GhCFE1A, a dynamic linker between ER network and actin cytoskeleton, plays an important role in cotton fiber cell initiation and elongation

Fenni Lv¹, Haihai Wang¹, Xinyu Wang², Libo Han³, Yinping Ma³, Sen Wang¹, Zhidi Feng³, Xiaowei Niu¹, Caiping Cai¹, Zhaosheng Kong³, Tianzhen Zhang¹, Wangzhen Guo^{1,*}

Supplementary data

Supplementary Fig. S1. Constructions of sense and antisense expression vectors of *GhCFE1A*.

35SSC, 35S-sense-GhCFE1A expression vector; E6SC, E6-sense-GhCFE1A expression vector; E6ASC, E6-antisense-GhCFE1A expression vector; RB, right border repeat; P-NOS, nopaline synthase gene promoter; NPTII, neomycin phosphortransferase II gene; P-35S, the cauliflower mosaic virus (CaMV) 35S promoter; P-E6, GhE6 promoter; GhCFE1A: cotton fiber expressed protein gene; LB: left border repeat.

Supplementary Fig. S2. Molecular confirmation of the independent transgenic lines.

(A) PCR transgenic determine the NPTII, analysis of plants to 35S-sense-GhCFE1A (35SSC), E6-sense-GhCFE1A (E6SC) and E6-antisense-GhCFE1A (E6ASC). M, molecular weight marker; P, positive control; C, non-transformed plant; 1-6, transgenic plants.

(B) Southern bolt analysis of independent T3 transgenic lines. Genomic DNA was digested with *Eco*R I and hybridized with a 0.75-kb fragment of the *NPTII*.

Supplementary Fig. S3. *GhCFE1* expression in ovules and developing fibers of E6SC transgenic cotton.

Quantitative RT-PCR (qRT-PCR) measurements of *GhCFE1* transcripts in 0 DPA ovules and 5 - 15 DPA fibers of the wild-type (WT) and E6SC transgenic (lines 169, 172, 178, 181, and 183) plants. Error bars represent standard deviation of triplicate experiments, and *His3* was used as an internal control (*P < 0.05, **P < 0.01, by Student's *t*-test).

Supplementary Fig. S4. Sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) analysis of GhCFE1A recombination protein in *Escherichia coli*. The strain of *E. coli* carried a plasmid of pET-30a (+)-*GhCFE1A*, with the *GhCFE1A* gene placed under the control of the isopropylthio- -galactoside (IPTG) -inducible promoter. Induced by IPTG for 4 hours, a new protein band indicated by the black arrow, GhCFE1A recombination protein, appeared on the SDS–PAGE gel.

Supplementary Fig. S5. Inhibition of *GhCFE1* in cotton exhibits no obvious phenotype changes.

(A) qRT-PCR analysis of *GhCFE1* transcripts in 0 DPA ovules, 5 - 15 DPA fibers of wild-type (WT) and *GhCFE1*-knockdown transgenic cotton lines (186, 189, 191, 194, 197, and 199). Error bars represent standard deviation of triplicate experiments, and *His3* was used as an internal control (*P < 0.05, **P < 0.01, by Student's *t*-test).

(B) Unaltered phenotype of fuzz fiber initials in *GhCFE1*-knockdown T3 transgenic cotton lines (186, 189, 191, 194, 197, and 199), comparing with the wild-type and null control (pBI121) plants. The number of the fiber initials counted based on the SEM images existed no difference either and listed in Supplementary table S2.

(C) Average fiber length from wild-type, pBI121 control and *GhCFE1*-knockdown transgenic plants (lines 186, 189, 191, 194, 197, and 199).Error bars indicate standard deviation of triplicate experiments.

Supplementary Fig. S6. GhCFE1A locates on cortical endoplasmic reticulum (ER) and colocalizes with actin bundles.

(A) GFP-CFE1A co-expressed with an actin filaments marker, ABD2-mCherry in tobacco (*Nicotiana benthamiana*) leaf epidermal cells. Scale bar = $10 \mu m$.

(B) GFP-CFE1A co-expressed with an ER luminal marker, RFP-HDEL in tobacco leaf epidermal cells. Scale bar = $10 \mu m$.

