
Supplementary Figures

Supplementary Figure 1: Schematic diagram of light injection and collection.
Light is focussed by the objective into the input grating, propagates through
the waveguide core, exits through the output grating and is re-collimated by
the objective.
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Supplementary Figure 2: Properties of incident and coupled pulses. (a) Incident
pulse spectrum and pulse spectrum after filtering by grating incoupler. (b)
Streak camera measurement of incident pulse.
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Supplementary Figure 3: Calculated evolution of pulse temporal (a) and spec-
tral (b) width and the time-bandwidth product (c) with propagation along the
waveguide in the linear (0.8fJ pulse) and soliton (270fJ pulse) regimes.
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Supplementary Figure 4: Nonlinear interaction induced blueshift of polariton
dispersion. (a) shows the spectra above and below threshold at the wavevector
corresponding to the centre of the spectrum. (b) Frequency shift at the central
wavevector as a function of total pulse energy.
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Supplementary Figure 5: Spatial phase profile at output grating at low (a) and
high (b) excitation power. Blue dots are a guide to the eye.
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Supplementary Notes

Supplementary Note 1 Grating Coupling and Dispersion

Relation

Supplementary Figure 1 shows a schematic of the light injection and collection

scheme. Incident light is focussed by a microscope objective onto a grating

coupler. The grating couplers consist of a periodic modulation of the surface

depth with a period of 0.25 µm over a distance of 200 µm in the propagation

direction z. They are homogeneous in the direction transverse to propagation

and 200 µm wide. The light is incident at an angle θ ∼ -11.7 degrees from the

sample surface. The angle may be freely adjusted by translating the beam before

the objective perpendicular to the optic axis. The grating coupler acts like a

diffraction grating and adds multiples of the grating wavevector G = 2π/0.25

µm = 25.1 µm−1 to the free-space wavevector kz = (2π/λ) sin(θ). Only the zero

order diffraction is supported in air since the total possible wavevector in air

at the operating wavelength around 841.5nm is 7.47 µm−1. The +1 diffraction

order couples the light to the waveguide guided mode which has a propagation

constant of 23.6 µm−1 at the operating wavelength. There is no guided mode at

the wavevector of -26.6 µm−1 corresponding to the -1 diffraction order. Thus the

incident light may be either reflected, transmitted or couple to the guided mode

in the forward direction. The exact angle of incidence is chosen to maximise

light coupling to the guided mode at the wavelength currently in use. The

incident beam had no wavevector component perpendicular to the propagation

direction z between the centres of the input and output grating couplers so that

the light travelled directly between the centers of the gratings.

In the region of the output grating the decay length of the polaritons is much

shorter than in the unpatterned waveguide because they may tunnel out into

6



free space photon modes above and below the waveguide. Outcoupled light is

collected by the same microscope objective used to excite the system. Direct

imaging of the output grating onto a CCD camera reveals that the decay length

of polaritons on the grating is ' 20 µm. This is ten times shorter than the

length of the grating so that we can be sure all the light is coupled out from the

guided mode. Imaging the grating onto a CCD camera also allows the spatial

intensity profile transverse to the propagation direction to be measured directly.

Examples of the spatial profile measured in this way are shown in Fig. 5 (a-

d) in the main text where the narrowing of the spatial dark notch indicates

dark soliton formation. For the data in Fig. 5 the temporal profile is recorded

simultaneously with the spatial profile as the CCD camera is attached to the

exit of a streak camera. The sample was aligned so that the direction transverse

to propagation, x, was parallel to the streak camera entrance slit.

