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Supplementary Figure 1: Degree distributions in real networks and their
dk-randomizations.
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Supplementary Figure 2: Average nearest neighbor degrees (ANNDs) of
nodes of a given degree in real networks and their dk-randomizations.
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Supplementary Figure 3: Average clustering of nodes of a given degree
in real networks and their dk-randomizations.
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Supplementary Figure 4: Subgraph concentration differences betweesn
dk-randomizations and real networks.4
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Supplementary Figure 5: Common neighbor distributions in real net-
works and their dk-randomizations.
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Supplementary Figure 6: k-coreness distributions in real networks and
their dk-randomizations.
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Supplementary Figure 7: k-denseness distributions in real networks and
their dk-randomizations.
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Supplementary Figure 8: Average betweenness of nodes of a given degree
in real networks and their dk-randomizations.
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Supplementary Figure 9: Shortest path distance distributions in real
networks and their dk-randomizations.
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Supplementary Figure 10: Kolmogorov-Smirnov distances between real
networks and their dk-randomizations.
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Supplementary Tables

Supplementary Table 1: Largest eigenvalues, averaged across different
realizations for each d, and their standard deviations in parentheses.

Original 0k 1k 2k 2.1k 2.5k

AIR 48.07 12.97(0.08) 42.41(0.24) 47.46(0.01) 47.51(0.02) 47.82(0.03)
BRAIN 119.66 8.91(0.01) 54.89(0.26) 113.41(0.02) 114.09(0.06) 122.27(0.20)
WORDS 109.44 13.06(0.02) 104.12(0.28) 108.82(0.03) 108.80(0.04) 108.92(0.02)

INTERNET 67.17 5.36(0.01) 56.02(0.33) 61.15(0.03) 61.32(0.06) 65.34(0.10)
PGP 42.44 5.77(0.02) 19.50(0.24) 34.08(0.03) 34.40(0.05) 42.95(0.12)
PPI 38.56 8.05(0.05) 32.47(0.17) 34.07(0.04) 34.05(0.04) 35.56(0.10)

Supplementary Table 2: Spectral gaps, averaged across different realiza-
tions for each d, and their standard deviations in parentheses.

Original 0K 1K 2K 2.1K 2.5K

AIR 29.34 6.04(0.09) 32.61(0.46) 37.86(0.25) 37.21(0.21) 30.93(0.29)
BRAIN 40.97 2.90(0.06) 35.52(0.31) 77.53(0.11) 76.59(0.27) 42.71(0.35)
WORDS 65.31 5.86(0.02) 65.28(0.51) 68.53(0.14) 68.47(0.12) 68.21(0.15)

INTERNET 17.56 0.70(0.05) 14.94(0.53) 18.83(0.07) 18.55(0.11) 19.53(0.25)
PGP 4.25 0.98(0.04) 5.51(0.31) 18.01(0.18) 17.55(0.21) 4.71(0.19)
PPI 11.69 2.25(0.07) 15.75(0.27) 16.44(0.19) 16.28(0.20) 10.76(0.17)

Supplementary Table 3: The considered networks, their abbreviations,
and the numbers of nodes and links in them.

Network Abbr. N M

US air transportation network [1] AIR 500 2,980
Brain network [2] BRAIN 17,455 67,895
English word network [3] WORDS 7,377 44,205
Internet AS-level [4] INTERNET 20,906 42,994
PGP web of trust [5] PGP 10,680 24,316
Protein interaction network [6] PPI 4,099 13,355
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Supplementary Table 4: Parameters used for the dk-randomization (left)
and 2.1k/2.5k-targeting 2k-preserving (right) rewiring processes (M
the number of edges in the real network, c̄ average clustering, c̄(k)
average clustering of nodes of degree k).

