SUPPORTING INFORMATION

C5'-Alkyl Substitution Effects on Digitoxigenin α-L-Glycoside Cancer Cytotoxicity

Hua-Yu Leo Wang,[†] Zhang Qi,[†] Bulan Wu,[‡] Sang-Woo Kang,^{*†} Yon Rojanasakul,^{*§} and George A. O'Doherty^{*†}

[†]Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts

02115, United States, [‡]Department of Chemistry, and [§]Department of Basic Pharmaceutical Sciences,

West Virginia University, Morgantown, West Virginia, 26506, United States

To whom correspondence should be addressed. s.kang@neu.edu, yrojan@hsc.wvu.edu, g.o'doherty@neu.edu

Table of Contents

Section A: Apoptosis Assays	S2-6
Section B: MTT Assays	S7-9
Section C: NCI Growth Inhibition Assays	S10-12
Section D: General Methods	S13
Section E: Synthetic Procedures	S14-49
Section F: ¹ H NMR and ¹³ C NMR Spectra	S50-119

Section A: Apoptosis Assays. NCI-H460 cells were seeded at a density of 50,000 cell/well in 48 well plates for 12 hours with 10% FBS, 1% penicillin and streptomycin, and 1% L-glutamine resulting in 80% confluency. Cells were exposed for 12 hours to increasing concentration of each compound under serum free medium (SFM). All the stock solutions were prepared in the dilution with Serum-Free Medium (SFM) to have Dimethyl Sulfoxide (DMSO) concentration less than 0.1%. Control experiments showed that 0.1% DMSO had no effect on cytotoxicity. Apoptotic and necrotic cell death was determined by incubating cells with 10 µg/ml Hoechst 33342 nuclear stain and 20 µg/ml propidium iodide for 30 minutes at 37°C and scoring the percentage of cells having intensely condensed chromatin and/or fragmented nuclei by fluorescence microscopy (Leica DM IL) with Leica software. The apoptotic index was calculated as apoptotic nuclei / total nuclei * 100 (%). The experiment was performed in 2 replicate wells of each compound and concentration with at least 3 independent experimental runs (N = 6). All the dose-response curves were analyzed by Two-way ANOVA to compare digitoxin α -L-rhamnoside 4 and α -L-amicetoside 9 with its C5'-alkyl substituted digitoxin analogues 5 to 8 and 10 to 12 in the effect of concentrations to cytotoxicity and apoptosis activity. Twoway ANOVA with Bonferroni post test, nonlinear regression analysis were performed using GraphPad Prism version 5.03 for Windows, GraphPad Software, San Diego California USA. Percent of apoptotic cells in no treatment control was $\leq 3\%$.

Con	npound (α-L	-rhamnosides)	C5'-Me 4	C5'-Et 5	C5'- <i>n</i> Pr 6	C5'- <i>i</i> Pr 7	C5'- <i>i</i> Bu 8
	10 mM	% Cell Death	16.47	15.02	15.86	12.81	12.15
	10 IIIvi	SD	3.11	2.32	2.06	5.24	4.22
	25 mM	% Cell Death	24.53	24.93	20.15	19.33	14.36
	25 nM	SD	5.25	6.68	3.35	4.36	2.60
ion	50 nM	% Cell Death	48.79	42.16	23.16	24.42	17.66
rat		SD	8.73	3.47	4.78	5.93	3.76
cent	75 mM	% Cell Death	78.16	71.83	34.10	37.08	24.50
On	/ 3 11111	SD	6.86	5.24	7.61	7.29	4.84
) gt	100 mM	% Cell Death	89.50	80.15	52.06	45.94	36.73
Dri		SD	5.59	5.07	6.99	1.90	7.81
	250 mM	% Cell Death	100.0	98.51	84.94	73.97	68.62
	230 mvi	SD	0	1.86	8.57	3.15	6.14
	500 mM	% Cell Death	100.0	100.0	100.0	100.0	100.0
	500 nM	SD	0	0	0	0	0

Table S1-1. Cell death (%) and standard deviation (SD) as a function of drugs concentration.