As with the input grating, the output grating diffracts the guided mode out

to free space with each wavevector (propagation constant) inside the waveg-

uide corresponding to a different angle in air. By imaging the Fourier plane

of the objective onto a detector we are able to record wavevector resolved im-

ages of the light in the waveguide. In Fig. 1(b) in the main text this is used

to make wavevector and energy resolved photoluminescence images which re-

veal the polaritonic dispersion relation of the guided mode. In Fig.3 in the

manuscript this technique is used to produce wavevector resolved time-of-flight

measurements. The time of flight was determined at a series of wavevectors

by scanning the image of the fourier plane across the streak camera entrance

slit. For each wavevector the reflection of the incident laser pulse from the in-

put grating and the pulse coupled out from the output grating after propagating

through the waveguide were simultaneously recorded on the streak camera. The

peaks were fit with gaussians and the time of flight between them extracted.
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Since the guided mode dispersion provides a one-to-one mapping of wavevector

to frequency this technique allows us to measure the temporal spread among

different frequency components of a pulse, which is a measure of the propagation

induced chirp.

The measured polariton dispersion relation (Fig.1(b) in the main text) pro-

vides the full relationship between frequency and propagation constant (wavevec-

tor) for light in the waveguide. It allows complete characterisation of the size

of the GVD without the need to compare input and output pulse widths. The

expression for the dispersion relation is given in the methods in the main text

and it is plotted as the solid black curve in Fig. 1(b) where the good agreement

with the measured PL spectrum can be seen. The dispersion parameters β2

etc., usually used to characterise dispersive pulse spreading [1], are simply the

values of the derivatives of this relation taken at the central pulse frequency.

The fact that these correctly describe the GVD experienced by the pulses in

the waveguide is shown by the wavevector resolved time of flight measurements

taken at low power, shown in Fig.3 in the main text. The solid line shows the ex-

pected spread of arrival times calculated from the dispersion relation and agrees

well with the measured spread in arrival times (black points). The expression

for the second order dispersion coefficient β2 in terms of detuning of the pulse

central frequency from the excitonic resonance is given in the methods in the

main text. Using the expression we obtain β2 between 400 and 1000 ps2m−1 for

the detuning range we use as stated in the manuscript. The dispersion length,

which characterises the spreading of a pulse with a particular spectral width,

is given by LD = T 2
0 /β2 [1]. Here it is important to note that T0 = 1.665/∆ω

is properly obtained from the spectral FWHM ∆ω of the pulse and not from

the actual temporal profile. This is because dispersion is fundamentally the

accumulation of phase differences between spectral components of a pulse. A
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discussion of the propagation of pulses under the action of dispersion is avail-

able in Supplementary Reference [1]. Using our measured pulse spectral width

of 5.5meV and the values of β2 above gives T0 = 0.21ps and we obtain disper-

sion lengths between 44 µm and 110 µm. Thus the measured spectral width and

the measured polariton dispersion relation, confirmed by the low power time of

flight measurements, fully quantify the dispersion.

Supplementary Note 2 Input Pulse Characteristics

Near transform-limited 100 femto-second pulses were obtained from a Spectra-

Physics Tsunami mode-locked Titanium doped Sapphire laser. They were passed

through a dispersion-free diffractive pulse shaper [2] with a mechanical variable

slit to allow transform limited pulses of variable temporal width to be generated.

The spectral envelope of the pulses matches the square transmission function of

the slit.

Supplementary Figure 2(a) shows the pulse spectrum incident on the sample

and the spectrum coupled in through the grating for a detuning δc = -7.6meV.

The two are not the same because only those components of the pulse which

match the angle and frequency of the guided mode within the waveguide will

efficiently couple to it. Therefore the waveguide filters the incident spectrum

and the coupled spectrum is narrower than the incident spectrum. The coupled

spectrum was measured by collecting the spectrum from the output grating

which is reasonable given that the loss length does not vary significantly with

frequency over the pulse spectral range and the output coupler couples out all

the light in the waveguide regardless of frequency (see Supplementary Note 1).

Supplementary Figure 2(b) shows the temporal profile of the incident pulse

corresponding to the spectra in Supplementary Figure 2(a) as recorded by the

streak camera. The measured FWHM of the temporal profile of the input
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pulse is ∆Tmeas = 2 ps. The real pulse temporal width may be obtained using

∆T =
√

∆T 2
meas −∆T 2

res where ∆Tres is the streak camera resolution. In fact we

measure ∆Tres = 2ps so the incident pulse is indistinguishable from the streak

camera response function. This shows that the input pulse is much shorter than

2ps and so it is reasonable to take the pulse temporal width of 350fs from the

measured spectral width of the pulse.