GT
dk-randomization p-targeting dk-preserving rewiring
R d pGT

d R β0 βfactor α

AIR 100M 1/2 c̄, c̄(k) 2 10M 10−2 1.4 5 · 10−4

BRAIN 100M 1/2 c̄, c̄(k) 2 10M 10−2 1.1 5 · 10−5

WORDS 100M 1/2 c̄, c̄(k) 2 10M 10−2 1.4 5 · 10−4

INTERNET 100M 1/2 c̄, c̄(k) 2 10M 10−2 1.4 5 · 10−4

PGP 100M 1/2 c̄, c̄(k) 2 100M 10−2 1.1 5 · 10−7

PPI 100M 1/2 c̄, c̄(k) 2 200M 10−2 1.1 5 · 10−7

Supplementary Table 5: dk-series vs. d-series

d dk-statistics d-statistics

0 k̄ -
1 N(k) N
2 N(k, k′) M

3
N∧(k, k′, k′′) W
N4(k, k′, k′′) T
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Supplementary Notes

Supplementary Note 1: Network properties

Here we describe all the network properties measured and discussed in Supple-
mentary Note 3 and, where meaningful, their relations to dk-series.

1.1 Degree distribution

The distribution P (k) of node degrees k, i.e., the 1k-distribution, is:

P (k) =
N(k)

N
, (1)

where N(k) is the number of nodes of degree k in the network, and N is the
total number of nodes in it, so that P (k) is normalized,

∑
k P (k) = 1. The

1k-distribution fully defines the 0k-distribution, i.e., the average degree k̄ in the
network, by

k̄ =
∑
k

kP (k), (2)

but not vice versa.

1.2 Average nearest neighbor degree (ANND)

The average degree k̄nn(k) of nearest neighbors of nodes of degree k is a com-
monly used projection of the joint degree distribution (JDD) P (k, k′), i.e., the
2k-distribution. The JDD is defined as

P (k, k′) = µ(k, k′)
N(k, k′)

2M
, (3)

where N(k, k′) = N(k′, k) is the number of links between nodes of degrees k
and k′ in the network, M is the total number of links in it, and

µ(k, k′) =

{
2 if k = k′,

1 otherwise,
(4)

so that P (k, k′) is normalized,
∑
k,k′ P (k, k′) = 1. The 2k-distribution fully

defines the 1k-distribution by

P (k) =
k̄

k

∑
k′

P (k, k′), (5)

but not vice versa. The average neighbor degree k̄nn(k) is a projection of the
2k-distribution P (k, k′) via

k̄nn(k) =
k̄

kP (k)

∑
k′

k′P (k, k′) =

∑
k′ k
′P (k, k′)∑

k′ P (k, k′)
. (6)
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1.3 Clustering

Clustering of node i is the number of triangles 4i it belongs to, or equivalently
the number of links among its neighbors, divided by the maximum such number,
which is k(k − 1)/2, where k is i’s degree, deg(i) = k. The average clustering
coefficient of the network is

c̄ =
1

N

∑
i

4i
ki(ki − 1)/2

(7)

Averaging over all nodes of degree k, the degree-dependent clustering is

c̄(k) =
24(k)

k(k − 1)N(k)
, where 4(k) =

∑
i: deg(i)=k

4i. (8)

The degree-dependent clustering is a commonly used projection of the 3k-
distribution. (See [7, 8] for an alternative formalism involving three point cor-
relations.) The 3k-distribution is actually two distributions characterizing the
concentrations of the two non-isomorphic degree-labeled subgraphs of size 3,
wedges and triangles:

k' k''

k

k' k''

k

.
Let N∧(k′, k, k′′) = N∧(k′′, k, k′) be the number wedges involving nodes of de-
grees k, k′, and k′′, where k is the central node degree, and let N4(k, k′, k′′)
be the number of triangles consisting of nodes of degrees k, k′, and k′′, where
N4(k, k′, k′′) is assumed to be symmetric with respect to all permutations of
its arguments. Then the two components of the 3K-distribution are

P∧(k′, k, k′′) = µ(k′, k′′)
N∧(k′, k, k′′)

2W
, (9)

P4(k, k′, k′′) = ν(k, k′, k′′)
N4(k, k′, k′′)

