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Supplementary Figure 1: Magnetic susceptibility and specific heat. (a) Temperature depen-

dence of the zero-field cooled (ZFC )and field-cooled (FC) susceptibility χm obtained in an applied

magnetic field of µ0H = 10 mT for optimally doped Ba0.65Rb0.35Fe2As2. (b) Specific heat Cp/T

as a function of temperature of Ba0.65Rb0.35Fe2As2. Inset shows the temperature dependence of

the quantity ∆Cp/T with ∆Cp = (Cp - Cp,n), where Cp,n represent the phonon dominated back-

ground. The arrow denotes the superconducting transition temperature Tc. Error bars indicate

the statistical uncertainty of the data.
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Supplementary Figure 2: Specific heat scaling. (a) Specific heat jump ∆Cp at the supercon-

ducting transition vs Tc for Ba0.65Rb0.35Fe2As2, plotted together with literature data for various

FeAs-based superconductors. The line corresponds to ∆Cp ∝ T 3 (after [1]).

0 2 0 4 0 6 0 8 0

4

8

1 2

0 2 40 . 4

0 . 6

0 . 8

1 . 0 ( b )

Ma
gne

tic 
fra

ctio
n (

%)

T  ( K )

 5  K
 5 0  K

A ZF
 (t)

/A 0

t  ( µ s - 1 )

( a )

Supplementary Figure 3: Magnetic signal at ambient pressure. (a) The ZF-µSR time spectra

for Ba0.65Rb0.35Fe2As2 recorded above and below Tc. Error bars indicate the statistical uncertainty

of the data. The solid line represent the fits to the data by means of Supplementary Equation 1.

(b) Temperature dependence of the magnetic fraction of Ba0.65Rb0.35Fe2As2, extracted from the

ZF-µSR experiments. Error bars give the fit errors.
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Supplementary Figure 4: Pressure independent magnetic signal. ZF-µSR time spectra for

Ba0.65Rb0.35Fe2As2 at various applied pressures recorded at the base temperature T = 1.4 K. Error

bars indicate the statistical errors of the data. The solid line represents the fit to the data by means

of the sum of the Eq. (1) and a damped Kubo-Toyabe depolarization function to account for the

pressure cell signal.



Supplementary Figure 5: Three pocket model used in our calculations. It is assumed that

the system has one hole pocket h centered around Γ = (0, 0) and two electron pockets e1 and e2

centered around M1 = (π, 0) and M2 = (0, π).
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Supplementary Figure 6: Analysis of the temperature dependence of the penetration

depth using microscopic model. The temperature dependence of λ−2(T )/λ−2(0) measured at

various applied hydrostatic pressures of Ba0.65Rb0.35Fe2As2. The square symbols are experimental

data and the red curves are the theoretical functions. Error bars give the fit errors. (a) Fitting

for the P = 0 data, which suggests a nodeless state. (b) and (c) Fitting for P = 1.57 GPa and

P = 2.25 GPa. The fitting suggests that nodes exists on the two electron pockets at the angles

θe = ±π/4 and ±3π/4.
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Supplementary Figure 7: Effect of the electron pocket gap anisotropy on the penetration

depth at p = 2.25 GPa. (a) The electron gap is nodal if r < 1, and becomes nodeless if r > 1.

The low temperature data clearly shows that the gap is nodal, but the data near Tc seems to be

better described by a nodeless state. (b) Fitting for the zero pressure case with the Fermi velocity

ratio vh/ve being a free parameter. The fitting improves with respect to Fig. 6a, but the values of

vh/ve and ρh/ρe seem to be too large or too small.



I. SUPPLEMENTARY NOTE 1: SAMPLE CHARACTERIZATION

The temperature dependence of the zero field-cooled (ZFC) and field-cooled (FC) dia-

magnetic susceptibility of Ba0.65Rb0.35Fe2As2 measured in a magnetic field of µ0H = 1 mT is

shown in Supplementary Figure 1a. From the diamagnetic response the SC transition tem-

perature Tc is determined from the intercept of the linearly extrapolated zero-field cooled

(ZFC) susceptibility curve with χm = 0 line, and it is found to be Tc = 36.8(5) K. The

temperature-dependent heat capacity data for this sample plotted as Cp/T vs T is shown

in Supplementary Figure 1b. The jump associated with the SC transitions is clearly seen.