Supplementary Note 3 Spectral Compression and The Ef-

fect of Loss

In Fig. 2 in the main text it is seen that for high energy pulses both the temporal

and spectral widths narrow. In this section we will discuss the mechanism which

selects spectral narrowing rather than spectral broadening or, indeed, spectral

invariance. First we note however that although a simultaneous spectral and

temporal narrowing might appear at first glance to violate the Fourier limit this

is not the case. At low power the pulse observed at the output has undergone

a large amount of dispersion and so its temporal width is expected to be much

larger than the Fourier limit. Above threshold the dispersion is cancelled so the

time-bandwidth product is much less than in the highly dispersive low power

case.

We now discuss how the presence of weak linear losses leads to spectral com-

pression. In general pulses may undergo either spectral compression or expan-

sion or remain the same. In the most simple system, described by the Nonlinear

Schrodinger Equation (NSE) without perturbations, an incident pulse which ex-

actly matches the shape and magnitude of the fundamental soliton solution of

the waveguide will propagate forever without changing its spectral or temporal

distribution away from those of the incident pulse. Weak losses add an extra

perturbative term to the NSE and the effect of this term on the solutions has
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been much studied in the literature (See e.g. Supplementary References [1, 10]).

Qualitatively, as the pulse propagates and loses energy the peak power and hence

the rate of nonlinear phase shift decreases. To keep the nonlinear and disper-

sion lengths balanced the spectrum must narrow in order to reduce the rate of

dispersive phase shift. The pulses remain close to the ideal (lossless) soliton

solutions but undergo an adiabatic temporal spreading and spectral narrowing

as they propagate. This process of adiabatic pulse adjustment to compensate

the loss occurs while the loss length is larger than both the nonlinear and dis-

persion lengths, as in our case where Lloss = 400µm (methods A) is longer than

LNL = LD ∼44-100 µm.

We have confirmed that this behaviour is reproduced in our system using the

numerical model. In Fig. 4(f) in the main text the gradual temporal spreading

with propagation distance along the waveguide may be seen. In Supplemen-

tary Figure 3 we summarise the spectral and temporal widths and the time-

bandwidth product of the pulse as it propagates in the linear and solitonic

regimes. In the low power regime the spectral width is essentially unchanged

apart from a small decrease due to a small frequency dependence of the loss

length. The temporal width (not including convolution with the detector re-

sponse) increases rapidly due to dispersion. In the high power case it can be seen

that, as expected, the much less rapid temporal spreading is accompanied by a

gradual spectral narrowing which keeps the time-bandwidth product as close to

that of the ideal soliton solution as possible. The numerical results demonstrate

that the coupled light-matter system behaves in a qualitatively similar way to

the NSE with loss.
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Supplementary Note 4 Strong Coupling in the Soliton

Regime

Figure 1(b) in the main text shows the polariton dispersion relation measured

at low power using continuous wave above-bandgap excitation. The strong cou-

pling is shown by the curvature of the mode. For more details see Supplementary

Reference [9]. For the pulsed excitation used in this work the strong coupling at

low power is shown by the good agreement of the measured and modelled fre-

quency dependent times of flight shown in Fig. 3 in the main text. It is known

that at high intensities the excitons may be destroyed and strong coupling lost.

It is important for the results presented in this paper that the strong coupling

is maintained in the high power pulsed regime where solitons are observed. We

show that this is the case in three ways.

Firstly, the observed energy blueshift of the polaritons at the output grating

was 100 µeV in the soliton regime which is much less than half the vacuum

Rabi splitting (4.5 meV). It corresponds to an exciton density of 3x109 cm−2 in

each quantum well (See Supplementary Note 6), which is more than an order

of magnitude smaller than the Mott density at which the excitonic resonance

collapses [4]. Secondly, we note that the dependence of output power on input

power was linear. If the density were sufficiently high to bleach the exciton

resonance one would expect the broadened exciton line to cause extra absorption

leading to a sublinear output power dependence, which was not observed.