Supplementary Table S1. Oligonucleotides used in this study.

Primer Name	Sequences(5'-3') d		Destination	
CFE1- full-F	CCCCTTACCTTCATAGAGAG		CFEL cone cloping	
CFE1- full-R	TGAGGGTTATGGCAGAAGAT		CFET gene cloning	
GhCFE1D-SNP-F	TGTGGAGTATGATACAAAGAGCGGGTGGTA			
GhCFE1D-SNP-R	TTTGTTAAAGAGATTCGATACAGAGGCCGAA		molecular mapping	
GhCFE1-qRT-F	GACGCTGGAAAACACTTGGAAA			
GhCFE1-qRT-R	<i>ZFE1-</i> qRT-R GACTCAGCGACGGTTCTTTTCT		qк1-РСК	
His3-qRT-F	GGTGGTGTGAAGAAGCCTCAT			
His3-qRT-R	RT-R AATTTCACGAACAAGCCTCTGGAA		qK1-PCK	
GhCFE1-RT-F	TGTGGCGGTTAAAGATG		RT-PCR and southern	
GhCFE1-RT-R	GACTCAGCGACGGTTC		blot probe	
EF-1 F	AGACCACCAAGTACTACTGCAC			
EF-1 R	CCACCAATCTTGTACACATCC		KI-PCK	
GhCFE1A			Heterologous	
pET-30a/pGEX-6P-1-F	GC <u>GGATCC</u> CTTAAAATCTCTGFTCCATTGGTT		expression of	
GhCFE1A	CG <u>CTCGAG</u> CTAACTTCCACGGTCAACC	XhoI	GhCFE1A	

pET-30a/pGEX-6P-1-R			
OE-GhCFE1A-F	GCC <u>GGATCC</u> ACCCCTTACCTTCATAGAG	BamHI	Overexpression
OE-GhCFE1A-R	E-GhCFE1A-R TCC <u>GAGCTC</u> GCAGAAGATATTGGTCTAT SacI		Vector
Knockdown- <i>GhCFE1A</i> - F	TCC <u>GAGCTC</u> ACCCCTTACCTTCATAGAG	SacI	
Knockdown-GhCFE1A- R	CGC <u>GGATCC</u> GCAGAAGATATTGGTCTAT		Suppression Vector
35SSC-F	TGCCATCATTGCGATAAA		35S-senceGhCFE1A
35SSC-R	CTGACTCAGCGACGGTTC		detection
E6SC-F	CCATTCACCACTTGCTCCT		E6-senceGhCFE1A
E6SC-R	GGCATTGATTTCCCTTCC		detection
E6ASC-F	TATTGGTGTAATGTGAAGGGAC		E6-antisenceGhCFE1
E6ASC-R	CAAAGAGCGGGTGGGACT		A detection
<i>NPTII-</i> F	GAGGCTATTCGGCTATGACTG		
<i>NPTII</i> -R	TAGAAGGCGATGCGCTGCGA		NPIII detection
GhCFE1A BKT7-F	GGAATTC <u>CATATG</u> CTTAAAATCTCTGTTCC	Nde I	
GhCFE1A BKT7-R	AA <u>CTGCAG</u> GACTTCCACGGTCAACCATTT	Pst I	bait vector
BD- C-F	GGAATTC <u>CATATG</u> CTTAAAATCTCTGTTCC	Nde I	construction
BD- C-R	AA <u>CTGCAG</u> GCAGCGACGGTTCTTTTCTCA	Pst I	