6T
, (10)

where W and T are the total numbers of wedges and triangles in the network,
and

ν(k, k′, k′′) =


6 if k = k′ = k′′,

1 if k 6= k′ 6= k′′,

2 otherwise,

(11)

so that both P∧(k′, k, k′′) and P4(k, k′, k′′) are normalized,
∑
k,k′,k′′ P∧(k′, k, k′′) =∑

k,k′,k′′ P4(k, k′, k′′) = 1. The 3k-distribution defines the 2k-distribution (but
not vice versa), by

P (k, k′) =
1

k + k′ − 2

∑
k′′

{
6T

M
P4(k, k′, k′′)

+
W

M
[P∧(k′, k, k′′) + P∧(k, k′, k′′)]

}
. (12)
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The normalization of 2k- and 3k-distributions implies the following identity
between the numbers of triangles, wedges, edges, nodes, and the second moment
of the degree distribution k̄2 =

∑
k k

2P (k):

2
3T +W +M

N
= k̄2. (13)

The degree-dependent clustering coefficient c̄(k) is the following projection of
the 3k-distribution

c̄(k) =
6T

N

∑
k′,k′′ P4(k, k′, k′′)

k(k − 1)P (k)
. (14)

1.4 Subgraph frequencies

The concentration of subgraphs of size 3 is exactly fixed only by the 3k-distribution,
or by the 3-distribution, Supplementary Note 4. There are two non-isomorphic
connected graphs of size 3 (triangles and wedges), and their concentrations are
defined as

C∧ =
∧
N3

, C4 =
4
N3

, (15)

where ∧ is the number of wedges in the graph, 4 is the number of triangles in
the graph, and N3 = ∧+4 is the total number of connected subgraphs of size
3 in the graph.

The concentration of subgraphs of size 4 is exactly fixed only by the 4k-
distribution, or by the 4-distribution. There are six non-isomorphic connected
graphs of size 4,

.
and their concentrations are defined as the number of subgraphs of a particular
type divided by the total number of connected subgraphs of size 4.

In our comparisons of real networks and their dk-randomizations in Sup-
plementary Note 3 we choose to compare the subgraph concentrations directly,
versus computing z-scores, as common in the motif literature. The reasons for
this decision is that z-scores are tailored for a fixed null model, while we are
considered a series of null models parameterized by d in dk-series. There is
nothing in the z-score and dk-series definitions that could easily provide any
estimates of how fast the subgraph frequency means and standard deviations in
the z-score definition converge as functions of d. Therefore the comparisons of
z-scores for different values of d would be meaningless.

1.5 Common neighbors

The number mij of common neighbors between two connected nodes i and j is
the number of nodes to which both i and j are connected, or equivalently the
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multiplicity of edge (i, j):

mij =
∑
l

AilAljAij , (16)

where {Aij} is the adjacency matrix of the graph. The distribution P (m) of
the number of common neighbors m is then

P (m) =

∑
i<j δmij ,m

N(N − 1)/2
, (17)

where δ is the Kronecker delta. The common neighbor distribution is thus the
probability that two connected nodes in the graph have m common neighbors.
This property is exactly fixed only by the 3k-distribution.

1.6 k-coreness and k-denseness

The k-core decomposition [9] of a graph is a set of nested subgraphs induced by
nodes of the same k-coreness. A node has k-coreness equal to k if it belongs to
a maximal connected subgraph of the original graph, in which all nodes have
degree at least k, i.e., in which each node is connected to at least k other nodes
in the subgraph.

Similarly, the k-dense decomposition [10] of a graph is a set of nested sub-
graphs induced by edges of the same k-denseness. An edge has k-denseness
equal to k if it belongs to a maximal connected subgraph of the original graph,
in which all edges have multiplicity [7, 8, 11] at least k − 1, i.e., in which each
pair of connected nodes has at least k − 1 common neighbors in the subgraph.