Finally, we examine the soliton velocities. In Fig. 3 in the main text we

plot wavevector resolved time of flight measurements for a range of detunings.

There is a very strong dependence of the soliton velocity on the detuning of

the pulse central frequency from the exciton. This shows that the photons

are still strongly coupled to the excitonic resonance even at high pulse powers.

Additionally, as noted in the main text, the group velocities of the polaritons
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are much less than the uncoupled photon group velocity of 58 µm ps−1 which

one would expect if the system had reached the weak coupling regime.

In conclusion, for all the reasons discussed above e.g. small energy shift,

lack of nonlinear absorption, strong detuning dependence of soliton velocity

and soliton velocity lower than that of weakly coupled photons, we can be sure

that the system remains in the strong coupling regime at high powers.

Supplementary Note 5 Deduction of Effective Nonlinear

Refractive Index

Soliton formation requires the characteristic length scale LNL = 1/(γP0) ≈

T/(γE) for the buildup of nonlinear phase to be comparable to the dispersion

length LD = T 2
0 / |β2|. Here, P0 is the pulse peak power, T=350fs is the pulse

width, E is the characteristic pulse energy for the soliton formation, γ is the

nonlinear waveguide parameter [1] and T0 ' 1.665/∆ω is obtained from the

pulse spectral FWHM ∆ω (see Supplementary Note 1). We note that solitons

in any lossy system will lose intensity as they propagate with a characteristic loss

length Lloss which is 400 µm in our system. Provided that LNL = LD < Lloss

the nonlinearity will adiabatically adjust the pulse width to compensate the

loss and solitons may still be expected (see Supplementary Note 3). From

these considerations we now estimate the nonlinear parameter and an effective

nonlinear refractive index for our system. Taking the threshold pulse energy at

the waveguide exit as 100fJ and Lloss = 400µm we estimate E = 450fJ at the

input. Setting LNL = LD we obtain γ = T/(ELD) ∼ -18,000/(Wm). This may

be related to an effective nonlinear refractive index by the standard formula

γ = n2k0/Aeff where k0 is the vacuum wavenumber and Aeff = 6.6 µm2 is the

effective mode area from Eqn. 1 [1].
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Aeff =

(∫ ∫∞
−∞ |F (x, y)|2 dxdy

)2

∫ ∫∞
−∞ |F (x, y)|4 dxdy

' ∆x∆y
π

2ln(2)
(1)

We obtain n2 =-1.6x10−14 m2W−1. In using this expression for n2 we have

treated the waveguide with embedded quantum wells as an effective material.

When comparing to waveguides composed of bulk materials the ratio of our n2

to that for the bulk material gives the ratio of nonlinear phase shift for devices

of the same physical size operating at the same wavelength and power density.

In the above we have assumed that the pulse is transform limited which gives

the maximum peak power P0 for a given spectral width. For pulses longer than

the transform limit the dispersion, given by the spectrum, would be the same

but the peak power would be lower so that a nonlinearity larger than the value

quoted would be needed to balance the dispersion.

Supplementary Note 6 Comparison of Nonlinearity with

Bragg Microcavity Polaritons and Deduction of n2 from

Blueshift

The polariton nonlinearity in planar microcavities is expressed in the literature

by the interaction induced frequency blueshift per exciton in one square mi-

crometer of a single quantum well and is in the range 2-10 µeV µm2 per exciton

(see Supplementary Reference [3] and references therein). The very large non-

linearity in our system allows us to directly observe this blueshift in the emission

from the output grating.

In Supplementary Figure 4 we plot the spectral shift of the emission at the

central wavevector as the pulse energy is increased. There is a clear shift of the

emission towards higher energies as the pump power increases. This blueshift

increases linearly with pulse energy and once the energy is greater than the
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soliton formation threshold it decreases. It is important to note that although

the blueshift decreases the total output pulse energy remains linear with input

power so that no polaritons are lost but are only transferred to different states.

