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Supplementary Text

Reconstruction method used to build iMK1961

The genome-scale metabolic model of C. clostridium was reconstructed using a 

multi-step pipeline. First, bi-directional BLASTP (111) was employed to compare protein 

sequences of C. clostridium with those of template organisms. Based on homology between 

proteins of C. clostridium and template organisms, a draft metabolic network was constructed. 

This draft reconstruction was extended by incorporating annotated genes with EC numbers in the 

C. clostridium genome. The reconstruction was further refined by assigning compartments to

reactions, adding biomass (68), transport and exchange reactions, and balancing mass and charge

in reactions, as well as correcting gene-reaction associations. To incorporate any missing

information in the model, a variety of resources such as KEGG (112), modelSEED (113),

MetaCyc (114), UniProt (115), BRENDA (116), IntEnz (117), TPDB (118), and TransportDB

(119) were utilized.

In addition, organism-specific pathways (e.g., succinate pathway) were added based on 

experimental evidence, and the model's predicted capabilities were compared with experimental 

measurements. In cases where the model's predictions did not match experimental data, the 

model was iteratively refined by filling gaps in relevant pathways. To reconstruct and analyze the 

model, three types of computational tools were used: alignment tools (such as BLASTP), model 

reconstructing and analyzing tools (including RAVEN Toolbox, COBRA Toolbox, and 

COBRApy), and subcellular localization tools (including SignalP (120), HECTAR (121), 

Mitoprot (122), predictNLS (123), and TargetP (124)). Finally, experimentally confirmed 

phenotypic capabilities of C. clostridium (103, 105, 106, 108-110, 125) were used to gap-fill the 

model (iMK1961) by adding missing pathways/reactions to enable the related metabolic 

functions.



fig. S1: Comparison between four diatoms based on their genome size. In addition to

Cylindrotheca closterium, this comparison includes three other diatoms with published metabolic

models.



fig. S2: Distribution of unique reactions in the C. closterium model among metabolic

pathways compared to other diatom models. The features of iMK1961 were compared with

three other diatom models (T. pseudonana, P. tricornutum, and F. cylindrus).



fig. S3: Model-predicted metabolic flux distributions through subsystems under low and

elevated concentrations of nutrients such as CO2, HCO3, NO2, NO2 + NO3, PO4, and Si. Flux

values were normalized between 0 and 1. table S25 contains the list of subsystems in the same

sequence it is plotted in the heatmap.



fig. S4: Comparing subsystems with differential flux among six growth environments CO2,

HCO3, NO2, NO2 + NO3, PO4, and Si. (a) Seven subsystems (starch and sucrose metabolism,

methionine metabolism, nucleotide sugar metabolism, aminoacyl-tRNA biosynthesis, ascorbate

metabolism, fructose and mannose metabolism, porphyrin and chlorophyll metabolism) with

high and (b) three subsystems (oxidative phosphorylation, arginine and proline metabolism,

biotin biosynthesis) with low flux distributions were found common between all conditions.



fig. S5: Subsystems with low flux due to elevated concentration of carbon sources. This

Venn diagram represents shared and unique subsystems of C. closterium with low flux

distributions under the elevated concentration of two different carbon sources (CO2 and HCO3).

table S17 can be referred for more details.



fig. S6: Subsystems with high flux due to elevated concentration of nitrogen sources. This

Venn diagram represents shared and unique subsystems of C. closterium with high flux

distributions under the elevated concentration of two different nitrogen sources (NO2NO3 and

NO2). table S18 can be referred for more details.



fig. S7: Subsystems with low flux due to elevated concentration of nitrogen sources. This

Venn diagram represents shared and unique subsystems of C. closterium with low flux

distributions under the elevated concentration of two different nitrogen sources (NO2NO3 and

NO2). Supplementary Table 17 can be referred for more details.



fig. S8: Intersection between differential model-predicted fluxes and gene expressions.

Barplot represents the percentage of overlapped and inconsistent subsystems that carry

differential (increased and decreased) fluxes and are associated with differentially expressed

genes under elevated concentrations of nutrients such as CO2, HCO3, NO2, NO2 + NO3, PO4, and

Si. While analyzing differential flux distributions and gene expression, we noticed that several

gene/reaction pairs do not correlate. However, it was not surprising because it has been

demonstrated that gene expression level can be a weak measure of enzyme activity in a given

reaction (https://doi.org/10.1038/s41598-021-88129-3;

http://dx.doi.org/10.1016/j.cels.2016.08.013; https://doi.org/10.1371/journal.pcbi.1003580).

Moreover, these discrepancies can be because of the involvement of different strains of C.

closterium in metabolic model generation and metatranscriptomics data analysis of ocean

samples. Despite these challenges, model-predicted fluxes and gene expression levels were

consistent for more than 50% of metabolic reactions, which was able to explain the detailed

responses of C. closterium metabolism to drastically different nutrition conditions in the marine

environment.



fig. S9: Comparison between reaction fluxes and gene expressions under increased HCO3

concentration. This bar plot represents number of reactions in subsystems that showed

consistency between differential (increased and decreased) model-predicted fluxes of reactions

and differentially expressed genes under elevated HCO3 condition.



fig. S10: Comparison between reaction fluxes and gene expressions under increased NO2+

NO3 concentration. This bar plot represents number of reactions in subsystems that showed

consistency between differential (increased and decreased) model-predicted fluxes of reactions

and differentially expressed genes under elevated NO2+ NO3 condition.



fig. S11: Comparison between reaction fluxes and gene expressions under increased NO2

concentration. This bar plot number of reactions in subsystems that showed consistency

between differential (increased and decreased) model-predicted fluxes of reactions and

differentially expressed genes under elevated NO2 condition.