Both the k-core and k-dense decompositions rely on the analysis of local
properties of nodes and edges. However, due to the recursive nature of these
decompositions, the dk-distributions with d = 0, 1, 2, 2.1, 2.5 do not exactly fix
either the k-core or k-dense distributions.

1.7 Betweenness

Betweenness b(i) of node i is a measure of how “important” i is in terms of the
number of shortest paths passing through it. Formally, if σst(i) is the number of
shortest paths between nodes s 6= i and t 6= i that pass through i, and σst is the
total number of shortest paths between the two nodes s 6= t, then betweenness
of i is

b(i) =
∑
s,t

σs,t(i)

σs,t
. (18)

Averaging over all nodes of degree k, degree-dependent betweenness b̄(k) is

b̄(k) =
∑

i: deg(i)=k

b(i)

N(k)
. (19)
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1.8 Shortest path distance

The distance distribution is the distribution of hop-lengths of shortest path
between nodes in a network. Formally, if N(h) is the number of node pairs
located at hop distance h from each other, then the distance distribution P (h)
is

P (h) =
N(h)

N(N − 1)/2
, (20)

where N(N − 1)/2 is the total number of nodes pairs in the network. The
average distance is:

h̄ =
∑
h

P (h). (21)

Finally, the network diameter, i.e., the maximum hop distance between nodes
in the network, is

d = max(h). (22)

1.9 Spectral properties

The adjacency matrix of graph A gives the full information on the structure of
the graph. The largest eigenvalue of A and the spectral gap, which is defined
as the difference between the largest and second largest eigenvalue A, play im-
portant roles in the dynamic processes on networks. For instance, the largest
eigenvalue of the adjacency matrix is related to the speed of the spreading pro-
cesses on the network [12, 13], while the gap determines the speed of convergence
of the random walk to its steady state [14].
The Laplacian matrix describes the diffusion of a random walker on the net-
work and is defined as L = D − A, where D is the diagonal matrix of degrees
Dij = δijki, δij is Kronecker delta and ki is the degree of node i. The smallest
eigenvalue of the Laplacian matrix is associated to stationary distribution of
random walker and it is always equal to zero, while the smallest non-zero eigen-
value, Fiedler value, defines the time scale of the slowest mode of the diffusion
[14].

Supplementary Note 2: Considered networks

We apply the dk-series analysis to the following six social, biological, language,
communication, and transportation networks, Table 3:

• AIR. The US air transportation network [1]. The nodes are airports, and
there is a link between two airports if there is a direct flight between them.

• BRAIN. The largest connected component of an fMRI map of the hu-
man brain [2]. The nodes are voxels (small areas of a resting brain of
approximately 36mm3 volume each), and two voxels are connected if the
correlation coefficient of the fMRI activity of the voxels exceed 0.7.
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• WORDS. The largest connected component of the network of adjacent
words in Charles Darwin’s “The Origin of Species” [3]. The nodes are
words, and two words are connected if they are adjacent in the text.

• INTERNET. The topology of the Internet at the level of Autonomous
Systems (ASes) [4]. The nodes are ASs (organizations owing parts of the
Internet infrastructure), and there is a link between two ASs if they have
a business relationship to exchange Internet traffic.

• PGP (considered in the main text). The largest strongly connected com-
ponent of the technosocial web of trust relationships among people ex-
tracted from the Pretty Good Privacy (PGP) data [5]. The nodes are
PGP certificates of users, and there is a link between two certificates if
their users mutually trust each other’s certificate/user associations.

• PPI. The largest connected component of the human protein interaction
network [6]. The nodes are proteins, and there is a link between two
proteins if they interact.

Table 4 reports the parameters used for each network in the dk-randomization
and p-targeting dk-preserving rewiring processes.

Supplementary Note 3: Results

Degree distribution. We observe in Fig. 1 that while 0k-randomizations are
way off, the dk-random graphs with d ≥ 1 reproduce the degree distributions
in the real networks exactly, which is by definition: the 1k-distribution is the
degree distribution, and dk-random graphs with d ≥ 1 have exactly the same
degree distributions as the real networks.