Here the anomaly at the transition has been isolated from the phonon dominated back-

ground by subtracting a second order polynomial Cp,n fitted above Tc and extrapolated to

lower temperature. The quantity ∆Cp/T with ∆Cp = (Cp - Cp,n) is presented as a function

of temperature in the inset of Supplementary Figure 1b. Although there may be some uncer-

tainty in using this procedure over an extended temperature range, the lack of appreciable

thermal SC fluctuations, as evidenced by the mean-field-like form of the anomaly, means

that there is very little uncertainty in the size of ∆Cp. Bud’ko et. al. [1] found that in many

122 Fe-based superconductors the specific heat jump ∆Cp at Tc follows the empirical trend,

the so-called BNC scalling ∆Cp ∝ T 3. This has been interpreted as either originating from

quantum critically or from strong impurity pair breaking. A violation of the BNC scaling

was observed for Ba1−xKxFe2As2 for x > 0.7 [1] and in addition a change of the SC gap

symmetry was observed. The specific heat jump data for Ba0.65Rb0.35Fe2As2 obtained in

this work is added in Supplementary Figure 2 to the BNC plot taken from Ref. [1]. Our

data point lies perfectly on the BNC line.

II. SUPPLEMENTARY NOTE 2: RESULTS OF THE ZERO-FIELD µSR EXPER-

IMENTS

It is well known that undoped BaFe2As2 is not superconducting at ambient pressure and

undergoes a spin-density wave (SDW) transition of the Fe-moments far above Tc [2]. The

SC state can be achieved either under pressure [3, 4] or by appropriate charge carrier doping

of the parent compound [5], leading to a suppression of the SDW state. Magnetism, if

present in the samples, must be taken into account in the TF-µSR data analysis. Therefore,



we have carried out ZF-µSR experiments above and below Tc to search for magnetism in

Ba0.65Rb0.35Fe2As2. As an example, ZF-µSR spectra recorded at T = 5 K and 50 K of

Ba0.65Rb0.35Fe2As2 are shown in Supplementary Figure 3a. There is no preccesion signal,

indicating that there is no long-range magnetic order. On the other hand, we observed a

significant drop of the asymmetry, taking place within 0.2 µs. This is caused by the presence

of diluted Fe moments as discussed in previous µSR studies [6]. In order to quantify the

magnetic fraction, the ZF-µSR data were analyzed by the following function:

AZF(t) = ΩA0

[
2

3
e−λT t +

1

3
e−λLt

]

+(1− Ω)A0

[
1

3
+

2

3
(1− σ2t2 − Λt)e(−σ

2t2

2
−Λt)

]
.

(1)

the first and the second terms describe the magnetic and nonmagnetic part of the signals,

respectively. A0 is the initial asymmetry, Ω is the magnetic volume fraction, and λT (λL) is

the transverse (longitudinal) depolarization rate of the µSR signal, arising from the magnetic

part of the sample. The second term describing the paramagnetic part of the sample is the

combination of a Lorentzian and a Gaussian Kubo-Toyabe depolarization functions [7, 8].

σ and Λ are the depolarization rates due to the nuclear dipole moments and randomly

oriented diluted local electronic moments, respectively. The temperature dependence of the

magnetic fraction obtained for Ba0.65Rb0.35Fe2As2 is plotted in Supplementary Figure 3b.

The magnetic fraction at the base temperature was found to be only 8 %. Bearing in mind

that the signal from the magnetically ordered parts vanishes within the first 0.2 µs in the

whole temperature region, the analysis of transverse field data was restricted to times t >

0.2 µs.

Supplementary Figure 4 shows the ZF-µSR time spectra for Ba0.65Rb0.35Fe2As2 at various

applied pressures. The ZF relaxation rate stays nearly unchanged between p = 0 GPa and

2.25 GPa, implying that there is no sign of pressure induced magnetism in this system.

III. SUPPLEMENTARY NOTE 3: MICROSCOPIC MODEL FOR ANALYZING

THE PENETRATION DEPTH DATA OF BA0.65RB0.35FE2AS2

Model for s+− pairing:

As a minimal model that accounts for the different superconducting states of the iron



pnictides (nodeless s+−, nodal s+−, and d-wave), we consider a two-dimensional system

with three isotropic Fermi pockets [9]: one hole pocket h centered around Γ = (0, 0) and two

electron pockets e1 and e2 centered around M1 = (π, 0) and M2 = (0, π) (see Supplementary

Figure 5). To describe the s+− state, the pairing interaction between the hole pocket h and

the electron pocket e1 is assumed to be angular dependent with the form:

