 2 - 22 0.097 (0.002) 0.053 (0.002) 0.097 (0.002)

Chrom. 3 - 6 0.172 (0.003) 0.055 (0.002) 0.172 (0.003)

Chrom. 3 - 4 0.244 (0.003) 0.058 (0.002) 0.243 (0.003)

Phenotypes were simulated to have h2 = 0.5, h2

g = 0.5 (i.e., no untyped causal SNPs, so the two

variance component model is expected to achieve no gain). Prediction r2(g) was measured using

a random 90% of samples as training data and the remaining 10% as test data. Reported values

are mean prediction r2(g) and s.e.m. over 100 independent simulations (in which phenotypes

were re-simulated and train/test splits resampled). BLUP w/ thresh. denotes BLUP prediction

using the thresholded relationship matrix instead of the standard approach of using the GRM

(denoted simply “BLUP”). Prediction r2(g) denotes r2 between predicted phenotypes and true

genetic components of the simulated phenotypes.



Table S3. Prediction accuracy and heritability parameters for CARe simulations with LD

between typed and untyped SNPs

BLUP 2 VC BLUP BLUP 2VC BLUP

h2

typed ĥ2

g ĥ2

g ĥ2

>0.05 r2(g) r2(g)

0 0.348 (0.004) 0.188 (0.005) 0.321 (0.006) 0.064 (0.002) 0.077 (0.002)

0.05 0.362 (0.003) 0.213 (0.005) 0.291 (0.007) 0.065 (0.002) 0.077 (0.002)

0.1 0.378 (0.003) 0.244 (0.005) 0.263 (0.007) 0.068 (0.002) 0.078 (0.002)

0.15 0.392 (0.004) 0.271 (0.006) 0.232 (0.007) 0.073 (0.002) 0.080 (0.002)

0.2 0.409 (0.004) 0.296 (0.006) 0.213 (0.006) 0.073 (0.002) 0.079 (0.002)

0.25 0.415 (0.003) 0.310 (0.006) 0.193 (0.007) 0.082 (0.002) 0.086 (0.002)

We modified our simulations based on real CARe genotypes (Table 1a) to include LD between

typed and untyped SNPs by setting typed SNPs to be the 90% of CARe SNPs with highest MAF

and untyped SNPs to be the 10% of CARe SNPs with lowest MAF. (The MAF cutoff

corresponding to this split was 5.4%.) As in our simulations without LD between typed and

untyped SNPs, we simulated phenotypes with a total heritability of h2 = 0.5; in these new

simulations, we varied the fraction of variance directly explained by typed SNPs (h2

typed = 0, 0.05,

0.1, 0.15, 0.2, or 0.25), with the rest of the heritable variance (h2 − h2

typed) explained by untyped

SNPs. We note that the fraction of variance attributed to typed SNPs (by both standard BLUP and

2VC BLUP) exceeds h2

typed in these simulations because of the LD between typed and untyped

SNPs; we varied h2

typed from 0 to 0.25 for this reason. For the setting of h2

typed in which 2VC

BLUP partitions variance roughly equally between the GRM and thresholded GRM components

(h2

typed = 0.1)—matching the partitioning in our simulations without LD (Table S1a)—we

observed that 2VC BLUP achieved an increase in prediction accuracy (0.068 → 0.078) similar to

our simulations without LD between typed and untyped SNPs (0.062 → 0.071, Table 1a).



Table S4. Heritability parameters for CARe and FHS phenotypes

(a) CARe heritability parameters

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

BMI 0.336 (0.002) 0.468 (0.002) 0.148 (0.002) 0.321 (0.004)

height 0.673 (0.002) 0.953 (0.002) 0.364 (0.002) 0.591 (0.003)

LDL 0.339 (0.002) 0.432 (0.003) 0.219 (0.003) 0.216 (0.004)

HDL 0.512 (0.002) 0.666 (0.003) 0.299 (0.003) 0.366 (0.004)

(b) FHS heritability parameters

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

BMI 0.435 (0.001) 0.474 (0.001) 0.217 (0.002) 0.256 (0.002)

height 0.823 (0.001) 0.878 (0.001) 0.436 (0.002) 0.441 (0.002)

(c) CARe heritability parameters using genome-wide significant SNPs as fixed effect covariates

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

BMI 0.336 (0.002) 0.470 (0.002) 0.143 (0.002) 0.326 (0.004)

height 0.672 (0.002) 0.953 (0.002) 0.363 (0.002) 0.592 (0.003)

LDL 0.339 (0.003) 0.452 (0.003) 0.195 (0.004) 0.258 (0.005)

HDL 0.503 (0.002) 0.662 (0.003) 0.291 (0.003) 0.370 (0.004)

(d) FHS heritability parameters using genome-wide significant SNPs as fixed effect covariates

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

BMI 0.432 (0.001) 0.472 (0.001) 0.210 (0.002) 0.261 (0.002)

height 0.822 (0.001) 0.877 (0.001) 0.436 (0.002) 0.440 (0.002)

Heritability parameters are means over 100 random 90%-subsamples corresponding to the

train/test splits used to estimate prediction r2.