Average nearest neighbor degree (ANND). We observe in Fig. 2 that
while 0k-randomizations are way off, the 1k-random graphs tend to be closer
to the real networks in terms of ANND, whereas the dk-random graphs with
d ≥ 2 have exactly the same average neighbor degrees as the real networks,
which is again by definition: the dk-random graphs with d ≥ 2 have exactly
the same JDD P (k, k′) as the real networks. In the WORDS, INTERNET, and
PPI cases, the ANNDs k̄nn(k) even in the 1k-random graphs do not noticeably
differ from the ANNDs in the real networks.

Clustering. We observe in Fig. 3 that degree-dependent average clustering in
the 2.5k-random graphs matches the one in the real networks, which is again
by definition. For d < 2.5, degree-dependent clustering differs sensibly in many
cases. However, degree-dependent clustering in the AIR network does not ex-
hibit noticeable differences with its 2.1k-randomizations, while in the WORDS
case, even the 1k-random graphs reproduce degree-depended clustering nearly
exactly.
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Subgraph frequencies. We observe in Fig. 4 that the 2k-random graphs
reproduce the subgraphs frequencies in most cases, but the BRAIN and PGP
require d = 2.5 to reproduce these frequencies.

Common neighbors. We observe in Fig. 5 that the 1k-random graphs re-
produce the common neighbor distributions in all the cases except the BRAIN,
which requires d = 2, and PGP, which requires d = 2.5.

k-coreness and k-denseness. We observe in Fig. 6 that the 2k-random
graphs reproduce the k-coreness distributions in all the networks except the
PGP and BRAIN that require d = 2.5. We observe in Fig. 7 that the 2.5k-
random graphs reproduce the k-denseness distributions in all the networks. The
k-denseness distributions in the AIR and WORDS networks are reproduced even
by their 2k-random graphs.

Betweenness. We observe in Fig. 8 that betweenness in the BRAIN network
cannot be approximated even by its 2.5k-random graphs. The INTERNET lies
at the other extreme: even the 1k-random graphs reproduce its betweenness.
The PGP network requires all the constraints imposed by the 2.5k-distribution,
while betweenness in all the other networks is similar to betweenness in their
2k-random graphs.

Shortest path distance. We observe in Fig. 9 that the distance distributions
in the INTERNET and WORDS networks are correctly reproduced by their 1k-
random graphs. Even d = 2.5 is not enough for the BRAIN, while the same
value of d = 2.5 suffices for all the networks.

Spectral properties. We observe in Table 1 that the largest eigenvalue of
the adjacency matrix is closely, although not exactly, reproduced by d = 2.5k-
random graphs for all six networks. Furthermore, we observe that the largest
eigenvalues for 2k-random graphs of AIR and WORDS networks are very close
to the eigenvalues of the original networks.
The values of the spectral gaps for 2.5k-random graphs shown in Table 2 are
relatively close to the values observed for the original networks, with relative
difference for AIR, BRAIN and WORDS networks around 5%. The large values
of the spectral gaps for 2k and 2.1k-random graphs indicate that they are more
robust, in the sense of being better connected and interlinked, compared to the
original networks.

Kolmogorov-Smirnov distance. In Fig. 10 we quantify the convergence of
dk-series in terms of Kolmogorov-Smirnov (KS) distances between the distribu-
tions of per-node values of a given property in the real networks and the same
distributions in their dk-random graphs. We report the KS distances for the
following properties:
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k degree, cf. Fig. 1;

knn ANND, cf. Fig. 2;

c clustering, cf. Fig. 3;

comm.neigh common neighbors, cf. Fig. 5;

kcore k-coreness, cf. Fig. 6;

kdense k-density, cf. Fig. 7;

bet betweenness, cf. Fig. 8;

path-len shortest path distance, cf. Fig. 9.