	1000 nM 10000 nM	% Cell Death	100.0	100.0	100.0	100.0	100.0
		SD	0	0	0	0	0
		% Cell Death	100.0	100.0	100.0	100.0	100.0
		SD	0	0	0	0	0

Table S1-2. P-values from Bonferroni post test of Two-way ANOVA analysis for selected comparisons of percent cell death in the effect of concentration.

Comparison	Compound (nM)										
Comparison	10	25	50	75	100	250	500	1000	10000		
4 vs 5	P>0.05	P>0.05	P>0.05	P>0.05	P<0.01	P>0.05	P>0.05	P>0.05	P>0.05		
4 vs 6	P>0.05	P>0.05	P<0.001	P<0.001	P<0.001	P<0.001	P>0.05	P>0.05	P>0.05		
4 vs 7	P>0.05	P>0.05	P<0.001	P<0.001	P<0.001	P<0.001	P>0.05	P>0.05	P>0.05		
4 vs 8	P>0.05	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P>0.05	P>0.05	P>0.05		

Table S1-3. Non-linear-regression analysis of cytotoxicity dose-dependent experiment.

Compound	C5'-Me 4	C5'-Et 5	C5'- <i>n</i> Pr 6	C5'- <i>i</i> Pr 7	C5'- <i>i</i> Bu 8
IC ₅₀ (nM)	51.71	56.91	115.5	130.2	166.8
SE (nM)	1.036	1.035	1.052	1.057	1.052
\mathbb{R}^2	0.9799	0.9843	0.9767	0.9809	0.9812

Table S1-4. Apoptotic cells (%) with standard deviation (SD) for each C5'-alkyl substituted digitoxin rhamnosides at 50 nM concentration and P-values from Bonferroni post test of One-way ANOVA analysis.

Compound (a-L-rhamnosides)	C5'-Me 4	C5'-Et 5	C5'- <i>n</i> Pr 6	C5'- <i>i</i> Pr 7	C5'- <i>i</i> Bu 8
% Apoptotic cell (Mean nM)	41.603	30.625	15.692	15.425	9.9487
SD	4.0938	6.1844	3.1165	2.7126	2.8321
Comparison		4 vs 5	4 vs 6	4 vs 7	4 vs 8
One-way ANOVA		P<0.001	P<0.001	P<0.001	P<0.001

Con	npound (α-L	-amicetosides)	C5'-Me 9	C5'-Et 10	C5'- <i>i</i> Pr 11	C5'- <i>i</i> Bu 12
	10 mM	% Cell Death	18.12	13.46	9.96	10.03
	I U IIIVI	SD	2.10	2.68	2.90	2.02
	25 nM	% Cell Death	22.09	19.43	12.07	12.41
	23 IIIVI	SD	1.60	2.76	2.71	1.83
	50 mM	% Cell Death	52.04	22.56	14.48	13.06
	30 IIIVI	SD	2.21	3.99	3.95	2.87
ion	75 nM	% Cell Death	77.04	39.69	16.05	15.00
trat		SD	3.17	4.46	3.87	2.64
cent	100 nM	% Cell Death	98.61	69.05	18.89	17.69
On		SD	1.61	1.71	3.42	2.44
) gu	250 nM	% Cell Death	100.0	87.87	22.73	21.86
Dri	230 mvi	SD	0	3.46	2.90	2.32
	500 mM	% Cell Death	100.0	99.58	50.85	62.18
	300 mm	SD	0	0.59	3.01	4.13
	1000 mM	% Cell Death	100.0	100.0	90.66	94.80
		SD	0	0	1.61	1.70
	10000 pM	% Cell Death	100.0	100.0	100.0	100.0
		SD	0	0	0	0

Table S2-1. Cell death (%) and standard deviation (SD) as a function of drugs concentration.

Table S2-2. P-values from Bonferroni post test of Two-way ANOVA analysis for selected comparisons of percent cell death in the effect of concentration.