Table S5. Prediction accuracy for CARe and FHS phenotypes (1 – MSE)

(a) CARe prediction

1 – MSE 1 – MSE relative to BLUP (s.e.)

Phenotype BLUP BLUP w/ thresh. 2 VC BLUP BLUP w/ thresh. 2 VC BLUP

BMI 0.022 0.025 0.027 +14% (9%) +19% (5%)

height 0.061 0.065 0.078 +7% (6%) +22% (3%)

LDL 0.014 0.015 0.017 +1% (16%) +13% (5%)

HDL 0.032 0.030 0.036 -8% (11%) +12% (4%)

(b) CARe prediction using genome-wide significant SNPs as fixed effect covariates

1 – MSE 1 – MSE relative to BLUP (s.e.)

Phenotype BLUP BLUP w/ thresh. 2 VC BLUP BLUP w/ thresh. 2 VC BLUP

BMI 0.021 0.024 0.026 +15% (9%) +20% (6%)

height 0.060 0.064 0.076 +6% (6%) +22% (3%)

LDL 0.035 0.037 0.038 +4% (7%) +7% (3%)

HDL 0.048 0.046 0.052 -6% (7%) +8% (3%)

We normalized mean square errors by dividing by phenotypic variance and computed the mean of

1 – MSE over 100 random 90/10 train/test data splits. Relative performance values reported are

ratios of means minus 1; standard errors are estimated as standard deviations of per-split

differences in 1 – MSE (over the random 10% test sets) divided by
√
10 (to account for the 10x

larger sample size of the full data set; see Material and Methods). BLUP w/ thresh. denotes

BLUP prediction using the thresholded relationship matrix instead of the standard approach of

using the GRM (denoted simply “BLUP”).



Table S6. Prediction accuracy for simulations with 25% untyped individuals using CARe

and FHS genotypes

(a) CARe genotypes

Prediction r2(g)
Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

Chrom. 2 - 22 0.061 (0.002) 0.060 (0.002) 0.068 (0.002)

Chrom. 3 - 6 0.080 (0.002) 0.064 (0.002) 0.089 (0.002)

Chrom. 3 - 4 0.089 (0.002) 0.058 (0.002) 0.098 (0.002)

(b) FHS genotypes

Prediction r2(g)
Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

Chrom. 2 - 22 0.226 (0.003) 0.225 (0.003) 0.235 (0.003)

Chrom. 3 - 6 0.240 (0.003) 0.228 (0.003) 0.260 (0.003)

Chrom. 3 - 4 0.257 (0.003) 0.232 (0.003) 0.282 (0.003)

Phenotypes were simulated to have h2 = 0.5, h2

g = 0.25, and prediction r2(g) was measured using

a random 90% of samples as training data and the remaining 10% as test data. Reported values

are mean prediction r2(g) and s.e.m. over 100 independent simulations (in which phenotypes

were re-simulated and train/test splits resampled). BLUP w/ thresh. denotes BLUP prediction

using the thresholded relationship matrix instead of the standard approach of using the GRM

(denoted simply “BLUP”). Prediction r2(g) denotes r2 between predicted phenotypes and true

genetic components of the simulated phenotypes.



Table S7. Prediction accuracy for CARe and FHS phenotypes with 25% untyped individuals

(a) CARe prediction

Prediction r2 Prediction r2 relative to BLUP (s.e.)

Phenotype BLUP BLUP w/ thresh. 2 VC BLUP BLUP w/ thresh. 2 VC BLUP

BMI 0.024 0.027 0.028 +12% (8%) +15% (5%)

height 0.064 0.067 0.076 +4% (5%) +16% (3%)

LDL 0.017 0.017 0.019 -1% (13%) +7% (5%)

HDL 0.035 0.032 0.038 -9% (9%) +8% (4%)

(b) FHS prediction

Prediction r2 Prediction r2 relative to BLUP (s.e.)