The Kolmogorov-Smirnov distance between two cumulative distribution func-
tions (CDFs) F1(x) and F2(x) is

D = sup
x
|F1(x)− F2(x)|. (23)

In our case, F1(x) is the per-node CDF of a given property in a real network, and
F2(x) is the per-node CDF for the same property computed across all different
dk-random graph realizations for the network with a given d. We note that the
KS distances provides more detailed statistics than the dk-distributions, because
the latter do not differentiate between nodes of the same degree, while the former
do. For example, even if the 2k-distributions and consequently ANNDs k̄nn(k)
in two different networks are exactly the same, the distributions of average
degrees k̄i,nn of neighbors of each individual node i, i = 1, . . . , N , are in general
different, so that the KS distance between the two per-node ANND CDFs is in
general greater than zero.

Supplementary Discussion

We compare dk-series with the series based on subgraph frequencies, and show
that the latter cannot form a systematic basis for topology analysis.

The difference between dk-series and subgraph-based-series, which we can
call d-series, is that the former is the series of distributions of d-sized subgraphs
labeled with node degrees in a given network, while the d-series is the distri-
butions of such subgraphs in which this degree information is ignored. This
difference explains the mnemonic names for these two series: ‘d’ in ‘dk’ refers to
the subgraph size, while ‘k’ signifies that they are labeled by node degrees—‘k’
is a standard notation for node degrees.

This difference between the dk-series and d-series is crucial. The dk-series are
inclusive, in the sense that the (d+1)k-distribution contains the full information
about the dk-distribution, plus some additional information, which is not true
for d-series.

20



To see this, let us consider the first few elements of both series in Table 5. In
Supplementary Note 1 we show explicitly how the (d+ 1)k-distributions define
the dk-distribution for d = 0, 1, 2. The key observation is that the d-series does
not have this property. The 0’th element of d-series is undefined. For d = 1 we
have the number of subgraphs of size 1, which is just N , the number of nodes
in the network. For d = 2, the corresponding statistics is M , the number of
links, subgraphs of size 2. Clearly, M and N are independent statistics, and the
former does not define the latter. For d = 3, the statistics are W and T , the
total number of wedges and triangles, subgraphs of size 3, in the network. These
do not define the previous element M either. Indeed, consider the following two
networks of size N—the chain and the star:

1

N-1

2 2 2 2 1

1
1

1

1

1

There are no triangles in either network, T = 0. In the chain network, the
number of wedges is W = N − 2, and in the star W = (N − 1)(N − 2)/2. We
see that even though W (d = 3) scales completely differently with N in the two
networks, the number of edges M = N − 1 (d = 2) is the same.

In summary, d-series is not inclusive. For each d, the corresponding element
of the series reflects a differen kind of statistical information about the network
topology, unrelated or only loosely related to the information conveyed by the
preceding elements. At the same time, similar to dk-series, the d-series is also
converging since at d = N it specifies the whole network topology. However,
this convergence is much slower that in the dk-series case. In the two networks
considered above, for example, neither W = N − 2, T = 0 nor W = (N −
1)(N −2)/2, T = 0, fix the network topology as there are many non-isomorphic
graphs with the same (W,T ) counts, whereas the 3k-distributions N∧(1, 2, 2) =
2, N∧(2, 2, 2) = N − 4 and N∧(1, N − 1, 1) = (N − 1)(N − 2)/2 define the chain
and star topologies exactly.

The node degrees thus provide necessary information about subgraph lo-
cations in the original network, which significantly speeds up convergence as
a function of d, and more importantly makes the dk-series basis inclusive and
systematic.

Supplementary Methods

The methods that we use to sample dk-random graphs for a given graph rep-
resenting a real network are based on two different rewiring processes: dk-
randomizing rewiring (d = 0, 1, 2) and p-targeting dk-preserving rewiring (p =
2.1k, 2.5k).