fig. S12: Comparison between reaction fluxes and gene expressions under increased PO4

concentration. This bar plot number of reactions in subsystems that showed consistency

between differential (increased and decreased) model-predicted fluxes of reactions and

differentially expressed genes under elevated PO4 condition.



fig. S13: Comparison between reaction fluxes and gene expressions under increased Si

concentration. This bar plot number of reactions in subsystems that showed consistency

between differential (increased and decreased) model-predicted fluxes of reactions and

differentially expressed genes under elevated Si condition.



fig. S14: Photoautotrophy-specific reactions. The unique set of active reactions when

iMK1961 was simulated under photoautotrophic condition. table S21 can be seen for more

details about these reactions.



fig. S15: Heterotrophy-specific reactions. The unique set of active reactions when iMK1961

was simulated under heterotrophic condition. table S21 can be seen for more details about these

reactions.



fig. S16: Mixotrophy-specific reactions. The unique set of reactions under photoautotrophic

and heterotrophic conditions were found active together when iMK1961 was simulated under a

mixotrophic condition. table S21 can be seen for more details about these reactions.



fig. S17: Principal Component Analysis (PCA) based on the CO2/HCO3/PAR

(Photosynthetically active radiation) levels in global oceans. Each point represents a Tara

Oceans sample. The values of environmental factors were used from a publication by Salazar et

al. (20). This figure is related to Figure 6c. The heatmap illustrates the PCA loadings of the

environmental factors for the main principal components, indicating how these factors contribute

to the clustering observed in the data.



fig. S18: Comparison of gene representation in diatom models and their genome. (a) Total

number of genes in diatom models and their respective genomes. (b) Proportion of genes

represented in diatom models relative to the total genes in their genomes. iMK1961 exhibits a

higher proportion of genes (9.4%) compared to the average proportion (8.6%) across all models.

Among all diatom models, iTps1432, which contains fewer genes and reactions than iMK1961,

demonstrates the highest proportion (12%) of genes represented in its genome.



fig. S19: Homology analysis based on four diatom genomes. Similarity score (%) was obtain

using BLAST (E-value < 1e-6) for protein sequences of diatom pairs: C. closterium - P.

tricornutum (cyl - pt), C. closterium - T. pseudonana (cyl - tp), C. closterium - F. cylindrus (cyl -

Fcyl), P. tricornutum - T. pseudonana (pt - tp), P. tricornutum - F. cylindrus (pt - fcyl), and T.

pseudonana - F. cylindrus (tp - fcyl). The homology between these four diatoms ranges from

53% to 71%.



fig. S20: Model quality assessment using the Memote Test Suite. The Memote score of

iMK1961 (C. closterium) were compared with three diatoms (P. tricornutum, F. cylindrus, and T.

pseudonana) and a green microalgae (C. reinhardtii) for model quality evaluation. Among the

compared models, iMK1961 demonstrated an equivalent Memote score to two models

(iLB1027_lipid and iRC1080) obtained from BiGG models database. Additionally, iMK1961

exhibited a higher score compared to the other two diatoms (iML830 and iTps1432).



table S1: List of the articles used in the model reconstruction and validation processes

table S2: Precursors involved in biomass production

table S3: In silico media representing autotrophic growth condition

table S4: In silico media representing heterotrophic growth condition

table S5: In silico media representing mixotrophic growth condition

table S6: Reactions added to the model during the gap-filling process

table S7: Nutrients (carbon, nitrogen, phosphorus, and sulfur sources) used to test the prediction

capabilities of the model. The references provided indicate whether the growth data was sourced

from previously published reports or generated during the course of this study.

table S8: Comparing iMK1961 predictions with experimental measurements. This data is related

to Fig. 3.

table S9: Uptake fluxes of nutrients used to constrain iMK1961 to simulate the growth of C.

closterium under different growth conditions

table S10:Measurements of environmental factors global Tara Oceans metatranscriptomics data

table S11: Uptake flux of nutrients used to mimic the variable environmental conditions for

simulating the C. closterium model

table S12: Reactions added to the model based on EC numbers

table S13:Model features (reactions)

table S14:Model features (metabolites)

table S15: Unique metabolites in the model

table S16: Subsystems with differential flux under elevated concentrations of nutrients (CO2,

HCO3, NO2, NO2 + NO3, PO4, and Si)

table S17: Shared and common subsystems with low flux compared between different

conditions. This table represents the subsystems while comparing all conditions as well as based

on pairwise comparisons.

table S18: Shared and common subsystems with high flux compared between different

conditions. This table represents the subsystems while comparing all conditions as well as based

on pairwise comparisons.

table S19: Binary representation of subsystems with differential flux under elevated

concentrations of nutrients (CO2, HCO3, NO2, NO2 + NO3, PO4, and Si)



table S20: Reactions associated with up and downregulated subsystems due to elevated CO2

levels

table S21: Condition-specific active reactions in photoautotrophic, heterotrophic, and

mixotrophic growth of C. closterium. Here, active reactions were defined based on non-zero

values of fluxes of reactions and expression levels of associated genes under different conditions.

table S22:Model-predicted photoautotrophy-specific reactions based on only non-zero flux

values.

table S23:Model-predicted heterotrophy-specific reactions based on only non-zero flux values

table S24:Model-predicted mixotrophy-specific reactions based on only non-zero flux values

table S25:Matrix used to plot fig. S3

table S26: Differentially abundant marine prokaryotes between different trophic modes using

Tara Oceans metagenomic data. This data is related to Fig. 6E.



Source data: This file contains the source data for all figures, including both the main and
supplementary figures.
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