Phenotype BLUP BLUP w/ thresh. 2 VC BLUP BLUP w/ thresh. 2 VC BLUP

BMI 0.103 0.104 0.106 +0.8% (2.2%) +3.0% (1.1%)

height 0.344 0.342 0.352 -0.5% (1.1%) +2.4% (0.5%)

(c) CARe prediction using genome-wide significant SNPs as fixed effect covariates

Prediction r2 Prediction r2 relative to BLUP (s.e.)

Phenotype BLUP BLUP w/ thresh. 2 VC BLUP BLUP w/ thresh. 2 VC BLUP

BMI 0.023 0.027 0.028 +12% (8%) +16% (5%)

height 0.064 0.066 0.076 +4% (5%) +16% (3%)

LDL 0.036 0.036 0.037 +0% (6%) +4% (3%)

HDL 0.052 0.049 0.055 -6% (6%) +5% (3%)

(d) FHS prediction using genome-wide significant SNPs as fixed effect covariates

Prediction r2 Prediction r2 relative to BLUP (s.e.)

Phenotype BLUP BLUP w/ thresh. 2 VC BLUP BLUP w/ thresh. 2 VC BLUP

BMI 0.104 0.105 0.107 +0.9% (2.2%) +3.0% (1.1%)

height 0.344 0.342 0.352 -0.6% (1.1%) +2.3% (0.5%)

Prediction r2 values are means over 100 random 90/10 train/test data splits. Relative performance

values reported are ratios of means minus 1; standard errors are estimated as standard deviations

of per-split differences in r2 (over the random 10% test sets) divided by
√
10 (to account for the

10x larger sample size of the full data set; see Material and Methods). BLUP w/ thresh. denotes

BLUP prediction using the thresholded relationship matrix instead of the standard approach of

using the GRM (denoted simply “BLUP”).



Table S8. Heritability parameters for simulations with 25% untyped individuals using

CARe and FHS genotypes

(a) CARe genotypes

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

Chrom. 2 - 22 0.421 (0.004) 0.507 (0.004) 0.228 (0.007) 0.280 (0.008)

Chrom. 3 - 6 0.355 (0.004) 0.489 (0.004) 0.239 (0.004) 0.251 (0.006)

Chrom. 3 - 4 0.328 (0.003) 0.482 (0.004) 0.244 (0.004) 0.240 (0.005)

(b) FHS genotypes

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

Chrom. 2 - 22 0.457 (0.002) 0.495 (0.002) 0.253 (0.006) 0.242 (0.006)

Chrom. 3 - 6 0.417 (0.002) 0.489 (0.002) 0.240 (0.004) 0.250 (0.003)

Chrom. 3 - 4 0.386 (0.002) 0.475 (0.002) 0.229 (0.003) 0.249 (0.003)

Phenotypes were simulated to have h2 = 0.5, h2

g = 0.25, and heritability parameters were

estimated using a random 90% of samples as training data. Reported values are mean prediction

r2 and s.e.m. over 100 independent simulations (in which phenotypes were re-simulated and

train/test splits resampled). BLUP w/ thresh. denotes BLUP prediction using the thresholded

relationship matrix instead of the standard approach of using the GRM (denoted simply “BLUP”).



Table S9. Heritability parameters for CARe and FHS phenotypes with 25% untyped

individuals

(a) CARe heritability parameters

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

BMI 0.372 (0.002) 0.468 (0.002) 0.142 (0.005) 0.326 (0.006)

height 0.781 (0.003) 0.953 (0.002) 0.374 (0.004) 0.580 (0.004)

LDL 0.371 (0.003) 0.432 (0.003) 0.234 (0.006) 0.201 (0.007)

HDL 0.563 (0.003) 0.666 (0.003) 0.311 (0.006) 0.354 (0.007)

(b) FHS heritability parameters

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

BMI 0.448 (0.001) 0.474 (0.001) 0.221 (0.004) 0.252 (0.004)

height 0.843 (0.001) 0.878 (0.001) 0.448 (0.005) 0.427 (0.005)

(c) CARe heritability parameters using genome-wide significant SNPs as fixed effect covariates

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

BMI 0.372 (0.002) 0.468 (0.002) 0.140 (0.005) 0.328 (0.006)

height 0.780 (0.003) 0.953 (0.002) 0.373 (0.004) 0.582 (0.004)

LDL 0.376 (0.003) 0.446 (0.003) 0.213 (0.006) 0.234 (0.007)

HDL 0.559 (0.003) 0.662 (0.003) 0.314 (0.006) 0.347 (0.007)

(d) FHS heritability parameters using genome-wide significant SNPs as fixed effect covariates

Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

ĥ2

g ĥ2

>0.05 ĥ2

g ĥ2

>0.05

BMI 0.448 (0.001) 0.474 (0.001) 0.219 (0.004) 0.254 (0.004)

height 0.843 (0.001) 0.878 (0.001) 0.448 (0.005) 0.427 (0.005)

Heritability parameters are means over 100 random 90%-subsamples corresponding to the

train/test splits used to estimate prediction r2.