Comparison		Compound (nM)										
Comparison	10	25	50	75	100	250	500	1000	10000			
9 vs 10	P<0.01	P>0.05	P<0.001	P<0.001	P<0.001	P<0.001	P>0.05	P>0.05	P>0.05			
9 vs 11	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P>0.05			
9 vs 12	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P<0.01	P>0.05			

Table S2-3. Non-linear-regression analysis of cytotoxicity dose-dependent experiment.

Compound (<i>a</i> -L-amicetosides)	C5'-Me 9	C5'-Et 10	C5'- <i>i</i> Pr 11	C5'- <i>i</i> Bu 12
IC ₅₀ (nM)	51.73	87.35	533.1	458.1
SE (nM)	1.027	1.030	1.036	1.028
R^2	0.9848	0.9796	0.9790	0.9854

Table S2-4. Apoptotic cells (%) with standard deviation (SD) for each C5'-alkyl substituted digitoxin amicetosides at 50 nM concentration and P-values from Bonferroni post test of One-way ANOVA analysis.

Compound (<i>α</i> -L-amicetosides)	C5'-Me 9	C5'-Et 10	C5'- <i>i</i> Pr 11	C5'- <i>i</i> Bu 12
% Apoptotic cell (Mean nM)	42.463	18.750	11.993	9.2821
SD	3.6968	3.8386	3.1854	2.3516
Comparison		9 vs 10	9 vs 11	9 vs 12
One-way ANOVA		P<0.001	P<0.001	P<0.001

Figure S3. Cytotoxicity as a function of drug concentration in the comparison of C5'-alkyl substitution.

The dose response curve of total cell death (apoptosis/necrosis) mediated by digitoxin analogues in a 12 h treatment at increasing concentrations (10 nM to 10 μ M). All the data were analyzed by Two-way ANOVA (N = 6; *, P < 0.05; **, P < 0.01; ***, P < 0.001).

Figure S4. Apoptotic cell death as an effect of steric hindrance.

A & B) Apoptotic cell death (%) was compared for each C5'-alkyl substituted digitoxin rhamnosides and amicetosides at 50 nM concentration (One-way ANOVA; ***, P < 0.001). C & D) Hoechst 33342 stained apoptotic cell appear in blue and propidium iodide stained necrotic cell in red at 50 nM drug concentration.

Section B: MTT Colorimetric Assays.¹ The human lung epithelial cell line NCI-H460 was obtained from the American Type Culture Collection (Manassas, VA). The cells were cultured in RPMI 1640 medium (Invitrogen) supplemented with 10% fetal bovine serum and 2 mM L-glutamine and 100 units/ml penicillin/streptomycin. Cell cultures were maintained in a humidified atmosphere of 5% CO₂ at 37°C. Cells were passaged at preconfluent densities using a solution containing 0.25% trypsin and 0.5 mM EDTA (Invitrogen). Cells were seeded at a density of 10,000 cell/well in a 96 well plate for 12 hours with 10% FBS, 1% penicillin and streptomycin, and 1% L-glutamine resulting in 80% confluency. Each dose was prepared in 1% FBS medium by 1000X dilution of the drug which was prepared in Dimethyl Sulfoxide (DMSO) solution to ensure DMSO concentration less than 0.1%. Control experiments showed that 0.1% DMSO had no effect on cytotoxicity. The cell viability was measured by incubating the treated cell with 10 µL of 5mg/mL MTT solution in deionized water per well for 4 hrs, followed by solublizing the resulting formazan salt with DMSO for 45mins. The plates were read by Gen5 Fluorescence Reader at 562 nm. Both time- and dose-dependent experiments were performed in 3 replicate wells of each compound or concentration with at least 3 experimental runs (N = 9). All the data were analyzed by Two-way ANOVA to compare digitoxin α -L-rhamnoside 4 and α -L-amicetoside 9 with its C5'-alkyl substituted digitoxin analogues 5 to 8 and 10 to 12 in the effect of concentrations to cell survival. Two-way ANOVA with Bonferroni post test and nonlinear regression analysis were performed using GraphPad Prism version 5.03 for Windows, GraphPad Software, San Diego California USA. The cell survival at 10 µM was 0%.