For pulse energies above threshold the blueshift decreases meaning that the

peak density decreases. This is because for pulse energies above threshold the

spectrum gradually becomes modulated, with particles being transferred into

spectral sidebands. The detailed study of this effect is beyond the scope of this

paper.

The pulse energy may be converted to a peak number density of excitons

per quantum well using equation (2) where E is the pulse energy, ∆x =20 µm

is the transverse spatial FWHM of the soliton, |X|2 = 26% is the excitonic

content of the polaritons, vg =43 µm ps−1 is the group velocity, T is the pulse

temporal FWHM, ω is the pulse central frequency and NQW = 3 is the number

of quantum wells and values are given for a central pulse frequency detuning

h̄δc = -7.6 meV from the exciton.

Npeak = |X|2 E

h̄ω

1

vgT∆xNQW
(2)

At the output grating the observed blueshift ∆E = 100µeV for a pulse energy

of 0.1 pJ. Taking the pulse width at the output as T=1.5ps we obtain Npeak

= 28.5 excitons per µm2 per quantum well which gives an interaction constant

gX = ∆E/Npeak = 3.5 µeV µm2 which is in good agreement with a theoretical

estimate gX = 3a2
BEx = 3 µeV µm2 where aB and Ex are the exciton bohr

radius and binding energy respectively [3].

To compare the fundamental excitonic nonlinearity gX common in exciton-

polariton literature with the nonlinearity γ of nonlinear optics we note that a

frequency blueshift at fixed wavevector and a wavevector shift at fixed frequency

are related by the group velocity using equation (3)
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∆k =
dk

dω
∆ω =

∆ω

vg
(3)

The nonlinear length may then be obtained using LNL = 1/∆k. Combining

these with equation (2) leads to the relation between gX and γ given in equation

(4).

γ =
(gX/h̄) |X|2

h̄ω∆xNQWvg
2

(4)

Inserting the value gX = 3.5 µeV µm2 obtained from the blueshift measure-

ments we obtain γ = 52800 (Wm)−1. To convert the nonlinear parameter γ to

the nonlinear refractive index we use equation n2 = γAeff/k0 where Aeff = 6.6

µm2 is given by equation (1) [1]. We obtain n2 = 4.7x10−14 m2W−1.

This direct estimate of the nonlinearity is a factor of three larger than the

value obtained in the main text using a comparison of dispersion and nonlinear

lengths. The agreement is reasonable given the uncertainties in some of the

parameters. Both estimates are sufficient to establish the very large nonlinearity

of the system and to show the overall reliability of the deduction of n2.

Supplementary Note 7 Comparison with Other On-Chip

Soliton Schemes

In Supplementary Note 5 we deduce a value γ ∼ 18000/(Wm) for the nonlinear

parameter and n2 =-1.6x10−14 m2W−1 for the effective nonlinear refractive in-

dex. This is more than three orders of magnitude larger than 6x10−18 m2W−1

in silicon [5, 6] and InGaP [7] which have recently been used in a suspended

membrane photonic crystal geometry in two of the most promising demonstra-

tions of solitons for integrated optics until now. In those systems solitons are

formed at pulse energies of 12pJ for InGaP [7] and 9pJ for silicon [5] which
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are 1.3-1.4 orders of magnitude higher than 0.45pJ for the energy at the input

grating in our system. We note that in those works the effective mode areas

are smaller (∼0.5µm2) and the dispersion lengths are much longer (3.6mm and

1mm) than in our system both of which can be used to reduce the threshold,

the latter at the expense of increased circuit size.

It is also important to compare our nonlinearity to III-V planar waveguides

in the weak coupling regime. In Supplementary Reference [8] solitons were

generated in a 2.5mm long AlGaAs waveguide at pulse energies of ∼40pJ and

one may infer a nonlinear parameter γ ∼ 23/(Wm) which agrees with their

quoted n2 = -1.82x10−17 m2W−1 given the effective area 5 µm2 and wavelength

of 820nm. Thus, our nonlinearity is nearly three orders of magnitude larger

than in very similar AlGaAs waveguides in the weak coupling regime.