The first method (dk-randomization) consists of swapping random pairs of
edges in the original network preserving its dk-distribution, Algorithm 1. The
following three input parameters are required: GT the original graph, R the
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number of rewirings to apply, and d index that indicates the dk-distribution
to preserve. The random edge selection function on line 4 and the rewiring
function on line 5 depend on d as follows:

• if d = 0, random edge (i, j) and non-edge (a, b) (disconnected nodes a
and b) are selected, and the rewiring consists of removing edge (i, j) and
adding edge (a, b).

• if d = 1, two random edges (i, j) and (a, b) are selected and discarded if
either edge (i, b) or edge (j, a) exists; if neither edge (i, b) nor edge (j, a)
exists, the rewiring consists of removing edges (i, j) and (a, b), and adding
edges (i, b) and (j, a).

• if d = 2, two random edges (i, j) and (a, b) such that degrees ki = ka
are selected and discarded if either edge (i, b) or edge (j, a) exists; if nei-
ther edge (i, b) nor edge (j, a) exists, the associated rewiring consists of
removing edges (i, j) and (a, b) and adding edges (i, b) and (j, a).

Supplementary Algorithm 1: dk-randomization process.

Input: GT ; // Original graph

Input: R; // Number of rewirings

Input: d; // d value: 0, 1, or 2

/* 1. Initialize process variables */

1 i = 0 ; // Rewiring counter

2 G0 = GT ; // Graph to rewire

/* 2. Apply R dk-rewirings */

3 while i < R do
/* Select a random pair of edges (see the text) */

4 rew = random(edges ∈ Gi);
/* Apply the rewiring to Gi */

5 apply rewiring(Gi, rew);

6 i = i+ 1;

Output: Gi; // dk-randomized graph

The second method of (p-targeting dk-preserving rewiring) is based on
simulated annealing, and consists of two phases: randomization and targeting
rewiring, Algorithm 2. The following input parameters are required: GT the
original graph, pGT

the property to target, R the number of dk-rewirings to
apply at each value of temperature, β0 the initial inverse temperature, βfactor
the rate of temperature decrease, and α the acceptance threshold. In the first
phase the original graph is 2k-randomized by Algorithm 1. In the second phase,
the obtained 2k-random graph is 2k-rewired, but each rewiring is accepted with
probability min[exp(−βH), 1] which depends on current values of energy H and
temperature 1/β. Energy is defined as the distance between the values of prop-
erty p in the original and current rewired graphs. Temperature is high initially,
but each round of R rewirings (line 9), it decreases by factor βfactor, thus de-
creasing the probability of accepting a rewiring that increases energy. This
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second phase terminates when either energy is zero, meaning that the value of
p-property in the rewired graph pGi is equal to its value in the original graph
pGT

, or when the percentage of accepted rewirings during the last round falls
below a user-specified threshold α. Function compute property(G) appear-
ing on lines 3 and 12 returns average clustering c̄ or average degree-dependent
clustering c̄(k) of G depending on whether d = 2.1 or d = 2.5, respectively.
Energy function distance(pGi , pGT

) appearing on lines 4 and 13 depends on d
as follows:

• if d = 2.1, distance(pGi
, pGT

) = |cGi
− cGT

|,

• if d = 2.5, distance(pGi
, pGT

) =
∑
k |cGi

(k)− cGT
(k)|.

Code availability We release the software package that implements the dk-
randomization algorithms described above. The code is freely available at http:
//polcolomer.github.io/RandNetGen/[15].
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Supplementary Algorithm 2: p-targeting dk-preserving rewiring pro-
cess.