Cor	Concentration (nM)			1	10	25	50	100	500	1000
	4	Viability %	100	77.81	11.81	8.72	7.16	6.11	5.81	5.46
	4	SD	7.09	8.25	1.58	1.88	0.61	0.34	1.27	0.34
	5	Viability %	100	73.23	19.97	10.33	8.28	6.64	6.13	5.71
nd		SD	7.09	10.70	3.16	1.51	1.01	0.76	0.37	1.56
noo	6	Viability %	100	81.43	39.27	16.15	9.27	7.06	5.87	5.81
mp		SD	7.09	4.24	1.29	3.14	1.58	1.22	0.32	0.21
Co	7	Viability %	100	77.37	47.26	35.01	22.78	9.88	6.11	5.76
	'	SD	7.09	8.94	4.57	2.53	2.60	0.33	1.19	1.30
	0	Viability %	100	82.42	57.71	40.65	26.07	12.38	6.69	5.90
	o	SD	7.09	8.90	0.93	3.37	2.74	1.13	0.49	0.79

Table S5. Dose-dependent experiment of C5'-alkyl substituted α -L-rhamnoside analogues 4 to 8 in 48 h treatment (SD = Standard Deviation).

¹ (a) Mosmann, T. J. Immunological Methods, **1983**, 65, 55-63. (b) Chanvorachote, P.; Nimmannit, U.; Stehlik, C.; Wang, L.; Jiang, B.-H.; Ongpipatanakul, B.; Rojanasakul, Y. Cancer Res., **2006**, 66, 6353-6360.

Compound	C5'-Me 4	C5'-Et 5	C5'- <i>n</i> Pr 6	C5'- <i>i</i> Pr 7	C5'- <i>i</i> Bu 8
GI ₅₀ (nM)	2.097	2.141	4.876	6.322	13.42
SE (nM)	1.066	1.088	1.079	1.162	1.097
R^2	0.9868	0.9821	0.9879	0.9785	0.9798

Table S6. Non-linear-regression analysis of MTT dose-dependent experiment for the comparison of C5'-alkyl substituted α -L-rhamnoside analogues 4 to 8 (SE = Standard Error).

Table S7. P-values from Bonferroni post test of Two-way ANOVA analysis for selected comparisons of percent cell viability in the effect of concentration after 48 h treatment.

Comparison	Compound (nM)									
	1	10	25	50	100	500	1000	10000		
4 vs 5	P>0.05	P<0.001	P>0.05	P>0.05	P>0.05	P>0.05	P>0.05	P>0.05		
4 vs 6	P>0.05	P<0.001	P<0.001	P>0.05	P>0.05	P>0.05	P>0.05	P>0.05		
4 vs 7	P>0.05	P<0.001	P<0.001	P<0.001	P>0.05	P>0.05	P>0.05	P>0.05		
4 vs 8	P>0.05	P<0.001	P<0.001	P<0.001	P<0.01	P>0.05	P>0.05	P>0.05		

Table S8. Dose-dependent experiment of C5'-alkyl substituted α -L-amicetoside analogues 9 to 12 in 48 h treatment (SD = Standard Deviation).

Concentration (nM)			0	1	10	25	50	100	500	1000
	9	Viability %	100	77.02	13.94	7.14	6.18	5.00	3.69	3.25
		SD	12.42	3.90	0.81	1.59	1.63	1.59	0.77	1.41
pt	10	Viability %	100	73.34	20.58	9.23	8.21	6.81	5.41	4.50
our		SD	12.42	2.17	3.69	1.17	1.23	1.64	1.67	1.11
up	11	Viability %	100	81.08	50.66	30.13	22.21	12.38	6.35	5.21
Cor		SD	12.42	5.55	4.23	2.62	3.32	1.83	0.78	0.29
	12	Viability %	100	81.78	49.19	36.57	25.07	18.46	4.88	3.64
		SD	12.42	1.99	4.21	3.26	2.80	3.06	1.16	0.10

Table S9. Non-linear-regression analysis of MTT dose-dependent experiment for the comparison of C5'-alkyl substituted α -L-amicetoside analogues 9 to 12 (SE = Standard Error).