BD- N-F	GGAATTC <u>CATATG</u> AACCAAAACAACGGCGAG	Nde I		
BD- N-R	AA <u>CTGCAG</u> GACTTCCACGGTCAACCATTT			
GhACT2-F	CTCTGAAGCTCCTCTTGGTTCT		ChACT2 and aloning	
GhACT2-R GGTGATACGGTGAAAGGCTAA			GMAC12gene cioning	
GhACTaSNP-F	ATTTACTCAGTATTGTAAAAGATGGCCGACGG		ChACT research slowing	
GhACTaSNP -R	CCCCCACATAAACCAGACTTTTGAGTTGAC		GnAC1 agene cloning	
GhACTbSNP-F	ATTTACTCAGTATTGTAAAAGATGGCCGACGG		ChACTheoree aloning	
GhACTbSNP-R	ATGCAAAATGTAGATCACCATCAAAAGCAAGTAC		GMACT by gene cloning	
GhACT4SNP-F	TTGTAAAAGATGGCCGATGCTGAGGATA		ChACT4gang aloning	
GhACT4SNP-R CAGAAAATGTAACTCACCATTAAATGACTTGTCAAT			OnACT4gene cioning	
GhACTADT7-F1	GGAATTC <u>CATATG</u> GCCGACGGTGAGGAT	Nde I		
GhACTADT7-F2	GAATTC <u>CATATG</u> GCCGATGCTGAGGAT	Nde I	pGAD1 /-GnAC1	
GhACTADT7-R	CG <u>GGATCC</u> CGAAGCACTTCCTGTGGAC	BamH I	vector construction	
CFE1A-GFP-F	caccATGGCGACGGCGAGTACTTGGATAT		CFE1A-GFP	
CFE1A-GFP-R	tgctcctgctccACTTCCACGGTCAACCATT		vector construction	
GFP-CFE1A-F	caccATGGCGACGGCGAGTACTTGGATAT		GFP-CFE1A	
GFP-CFE1A-R	CTAACTTCCACGGTCAACCATTTCCATGT		vector construction	
MYB2-F	TTGCTTTAGTTTGGATTGGGTG			
MYB2-R CCAAGAAACATTTGGTTATAGCC			YKI-PUK	

MYB25-F	ATGGCAAGGTGTCGTCTG	
MYB25-R	GGCAATGTTGTGGTGTTCTC	QKI-PCK
MYB109-F	GGAGGAAGACAAGTTACTCATTGA	
MYB109-R	CATCCACCTTAGCCGACAA	qKI-PCK
TTG3-F	TCCGCTTCATCCTCTTCT	
TTG3-R	ACAGTGACAGGTTCAATGG	qKI-PCK
HOX1-F	ACACCTTGAGTGCCAGAA	
HOX1-R	ATGTTGTAATGTTGCCATCCA	QKI-PCK

Lines	Vector	Lint index/g	Fuzz index/g	NLFI	NFFI
W0		5.60±0.29	1.45 ± 0.09	219.33±23.32	14.45±5.92
155	35SSC	4.79±0.62*	0.99±0.15*	161.50±19.80**	7.05±2.09**
158	35SSC	5.08±0.11	1.10±0.13	170.53±23.30**	8.45±3.28**
159	35SSC	4.55±0.27*	$0.98 \pm 0.04*$	153.11±19.37**	6.42±2.32**
164	35SSC	4.68±0.27*	1.08 ± 0.10	167.60±23.05**	7.95±3.56**
169	E6SC	5.89±0.38	1.23±0.05	194.33±21.38*	10.42±2.99*
172	E6SC	5.69±0.69	1.26±0.02	209.70±19.39	10.74±2.94*
178	E6SC	5.91±0.14	$1.19{\pm}0.01$	212.65±19.92	12.50±4.41
181	E6SC	5.80±0.40	1.13±0.33	189.67±21.06*	11.07±6.36*
183	E6SC	5.66±0.41	1.31±0.08	197.50±23.57*	10.95±3.29*
186	E6ASC	6.41±0.35	1.63 ± 0.08	223.59±26.38	16.50±5.49
189	E6ASC	5.80±0.64	1.51 ± 0.11	213.76±21.43	14.65±4.37
191	E6ASC	5.62±0.53	1.59±0.03	219.05±26.33	14.70±4.22
194	E6ASC	6.55±0.13	1.69 ± 0.08	226.21±23.00	16.64±6.44
197	E6ASC	5.98 ± 0.97	1.49±0.22	218.26±28.97	15.35±5.64
199	E6ASC	6.85±0.73	1.70±0.18	227.65±37.99	16.79±5.09

Supplementary Table S2. Statistics of lint and fuzz physical parameters of 35SSC, E6SC, and E6ASC transgenic lines.

