
 

 

Supplementary Figures 

 
 

Supplementary Figure 1: Finite element analysis of loaded membranes with various geometries 

Finite-element modelling (FEM, ABAQUS 6.14) was used to confirm accuracy of the analytical formulas 

(Eq.1) used in the main text to extract stress and strain from pressure and center-point deflection of 

graphene membranes. We modeled the same geometries used in our experiments: a ribbon (a), a ribbon 

with curved ends (b), and a circular membrane (c). Shell elements with fixed edges were used, the 

stiffness of membranes was set to an arbitrary 𝐸0 = 3.5 GPa. We then used computationally obtained 

center-point deflection vs. pressure dependence (insets) to find stress and strain (main panels) and 

extracted the stiffness 𝐸 using the same analytic formulas as in the main text. In all cases, we found that 

the obtained E does not deviate from the pre-set 𝐸0 by more than 10%. 
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Supplementary Figure 2: Finite element modeling of wrinkled membranes 

We used FEM to confirm that wrinkling leads to softening of the effective in-plane stiffness and produces 

non-linear stress-strain curves (Fig. 2 of the main text). We used a rectangular ribbon geometry with 

wrinkles induced following the approach by Wong et al.
1
 The membrane was loaded under constant 

pressure (a). Its effective stress and strain (b) were determined using the same analysis as in 

Supplementary Figure 1 and the main text. We observed a non-linear stress-strain relationship with the 

degree of non-linearity depending on wrinkle amplitude 𝛿. The effective stiffness of wrinkled membranes 

was calculated as a derivative of the stress-strain curve normalized by the stiffness of unwrinkled 

membrane 𝐸0. (c) The membrane is seen softened in the regime of small strain. 

 

We also used the FEM data to confirm the conjecture used in the manuscript, that graphene appears 

softened below a threshold strain 𝜀t = 𝛥𝐴/2𝐴 = (𝐴’ − 𝐴)/2𝐴 (𝐴 is the surface area of a membrane, 𝐴’ is 

the area of the projection of a membrane onto a plane parallel to it). The positions corresponding to 

threshold strains for different amounts of wrinkling are shown by dashed lines in (c). We indeed find that 

the 𝐸 < 𝐸0 below 𝜀𝑡, and that 𝐸~𝐸0 above 𝜀t. 
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Supplementary Figure 3: Atomic force microscopy indentation 
We carried out AFM nanoidentation measurements on our devices to cross-check our experimental 

results. We followed the approaches of Lee et al.
2
 and Ruiz-Vargas et al.

3
 Bruker AFM (Dimension Icon) 

with Budget Sensors Multi75Al cantilevers were used. Prior to measurement, the cantilever spring 

constant (𝑘~3 N/m) was measured via thermal tuning and the deflection sensitivity was obtained by 

pushing the cantilever against a hard substrate (silicon). Suspended graphene membranes (diameter 

1  μm) were imaged in tapping mode to determine their center and indented in contact mode to measure 

ramp distance 𝑧 and cantilever deflection 𝛿. The resulting force (𝐹) – indentation (ℎ) curves (red points) 

were extracted as: 𝐹 = −𝑘𝛿 and ℎ = 𝑧 − 𝛿. Then, the in-plane stiffness 𝐸2D and built-in stress 𝜎0  were 

determined by fitting 𝐹(ℎ) curve (black) to the nanoindentation equation: 

𝐹 = 𝜎0𝜋ℎ + 𝐸2𝐷𝑞
3
ℎ3

𝑎2
         (1) 

 

Here 𝑎  is membrane radius, constant 𝑞 = 1.02 is related to the Poisson’s ratio of graphene. We note that 

our analysis does not change significantly if we include the radius of the AFM tip as used in some other 

models.
3
 From the fit, we obtain 𝐸2D = 29 ± 1 N/m, similar to the result obtained from interferometry 

profilometry. For circular perforated membranes, we found much higher stiffness 𝐸2D = 199 ± 5 N/m, 

once again in qualitative agreement with our results from interferometric profilometry. We note that 

nanoidentation can only be reliably applied to circular membranes, and not to ribbons. 

 

 



 

 

 
 

Supplementary Figure 4: The effect of FIB cutting on wrinkles 

Wrinkles in graphene membranes are suppressed by the cutting procedure. We observed that successive 

cuts by focused ion beam (a,b,c,d) reduce the amplitude of the wrinkles and reorient them along the cuts. 