Compound	C5'-Me 9	C5'-Et 10	C5'- <i>i</i> Pr 11	C5'- <i>i</i> Bu 12
GI ₅₀ (nM)	1.927	2.191	7.659	8.267
SE (nM)	1.073	1.088	1.132	1.142
R^2	0.9838	0.9824	0.9776	0.9816

Comparison	Compound (nM)									
	1	10	25	50	100	500	1000	10000		
9 vs 10	P>0.05	P<0.05	P>0.05	P>0.05	P>0.05	P>0.05	P>0.05	P>0.05		
9 vs 11	P<0.001	P<0.001	P<0.001	P<0.001	P<0.01	P>0.05	P>0.05	P>0.05		
9 vs 12	P<0.001	P<0.001	P<0.001	P<0.001	P<0.001	P>0.05	P>0.05	P>0.05		

Table S10. P-values from Bonferroni post test of Two-way ANOVA analysis for selected comparisons of percent cell viability in the effect of concentration after 48 h treatment.

Figure S11. Dose-response curve of cell viability in a 48 h treatment at increasing concentrations (1 nM to 10 μ M) were performed to test the effect of C5'-alkyl substitution on rhamnoside and amicetoside analogues. All the data were analyzed by Two-way ANOVA (N = 9; *, P < 0.05; **, P < 0.01; ***, P < 0.001).

Section C: NCI Growth Inhibition Assays.² The human tumor cell lines were grown in RPMI 1640 medium containing 5% fetal bovine serum and 2 mM L-glutamine. Cells are inoculated into 96 well microtiter plates in 100 µL at plating densities ranging from 5,000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the microtiter plates are incubated at 37° C, 5 % CO₂, 95 % air and 100 % relative humidity for 24 h prior to addition of experimental drugs. After 24 h, two plates of each cell line are fixed in situ with TCA, to represent a measurement of the cell population for each cell line at the time of drug addition (Tz). Experimental drugs are solubilized in dimethyl sulfoxide at 400-fold the desired final maximum test concentration and stored frozen prior to use. At the time of drug addition, an aliquot of frozen concentrate is thawed and diluted to twice the desired final maximum test concentration with complete medium containing 50 µg/ml gentamicin. Additional four, 10-fold or $\frac{1}{2}$ log serial dilutions are made to provide a total of five drug concentrations plus control. Aliquots of 100 µl of these different drug dilutions are added to the appropriate microtiter wells already containing 100 µl of medium, resulting in the required final drug concentrations. Following drug addition, the plates are incubated for an additional 48 h at 37°C, 5 % CO₂, 95 % air, and 100 % relative humidity. For adherent cells, the assay is terminated by the addition of cold TCA. Cells are fixed in situ by the gentle addition of 50 µl of cold 50 % (w/v) TCA (final concentration, 10 % TCA) and incubated for 60 minutes at 4°C. The supernatant is discarded, and the plates are washed five times with tap water and air dried. Sulforhodamine B (SRB) solution (100 µl) at 0.4 % (w/v) in 1 % acetic acid is added to each well, and plates are incubated for 10 minutes at room temperature. After staining, unbound dye is removed by washing five times with 1 % acetic acid and the plates are air dried. Bound stain is subsequently solubilized with 10 mM trizma base, and the absorbance is read on an automated plate reader at a wavelength of 515 nm. For suspension cells, the methodology is the same except that the assay is terminated by fixing settled cells at the bottom of the wells by gently adding 50 μ l of 80 % TCA (final concentration, 16 % TCA). Using the seven absorbance measurements [time zero, (Tz), control growth, (C), and test growth in the presence of drug at the five concentration levels (Ti)], the percentage growth is calculated at each of the drug concentrations levels. Percentage growth inhibition is calculated as:

[(Ti-Tz)/(C-Tz)] x 100 for concentrations for which Ti > = Tz

[(Ti-Tz)/Tz] x 100 for concentrations for which Ti<Tz.