Fiber samples were harvested from field-grown T3 transgenic cotton plants and wild-type cotton plants for measurement. Values of lint index and fuzz index are mean \pm standard deviation of assays for samples of three individual repeats from each line. The number of lint fiber and fuzz fiber initials (NLFI and NFFI) was counted from scanning electron microscope (SEM) images (250 μ m \times 170 μ m) of the central portion of ovules at 0 and 4 days post-anthesis (DPA). The values were averaged over 20 images of 10 selected ovules. Asterisks indicate statistically significant differences between transgenic lines and wild-type plants, as determined by the Student's t test (*P < 0.05; **P < 0.01). WT, wild type; 35SSC, 35S-sense-GhCFE1A expression vector: E6SC. *E6*-sense-*GhCFE1A* expression vector; E6ASC, E6-antisense-GhCFE1A expression vector.

Lines	Vector	ttor Length(mm) $\frac{\text{Strength}}{(\text{cN}\cdot\text{tex}^{-1})}$		Micronaire
WT		27.58±0.43	29.42±1.94	5.69±0.60
pBI121	pBI121	27.67±1.13	28.23±0.40	5.23±0.12
155	35SSC	26.47±0.37**	28.65±2.51	5.58±0.34
158	35SSC	26.28±1.31**	29.46±4.07	5.89 ± 0.50
159	35SSC	24.90±0.90**	28.07±2.90	5.58±1.00
164	35SSC	26.49±0.59**	28.45±1.91	5.60 ± 0.52
169	E6SC	26.84±0.80*	28.82±2.57	5.67±0.65
172	E6SC	27.04±1.50	29.22±2.40	5.66±0.23
178	E6SC	27.64±1.13	29.17±2.88	5.77±0.38
181	E6SC	26.65±0.51*	28.84±1.87	5.86±0.62
183	E6SC	26.70±0.60*	27.87±1.58	6.05±0.73
186	E6ASC	28.06±1.23	30.82±2.42	5.86 ± 0.70
189	E6ASC	27.51±0.72	28.91±2.38	5.35±0.43
191	E6ASC	27.84±1.43	28.32±2.46	5.37±0.44
194	E6ASC	27.86±0.80	29.69±2.68	5.56±0.66
197	E6ASC	27.88±0.79	29.09±1.50	5.76±0.57
199	E6ASC	27.94±0.37	28.79±2.73	5.89±0.52

Supplementary Table S3. Comparison of fiber quality parameters between transgenic lines and null control or wild-type plants.

Fiber samples were harvested from field-grown T3 transgenic cotton, wild-type and null control plants for measurement. Values are mean \pm standard deviation of assays for samples of three individual repeats from each line. WT, wild type; pBI121, empty expression vector; 35SSC, *35S*-sense-*GhCFE1A* expression vector; E6SC, *E6*-sense-*GhCFE1A* expression vector; E6ASC, *E6*-antisense-*GhCFE1A* expression vector. Asterisks indicate statistically significant differences between transgenic lines and null control or wild-type plants, as determined by the Student's *t*-test (**P* < 0.05; ***P* < 0.01).

Clone	Length	Conserved domains	Homologous protein	Accession number	E-Value	Homology ^a
1	234 aa	ACTIN	actin [Gossypium hirsutum]	AAP73449	1e-167	Id=99%; Po=99%
2	144 aa	DAP-epimerase	Diaminopimelate epimerase, putative [<i>Ricinus communis</i>]	XP_002533003	6e-85	Id=84%; Po=93%
3	104 aa	cyanin_plasto	plastocyanin precursor [Hordeum vulgare]	CAA68696	1e-68	Id=99%; Po=100%
4	102 aa	No putative conserved domains have been detected	hypothetical protein OsI_22798 [Oryza sativa Indica Group]	EEC80521	0.016	Id=54%; Po=57%
5	83 aa	No putative conserved domains have been detected	None			
6	69 aa	No putative conserved domains have been detected	None			

Supplementary	Table S4.	Clones identified	by yeast two	o-hybrid library	screening.	
---------------	-----------	-------------------	--------------	------------------	------------	--