Vhe1 = V0(r − cos 2φ)h†↑(k)h†↓(−k)e1↓(−p)e1↑(p) + h.c. , (2)

where φ is the polar angle measured relative to the center of the electron pocket, V0 is the

interaction energy scale, and r is the relative amplitude of the angular-independent and the

angular-dependent pairing interactions. Due to the tetragonal symmetry of the system, the

pairing interaction between h and e2 is:

Vhe2 = V0(r + cos 2φ)h†↑(k)h†↓(−k)e2↓(−p)e2↑(p) + h.c. . (3)

Furthermore, to minimize the number of free parameters, we assume that the three

pockets have the same Fermi velocity vf , while the density of states can in principle be

different ρh/ρe = η. Within this model, we obtain an s+− state, where the SC gap of

the hole pocket is a constant, ∆h, and the gap on the electron pockets is of the form

∆e1 = ∆e(r − cos 2φ) and ∆e2 = ∆e(r + cos 2φ). Accidental nodes appear in the electron

pockets if r < 1. Introducing the energy cutoff Λc, we can write down the corresponding

BCS-like gap equations:

∆h = −ρeV0∆e

ˆ Λc

−Λc

dε

ˆ
dφ

2π

(
(r + cos 2φ)2

2Ee1(k)
tanh

βEe1(k)

2
+

(r − cos 2φ)2

2Ee2(k)
tanh

βEe2(k)

2

)
(4)

∆e = −ρhV0∆h

ˆ Λc

−Λc

dε

2Eh(k)
tanh

βEh(k)

2
(5)

where Ee1(k), Ee2(k), and Eh(k) are the quasi-particle energy dispersions:

Ee1(k) =
√
ε2e + ∆2

e(r − cos 2φ)2 , E2(k) =
√
ε2e + ∆2

e(r + cos 2φ)2 , Eh(k) =
√
ε2h + ∆2

h .

To determine Tc, we linearize the gap equations, yielding:
∆h = −∆eρeV0(2r2 + 1)

ˆ Λc

0

dε

ε
tanh

βcε

2

∆e = −∆hηρeV0

ˆ Λc

0

dε

ε
tanh

βcε

2

=⇒ ρeV0 =

[√
η(2r2 + 1)

ˆ Λc

0

dε

ε
tanh

βcε

2

]−1



To perform the fitting, we set Tc to be fixed, and set the energy cutoff Λc = 86meV (the

results do not depend significantly on the choice of the cutoff). This provides a constraint

on ρeV0, η, and r. When T < Tc, the gaps are calculated based on the BCS Eqs. (4) and

(5).

The expression for the penetration depth of a single-band system is:

λ−2
µµ(T ) =

4π

cV

∑
k

[
〈 ∂

2ε

∂k2
µ

〉+

(
∂ε

∂kµ

)2
∂f

∂Ek

]
→ 1

V

∑
k

(
∂ε

∂kµ

)2 [
∂f

∂Ek
− ∂f

∂εk

]
,

where f is the Fermi distribution function, ε is the energy of the non-interacting system,

and Ek is the quasi-particle energy dispersion. Applying this formula to our three pocket

model, we obtain

λ−2(T ) ∝ρh
v2

f

2

ˆ Λc

−Λc

dε

(
∂f

∂Eh

− ∂f

∂εh

)
+ ρev

2
f

ˆ Λc

−Λc

dε

ˆ
dφ

2π
cos2 φ

(
∂f

∂Ee1

− ∂f

∂εe

)
+ ρev

2
f

ˆ Λc

−Λc

dε

ˆ
dφ

2π
cos2 φ

(
∂f

∂Ee2

− ∂f

∂εe

)
λ−2(T ) ∝ρev

2
f

[
2 + η

2

(
1− 2f(Λc)

)
+ η

ˆ Λc

0

dε
∂f

∂Eh

+ 2

ˆ Λc

0

dε

ˆ
dφ

2π

∂f

∂Ee

]
(6)

In the fittings, we will focus on the normalized penetration depth λ−2 (T ) /λ−2 (0).

Model for d-wave pairing:

To describe the d-wave superconducting state within our three band model, we consider

the following form of the pairing interaction:

Vhe1 = V0(r − cos 2θ)h†↑(k)h†↓(−k)e1↓(−p)e1↑(p) + h.c.