² Screening Services – NCI-60 DTP Human Tumor Cell Line Screen Home Page. http://dtp.nci.nih.gov/branches/btb/ivclsp.html (accessed October 15, 2010).

Growth inhibition of 50 % (GI₅₀) is calculated from $[(Ti-Tz)/(C-Tz)] \ge 100 = 50$, which is the drug concentration resulting in a 50% reduction in the net protein increase (as measured by SRB staining) in control cells during the drug incubation.

	Compound					Compound			
Cell Type	Cell Line	C5'-Me 9	C5'- <i>i</i> Pr 11	C5'- <i>i</i> Bu 12	Cell Type	Cell Line	C5'-Me 9	C5'- <i>i</i> Pr 11	C5'- <i>i</i> Bu 12
ia	CCRF-CEM	8.49	33.1	28.5		LOX IMVI	11.8	26.9	27.2
	HL-60(TB)	2.96	14.3	18.3		MALME-3M	18.3	63.6	25.7
kem	K-562	19.5	47.0	26.9		M14	19.3	93.4	67.2
Ceul	MOL1-4	2.57	10.9	25.6		MDA-MB-435	27.7 NA	82.8	35.1 115.0
Ι	SR	23.5	37.2	23.0	na	SK-MEL-2	23.1	252.0	133.0
	A 549/ATCC	1.56	17.7	13.4	anor	SK-MEL-28	5 44	232.0	27.7
cer	EKVX	5.13	31.9	31.7	Mela	UACC-257	19.6	122.0	31.3
Can	HOP-62	8.55	31.1	23.1		UACC-62	12.7	119.0	50.5
gun	HOP-92	11.3	79.8	74.2		IGROV1	5.23	54.2	29.9
ell L	NCI-H226	19.3	119.0	95.9	L	OVCAR-3	4.94	26.0	23.5
all C	NCI-H23	4.13	29.4	25.7	ancei	OVCAR-4	18.9	123.0	85.5
-Sm:	NCI-H322M	7.78	77.4	42.5	ın Ca	OVCAR-5	17.4	107.0	113.0
Non	NCI-H460	3.83	21.7	20.9	varia	OVCAR-8	2.50	56.2	29.6
	NCI-H522	9.38	26.0	23.6	Ó	NCI/ADR-RES	4.12	31.5	26.9
	COLO 205	29.6	207.0	170.0		SK-OV-3	22.2	118.0	43.1
L	HCC-2998	16.5	243.0	204.0		786-0	6.21	26.8	23.3
ance	HCT-116	NA	21.5	26.1		A498	20.7	90.1	27.0
n Cî	HCT-15	20.5	62.2	40.3	er	ACHN	4.31	17.0	12.2
Colo	HT29	11.9	41.9	31.5	Canc	CAKI-1	3.32	20.8	24.4
	KM12	32.4	152.0	55.9	nal C	RXF 393	1.22	14.0	18.6
	SW-620	11.1	42.8	32.0	Re	SN12C	3.61	23.7	23.7
	SF-268	4.28	26.3	26.3		TK-10	3.75	53.8	28.6
cer	SF-295	10.4	28.6	24.9		UO-31	5.15	23.4	27.7
Cane	SF-539	7.80	27.6	23.8		MCF7	5.89	161.0	52.8
NS	SNB-19	37.5	185.0	58.9	er	MDA-MB-231	33.9	259.0	225.0
C	SNB-75	14.9	92.6	85.3	Jance	HS 578T	4.57	13.6	7.50
	U251	12.7	82.9	39.7	ast (BT-549	2.41	20.7	22.5
ate er	PC-3	9.55	61.9	46.3	Breć	T-47D	20.6	95.9	36.2
Prosta Cance	DU-145	3.45	19.5	16.6		MDA-MB-435	21.0	150.0	149.0

Table S12. GI₅₀ (nM) for α -L-amicetose C5'-Me 9, C5'-*i*Pr 11 and C5'-*i*Bu 12 against 60 cancer cell lines.