Input: GT ; // Original graph

Input: R; // Number of rewirings

Input: pGT
; // Target value of the property

Input: β0; // Initial inverse temperature

Input: βfactor; // Temperature decrease rate

Input: α; // Acceptance threshold

/* 1. 2k-randomize the original graph using Alg. 1 */

1 M = num.edges(GT );
2 G0 = dk-randomize(GT , R = 100M, d = 2);

/* 2. Compute the current value of the property */

3 pG0 = compute property(G0);

/* 3. Compute the current energy, the distance between pG0
and pGT

*/

4 H0 = distance(pG0
, pGT

);

/* 4. Initialize process variables */

5 i = 0; // Accepted rewirings counter

6 step = 0; // Counter associated with current temperature

7 βstep = β0;

8 Astep = 1; // Acceptance ratio, percentage of accepted rewirings that

modified energy at current temperature

/* 5. 2k-rewire until energy goes to zero or the acceptance ratio falls

below the threshold */

9 while Hi > 0 and Astep > α do
/* Apply R p-targeting 2k-rewirings at constant temperature 1/βstep */

10 for r ← 1 to R do
/* Apply a single 2k-rewiring to the current graph, using Alg. 1 */

11 Ghyp = dk-randomize(Gi, 1, 2);
12 phyp = compute property(Ghyp);

/* Compute current energy */

13 Hhyp= distance(phyp, pGT
);

/* Compute energy change */

14 ∆H = Hhyp −Hi;

/* Accept graph Ghyp with the following probability */

15 with probability min(e−βstep·∆H , 1) do:
16 r = r + 1;
17 i = i+ 1;
18 Gi = Ghyp;
19 Hi = Hhyp;

20 βstep+1 = βstep · βfactor; // Update β

21 Astep+1 = #rewirings accepted with ∆H 6=0
#rewirings with ∆H 6=0 ; // Update the acceptance ratio

22 step = step + 1;

Output: Gi
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[2] Victor Egúıluz, Dante Chialvo, Guillermo Cecchi, Marwan Baliki, and
A. Vania Apkarian. Scale-Free Brain Functional Networks. Phys Rev Lett,
94(1):018102, January 2005. doi:10.1103/PhysRevLett.94.018102.

[3] R Milo, S Itzkovic, N Kashtan, R Levitt, S Shen-Orr, I Ayzenshtat, M Shef-
fer, and U Alon. Superfamilies of Evolved and Designed Networks. Science,
303:1538–1542, 2004. doi:10.1126/science.1089167.

[4] Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Bradley Huffaker,
Xenofontas Dimitropoulos, Kc Claffy, and Amin Vahdat. The Internet AS-
Level Topology: Three Data Sources and One Definitive Metric. Comput
Commun Rev, 36(1):17–26, 2006. doi:10.1145/1111322.1111328.

[5] Marián Boguñá, Romualdo Pastor-Satorras, Albert Dı́az-Guilera, and Alex
Arenas. Models of social networks based on social distance attachment.
Phys Rev E, 70(5):056122, November 2004. doi:10.1103/PhysRevE.70.

056122.

[6] Thomas Rolland, Murat Tas, Nidhi Sahni, Song Yi, Irma Lemmens, Celia
Fontanillo, Roberto Mosca, Atanas Kamburov, Susan D Ghiassian, Xin-
ping Yang, Lila Ghamsari, Dawit Balcha, Bridget E Begg, Pascal Braun,
Marc Brehme, Martin P Broly, Anne-ruxandra Carvunis, Dan Convery-
zupan, Roser Corominas, Changyu Fan, Eric Franzosa, Jasmin Coulombe-
huntington, Elizabeth Dann, Matija Dreze, Fana Gebreab, Bryan J Gutier-
rez, Madeleine F Hardy, Mike Jin, Shuli Kang, Ruth Kiros, Guan Ning Lin,
Ryan R Murray, Alexandre Palagi, Matthew M Poulin, Katja Luck, An-
drew Macwilliams, Xavier Rambout, John Rasla, Patrick Reichert, Viviana
Romero, Elien Ruyssinck, Julie M Sahalie, Annemarie Scholz, Akash a
Shah, Amitabh Sharma, Yun Shen, Kerstin Spirohn, Stanley Tam, Alexan-
der O Tejeda, Shelly a Trigg, Jean-claude Twizere, Kerwin Vega, and Jen-
nifer Walsh. A Proteome-Scale Map of the Human Interactome Network.
Cell, 159:1212–1226, 2014. doi:10.1016/j.cell.2014.10.050.
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