Supplemental Information

Hydrogen Impurity Defects in Rutile TiO₂

Li-Bin Mo,¹ Yu Wang,² Yang Bai,¹ Qing-Yun Xiang,¹ Qun Li,¹ Wen-Qing Yao,³ Jia-Ou Wang,⁴ Kurash Ibrahim,⁴ Huan-Hua Wang,⁴ Cai-Hua Wan⁵ and Jiang-Li Cao^{1, *} ¹Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China

²Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, China ³Department of Chemistry, Tsinghua University, Beijing 100084, China ⁴Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

⁵Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

*Author to whom correspondence should be addressed. Email: perov@sina.com

Fig. S1 Hall effect measurements of rutile TiO₂ single crystals at low temperatures. (a) Vacuum-annealed TiO₂, (b) gas-hydrogenated TiO₂, and (c) atom-hydrogenated TiO₂. The carrier concentration *n*, the resistivity ρ and the carrier mobility μ were obtained through linear fitting between the measured Hall resistance and the applied magnetic field.

Fig. S2 XRD patterns of rutile TiO_2 samples. The TiO_2 single crystals were ground into powders for the XRD measurements.

Fig. S3 Infrared absorption spectra of annealed TiO₂.

Table I Bader analyses.

Atom	Bader charge	Distance	Atom	Bader charge	Distance
Blank sample			O_4	7.0288	0.8484
0	6.9767	0.844	Ti_1	2.0386	0.8313
Ti	2.0453	0.886	Ti_2	2.0316	0.8761
Vo			Ti ₃	2.0390	0.8326
O ₁	7.0156	0.8447	Ti_4	2.0317	0.8705
O_2	7.0156	0.8774	Но		
O ₃	7.0156	0.8405	Н	1.5039	0.7438
Ti_1	2.0953	0.8041	O ₁	6.9946	0.8447
Ti_2	2.0953	0.8041	O_2	6.9946	0.8447
Ti ₃	2.0987	0.8128	O ₃	6.9874	0.8412
Hi			O_4	6.9875	0.8412
Η	0.3565	0.0704	Ti_1	2.0788	0.8322
O ₁	6.9981	0.8248	Ti_2	2.0787	0.8312
O_2	7.1875	0.7024	Ti ₃	2.0925	0.8601
O ₃	7.0013	0.8284			