We note that this is an unusually wrinkled sample chosen for illustration. Most samples exhibited no 

visible wrinkles under similar imaging conditions. The scale bar is 5 μm. 
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Supplementary Figure 5: Analytical description of flexural phonons in free-standing graphene 

To obtain an approximate analytical expression for stress-strain dependence of a membrane perturbed by 

flexural phonons, we built upon a model originally developed for lipid membranes.
4
 From the 

equipartition theorem, we find the average amplitude 𝑢q of a flexural phonon with wavevector q: 

 

〈|𝑢q|
2
〉 =

𝑘B𝑇

𝐴(𝑞4𝜅(𝑞) + 𝑞2𝜎)
         (2)  

 

Here 𝑘B is Boltzmann constant, 𝑇 is temperature, 𝜎 is externally applied stress, and 𝜅 is membrane’s 

bending rigidity. While 𝜅 is constant for all the modes for the lipid membranes considered in Ref. 4, the 

interplay between bending and stretching makes 𝜅 wavevector-dependent in graphene. Following recent 

literature, we approximate 𝜅(𝑞) = 𝜅0 + 𝑘B𝑇𝐵(𝑞0 𝑞⁄ )𝜂, with B= 5.9𝑇(𝜂 2⁄ −1), 𝑞0 = 2𝜋(𝐸2𝐷
0 /𝜅0)

1/2, 

𝜂 =  .85, 𝐸2D
0 = 34  N/m and 𝜅0 = 1 eV.

5-9
  

 

Next, we calculate the amount of crumpling, as defined in the main text, due to a single flexural phonon 

mode: 

(
Δ𝐴

𝐴
)
q
= 𝑞2|𝑢q|

2
        (3) 

The total amount of crumpling in a membrane is found by integrating over all available flexural phonon 

modes: 

 

Δ𝐴

𝐴
= −

1

2𝜋
∫

𝑘B𝑇

(𝑞2𝜅(𝑞) + 𝜎)

𝑞max

𝑞min

𝑞 𝑑𝑞        (4)  

 

In this expression the lower integration limit 𝑞min = 2𝜋/√𝐴 is related to membrane’s size, while the 

upper limit 𝑞max = √3𝑘𝑇𝐸2D
0 /8𝜅0

2𝜋 roughly speaking only counts phonons that contribute to stiffness.
9
 

Finally, we compute the amount of strain in a crumpled membrane as: 

 

𝜀 =
1

2

Δ𝐴

𝐴
+
𝜎

𝐸2D
0         (5) 

𝐸2D
0 =340 N/m



 

 

 

The two terms in this expression are stemming from two sources of strain – crumpling due to flexural 

phonons (first term) and stretching of carbon/carbon bonds with effective stiffness 𝐸2D
0 = 34 𝑁/𝑚. 

 

The stress-strain curves obtained numerically from this last equation for different temperatures are shown 

in Fig. 5. At 𝑇 = 1 K, the flexural phonons are almost completely suppressed and the stiffness of 

graphene is close to 34  N/m. At 𝑇 = 3   K, graphene is wrinkled and appears softer. To fit our 

experimental data (Fig. 3) to Supplementary Equation 5, we took 𝐸2D
0 = 85𝑁/𝑚, our measured stiffness 

at 𝑇 = 1  K. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Supplementary Figure 6: Molecular Dynamics modeling of wrinkles in graphene membranes, cut 

graphene membranes, and graphene membranes with defects 

We used Molecular Dynamics (MD) modeling to confirm that cutting circular membranes into ribbons 

suppresses wrinkles and stiffens graphene. Classical molecular dynamics (MD) simulations were 

performed using the LAMMPS package.
10

 A bond-order potential
11

 was used to model the atomic 

interactions. First, we only considered the effects due to static wrinkles and not due to flexural phonons 

by keeping temperature near zero, at 𝑇 =  .1 K. Left and bottom boundaries along x and y directions 

were divided into regions, where the interatomic distances were increased or decreased, creating non-

uniform strain in the membrane. This non-uniform strain induced wrinkles in the membrane, as shown in 

Inset a). We used circular boundary conditions similar to the experimental setup. Atoms at the boundary 

were kept from moving, while the dynamics of the free-to-move atoms in a circular region with the 

diameter of 92.7 nm was simulated using NPT (constant temperature and pressure) ensemble. To 

represent the pressure on the membrane, an additional constant force perpendicular to the graphene plane, 

along the z direction, was applied to the atoms located in the circular region. This force was set to be in 

the range of values from 10
-5

 to 10
-4

 eV/Å, keeping the membrane in the deformation regime controlled 

by wrinkles. During the dynamical motion of the membrane we reduced the simulation time, required to 

reach equilibrium by reducing kinetic energy with a damping force 𝐹 = 𝛾𝜐, where 

𝛾 = 5 × 1 −4 eV fs Å−2 for the circular membrane and where 𝛾 = 7.5 × 1 −4 eV fs Å−2 for the cut 

membrane. The MD system was equilibrated for 1   ps for all pressures and boundary conditions. 