Table S10. Type I error of standard and two-variance-component mixed model association

statistics in CARe and FHS simulations

(a) CARe genotypes

Observed SNPs Standard mixed model Two variance components

α=0.01 α=0.0001 α=0.01 α=0.0001

Chrom. 3 - 22 1.05e-02 1.13e-04 1.00e-02 1.02e-04

Chrom. 3 - 6 1.10e-02 1.26e-04 1.01e-02 1.07e-04

Chrom. 3 - 4 1.11e-02 1.30e-04 1.01e-02 1.07e-04

Chrom. 22 1.14e-02 1.35e-04 1.05e-02 1.16e-04

(b) FHS genotypes

Observed SNPs Standard mixed model Two variance components

α=0.01 α=0.0001 α=0.01 α=0.0001

Chrom. 3 - 22 1.12e-02 1.40e-04 1.01e-02 1.09e-04

Chrom. 3 - 6 1.28e-02 1.84e-04 1.04e-02 1.20e-04

Chrom. 3 - 4 1.40e-02 2.11e-04 1.07e-02 1.25e-04

Chrom. 22 1.81e-02 3.57e-04 1.21e-02 1.50e-04

Type I error of Wald statistics on candidate null SNPs for simulations with CARe or FHS

genotypes and a trait with h2 = 0.5, h2

g = 0.25 (see Table 3 for details). Reported values are

aggregated over 100 simulations testing null SNPs on chromosome 2 (63,077 SNPs for CARe,

34,608 SNPs for FHS).



Table S11. Prediction accuracy for a range of dairy cattle traits

Num. of Records Prediction r2

Trait Training (Validation) BLUP BLUP w/ pedigree 2 VC BLUP

Fat Yield 8820 (1053) 0.360 0.169 0.359

Milk Yield 8820 (1053) 0.490 0.267 0.506

Protein Yield 8820 (1053) 0.442 0.265 0.453

Teat Length 2500 (360) 0.312 0.203 0.315

Temperament 5543 (734) 0.110 0.053 0.109

Fertility 8428 (838) 0.225 0.122 0.225

We analyzed four dairy cattle traits from the Holstein breed using a data set previously described

in [59]. We added two further phenotypes which had been recorded for the same animals:

temperament score and teat length (both have an influence on the ease of milking). Animals had

632,002 SNP genotypes. We tested three BLUP prediction methods: standard mixed model

BLUP, BLUP using the pedigree, and two variance component BLUP using both the GRM and

pedigree. (We used the full pedigree relationship matrix in place of the thresholded GRM because

extensive pedigree records are typically available in dairy cattle.) We analyzed corrected

phenotypes including both progeny tested bulls and cows with repeat records in a weighted

analysis (with weights calculated from the effective number of records per animal) as described

in [59]. We implemented the analyses using ASReml software [60]. The training/test data split

(approximately 90/10) was based on a date of birth cutoff, with the youngest bulls used for the

test set. Only bull data was used for the test set because their phenotypes (progeny test with ≥20

daughter records) are considerably more accurate than those of cows.

We did not observe a consistent advantage in prediction accuracy using the two variance

component model compared to standard BLUP. Possible reasons for the difference between cattle

and human results are:

1. In Holstein dairy cattle, linkage disequilibrium (LD) decays much more slowly with

physical distance between variants compared to humans because of their recent sharp

decline to a very small effective population size [61].

2. The recent very small effective population size results in fewer rare variants segregating

compared to some human populations which have relatively large effective population size

and have undergone recent expansion. This means there is likely to be a lower proportion of

rare causal variants in cattle compared to human populations.

3. The training population is very closely related to the test population.

These three factors combined suggest that similarly dense SNP genotypes may more accurately

track the variance due to causal mutations within a single cattle breed compared to the human

data in this study. We might still therefore expect some improvement in accuracy from the 2 VC

model in cattle if using a less dense SNP chip (e.g., 50K) or mixed breed analysis because a more

significant proportion of causal mutations may not be in high LD with typed SNPs.
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