Finally, it is worthwhile to consider how the soliton speeds in our system,

which govern data transmission rate, compare with other systems suitable for

on-chip soliton devices. The velocities in our system depend strongly on the

detuning of the pulse from the exciton resonance and were in the range 32 to

49 µm ps−2. These correspond to group indexes between 6.2 and 9.4 which

are comparable to those in other systems suitable for on-chip soliton devices

e.g. 8 and 30 for Supplementary References [7] and [5] respectively. One may

also note that the group index is only a factor of ∼2 higher than 3.477 for bulk

silicon at 1550nm which may be considered an upper limit on the speed of light

for on-chip semiconductor photonic devices.

Supplementary Note 8 Spatial Soliton Phase

To produce the incident wavepacket for the spatio-temporal soliton experiments

we used pulses with the same temporal profile as in the temporal soliton section.

To introduce the spatial profile proper to a single dark soliton the excitation
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laser beam was passed through a phase plate to produce a π phase jump at x=0.

This follows the approach used in Supplementary Reference [11] for exciting one

dimensional dark spatial solitons in a continuous wave system. The particular

phase plate used in our case consisted of a thin glass microscopy cover-slip. One

half was masked off using a photolithographic process and the other side etched

in a reactive ion etcher to remove material corresponding to half a wavelength

of light at 840nm. Since the light passing through one half of the plate travels

further than light passing through the other half this results in a phase jump

across a beam centered on the interface between etched and unetched regions.

In the spatio-temporal soliton experiments the laser pulses were passed

through the phase mask and imaged onto the input grating. The presence

of the π phase jump results in the dark notch in intensity appearing at the same

position (x=0) as can be seen in Fig.5(a) in the main text. The phase profiles

corresponding to the dark notch were also measured by interfering the light ex-

tracted from the output grating with a flat phase Gaussian reference beam. This

was done using continuous wave (CW) excitation rather than pulsed because the

very low average powers in the pulsed case required impractically long exposures

compared to the interferometric stability of the system. The CW measurements

are sufficient to characterise the spatial variation of the phase. The reference

beam was taken from the same laser used to excite the sample at the input

grating and expanded to form a large flat-phase reference spot on a CCD detec-

tor. Supplementary Figure 5 shows the interferograms for low power and high

power excitation. In both cases the phase jump at x=0 is present at the out-

put grating. In the high power excitation case the same narrowing of the dark

notch and broadening of the bright background was observed as in the pulsed

case presented in the main text. Thus the injected phase jump is present at

the output for all powers beween the linear regime and powers where the dark
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notch narrows.

Supplementary References

[1] Agrawal, G. P. Nonlinear Fibre Optics (Academic Press, 2001)

[2] Weiner, A. M., Heritage, J. P. and Kirschner, E. M. High-resolution fem-

tosecond pulse shaping J. Opt. Soc. Am. B 5, 1563-1572 (1988)

[3] Ferrier, L. et. al., Interactions in Confined Polariton Condensates Phys.

Rev. Lett. 106, 126401 (2011)

[4] Schmitt-Rink, S., Chemla, D. S. and Miller, D. A. B., Theory of transient

excitonic optical nonlinearities in semiconductor quantum-well structures

Phys. Rev. B 32, 6601 (1985)

[5] Blanco-Redondo, A., Husko, C., Eades, D., Zhang, Y., Li, J., Krauss, T.F.,

and Eggleton, B.J, Observation of soliton compression in silicon photonic

crystals Nature Comms. 5, 3160 (Jan 2014)

[6] Zhang, J., Lin, Q., Piredda, G., Boyd, R. W., Agrawal, G. P. and Fauchet

P. M. Optical solitons in a silicon waveguide Optics Express 15, 7682 (2007)
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