We computationally determined stress, strain and stiffness for a wrinkled circular membrane (a) with 

384000 atoms for entire 1  × 1   nm sheet (Inset a) and the same membrane cut into a narrow (1  ×
15 nm ribbon inset b) with 62000 atoms (scale bars 20nm). Consistent with the results described in the 

manuscript, we found that graphene is softened to ~24  N/m by the presence of wrinkles, and that the 

wrinkles are suppressed and stiffness recovers almost up to 34  N/m after cutting. While the qualitative 

agreement is adequate, we note that MD results cannot be quantitatively compared to our experimental 
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data as computational complexity of a problem limits the size of membranes used in simulation to less 

than ~1   nm.  

We also used MD simulation to model flexural phonons in graphene. At room temperature graphene 

undergoes thermal crumpling due to the out-of-plane displacements of atoms. The hidden area ∆𝐴 is 

defined as the difference between the area of the projection on x-y plane and the total area of the graphene 

sheet. Atomic positions were calculated with molecular dynamics after the system reached thermal 

equilibrium at room temperature, 𝑇 = 3   K, used in the experiment. We determined the projected area 

as the product of dimensions of the sheet in x-y directions 𝐴 = 𝐿𝑥 × 𝐿𝑦. Total area is the taken as the area 

of a flat sheet of graphene with interatomic distances at 𝑇 = 3   K. The ratio of the hidden area to the 

total area is calculated as an average for 10 snapshots at the thermal equilibrium and found to be ∆𝐴/𝐴 =
 .  42. 

Finally, we examined the evolution of wrinkle topography upon introduction of defects into graphene 

lattice. To do this, atoms at random locations were removed to create the desired concentration of defects. 

Then, the MD simulations identical to those in (a) were carried out. The topography of wrinkles for 

different defect densities  .3,  .7 and 1.5 × 1 13cm
-2

 is shown in (c) (scale bars 20 nm). The key 

observation here is that even at moderate defect concentrations, static wrinkles persist in the membranes.  

 

 

 



 

 

 

Supplementary Figure 7: The influence of defects upon mechanical response of graphene 

membranes  

We examined changes in the mechanical response of graphene membranes upon introduction of vacancy 

defects in graphene lattice. To controllably introduce defects, we placed our membranes into an FIB 

chamber and rastered a 5 keV beam of Ga
+
 ions (29 pA) over an area larger than our samples (1  ×

1   μm2). Typical exposure times between 0 and 30s translates into ion doses between  − 5 × 1 13cm
-

2
. To determine the concentration and type of defects upon irradiation, we collected Raman spectra of our 

devices following the exposure, an example is shown in (a) where each spectrum is offset for clarity. The 

increase in the intensity of the defect-related Raman D peak indicates creation of defects. To determine 

the defect type, we monitored the ratio between D and D’ Raman peaks and determined 𝐼(𝐷) 𝐼(𝐷′)⁄ ~6 ±
1 on average across all our samples. This is very close to 𝐼(𝐷) 𝐼(𝐷′)⁄ = 7 expected for vacancies.

12
 To 

quantitatively determine the defect concentration, we analyzed the ratio between the D and G Raman 

peaks.
13

 The results of this analysis, plotted vs. the density of ions that impinged onto graphene are shown 

in (b). The linear fit to this data, with slope ~0.9, suggests that Ga ions produce vacancy-type defects in 

graphene with ~90% probability, as expected.
14

 Finally, we examined the evolution of the in-plane 

stiffness E2D (measured at room temperature, following Ga+ irradiation) vs. defect concentration (as 

determined from Raman spectra) in the range of defect densities  − 5 × 1 13cm
-2

. The data shown in 

panel (c) were collected for 14 different devices; two distinct representative devices are shown as red and 

blue points respectively, the data from the other devices are gray. The error bars are obtained by 

estimating the standard deviation of 𝐸2D measurements. The inset of (c) shows a zoomed-in region of low 
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defect densities. We note that throughout the range of defect concentrations the in-plane stiffness 

remained <340 N/m. Moreover, no clear trend of E2D vs. defect concentration was observed. 
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