Vhe2 = V0(r + cos 2θ)h†↑(k)h†↓(−k)e2↓(−p)e2↑(p) + h.c. .

where θ is the angle around the hole pocket. The gap functions can then be written as:

∆e1 = −∆e2 = ∆e , ∆h(k) = ∆h cos 2θ .

resulting in the BCS-like gap equations:

∆h = 2∆eρeV0

ˆ Λc

−Λc

dε

2Ee

tanh
βEe

2

∆e = ∆hηρeV0

ˆ Λc

−Λc

dε

ˆ
dθ

2π

cos2 2θ

2Eh

tanh
βEh

2



Here, η = ρh/ρe, Ee =
√
ε2e + ∆2

e, and Eh =
√
ε2 + ∆2

h cos2 2θ. Repeating the same steps

as for the s+− case, we obtain the penetration depth:

λ−2(T ) ∝ ρev
2
f

[
2 + η

2
(1− 2f(Λc)) + η

ˆ Λc

0

dε

ˆ
dθ

2π

∂f

∂Eh

+ 2

ˆ Λc

0

dε
∂f

∂Ee

]
(7)

Comparing the expressions for the d-wave case to the expressions we derived for the s+−

case, Eqs. (4) and (6), we note that they can be mapped onto each other if r = 0. In this

extreme case, changing ηd → 4/ηs, V0,d → ηV0,s/2, and ∆h ↔ ∆e leads to the same gap

equations and penetration depth expression. With these replacements, both s and d pairing

give the same λ−2(T )/λ−2(0). Therefore, we conclude that the penetration depth cannot

distinguish between nodal-s+− and d-wave if the nodal-s+− is the extreme case with r = 0.

Fitting Results:

We now fit the experimental data λ−2 (T ) /λ−2 (0) of optimally-doped Ba1−xRbxFe2As2

to find the values of ρeV0, η, and r for different pressures. Note that the value of Tc imposes

another constraint on these three parameters, as explained above. Supplementary Figures

6a, b and c show the fitting for the s+− model for P = 0, P = 1.57 GPa, and P = 2.25 GPa,

respectively. For the P = 0 case, we find equal gap amplitudes and no nodes, as seen by

ARPES experiments in the related compound Ba1−xKxFe2As2. We see that the fitting is not

as good in the region immediately below Tc. We will discuss this issue in more details below.

For the pressurized samples, the fitting is overall better and indicates a nodal state (r < 1).

The value of the density of states ratio ρh/ρe is little affected by pressure (as expected, since

no charge carriers are introduced), and is consistent with the value of a nearly compensated

metal.

Surprisingly, the best fittings for both the P = 1.57 GPa and P = 2.25 GPa cases give

r = 0, where the nodes on the electron pockets are fixed at θ = ±π/4. This is a very

special case of the accidentally nodal s+− state, since by symmetry there is no reason for r

to vanish. To make this point more transparent, in Supplementary Figure 7a we plot the

non-zero pressure data and the theoretical urves for the penetration depth for various values

of r – keeping all the other parameters constant. Clearly, 0 < r < 1 gives worst fittings

than r = 0. What we also found is that r = 10 – i.e. a nodeless superconducting state –

describes the data better near Tc, on the expense of a very bad fitting at low temperatures

– where the nodal behavior is evident.



As we discussed in the previous section, a nodal-s+− state with r = 0 is indistinguishable

– for fitting purposes – from a d-wave state. Since there is no symmetry reason to have

r = 0 in our simple model, or even r � 1 over a wide pressure range, we interpret this result

as an indirect indication that a d-wave state is more likely to be the state of the pressurized

samples.

Finally, we comment on the difficulty of the fittings to capture the behavior near Tc –

particularly for the sample at ambient pressure (see Supplementary Figure 6a). One reason

could be the presence of inhomogeneities, which would require a distribution of gaps to

be taken into account, instead of a single gap value. Another reason could be related to

our choice of fixing the Fermi velocities to be the same for both the electron and hole

pockets. To investigate this possibility, we lift this restriction and allow vh/ve to also be a

fitting parameter. The result is shown in Supplementary Figure 7b. Clearly, we obtain a

better fitting, but not only ρeV0 is relatively large, but the ratios ρh/ρe and vh/ve are very

large or very small, which is difficult to reconcile with the Fermi surface of these materials.

Most likely, additional pockets are necessary to capture the full temperature dependence

of the penetration depth. Nevertheless, our microscopic model provides results that agree

with those obtained from the α-model fitting, particularly in the low-temperature regime,

suggesting that a d-wave state is more likely to be realized than a nodal s+− state.
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