Figure S13. Pin-Wheel presentation of cytotoxicity against NCI-panel of 58 cancer cell lines as an effect of C5'-alkyl substitution (*i.e.*, α -L-amicetose C5'-Me **9** versus C5'-*i*Pr **11** versus C5'-*i*Bu **12**).^a

^aNCI-cancer cell lines are presented in each radius axis of the pin-wheel, and drug concentration is presented in $Log(1/GI_{50} \text{ M})$ in each circle. The result clearly showed that α -L-amicetose C5'-Me **9** inhibited growth of cancer cells with at least 10-fold stronger potency than C5'-*i*Pr **11** and C5'-*i*Bu **12**. Because there was no value provided from NCI for α -L-amicetose C5'-Me **9** in HCT-116 and SK-MEL-2 cell lines, these two cell lines were removed in order to clarify the presentation.

Section D: General Methods

Air- and/or moisture-sensitive reactions were carried out under an atmosphere of argon or nitrogen using oven-dried glassware and standard syringe/septa techniques. Ether, tetrahydrofuran, methylene chloride and methanol were dried by passing through activated alumina column with argon gas pressure. Hexanes refer to the petroleum fraction bp 40-60 °C. Commercial reagents were used without purification unless otherwise noted. Flash chromatography was performed using the indicated solvent system on silica gel standard grade 60 (230-400 mesh). R_f values are reported for analytical TLC using the specified solvents and 0.25 mm silica gel 60 F254 plates that were visualized by UV irradiation (254 nm) or by staining with KMnO₄ stain or anisaldehyde stain (465 mL of 95% EtOH, 17 mL conc. H₂SO₄, 5 mL acetic acid, and 13 mL anisaldehyde). Optical rotations were obtained using a digital polarimeter at sodium D line (589 nm) and were reported in concentration of g / 100 mL at 21 °C. ¹H and ¹³C NMR spectra were recorded on 600 MHz spectrometer. Chemical shifts are reported relative to CDCl₃ (δ 77.0 ppm) for ¹³C. IR spectra were recorded on a FT-IR spectrometer; thin film was formed in CHCl₃ solution. Melting points are uncorrected.

Section E: Synthetic Procedures

(2S, 6S)-tert-butyl -5,6-dihydro-6-methyl-5-oxo-2H-pyran-2-yl carbonate (16a):³

To a 500 mL Erlenmeyer flask of HCO₂Na (37.1 g, 0.545 mol) in deionized H₂O (272 ml) was added furan ketone 14a (15 g, 0.136 mol) and CH₂Cl₂ (2 mL). After degassed (3 times) and addition of small quantity of NaHCO₃ to adjust the basicity, surfactant Cetyltrimethylammonium Bromide (5 g, 10 mol%) was added and stirred for 5 min. Followed by adding Noyori asymmetric catalyst (R)-Ru(n6mesitylene)-(S,S)-TsDPEN (85 mg, 0.1 mol%) and the resulting solution was stirred at room temperature for 24 h. The reaction mixture was diluted with water (200 mL) and extracted with EtOAc (3 x 300 mL). The combined organic layers were washed with saturated NaHCO₃, dried over Na₂SO₄, and concentrated under reduced pressure. The resulting crude furan alcohol 15a were further dissolved in 228 mL of THF/H₂O (3:1) and cooled to 0°C. Solid NaHCO₃ (23 g, 0.273 mol), NaOAc•3H₂O (18.6 g, 0.136 mol), and NBS (24.2 g, 0.136 mol) were added to the solution and the mixture was stirred for 1 h at 0°C. The reaction was guenched with saturated NaHCO₃ (200 mL), extracted (3 x 300 mL) with Et₂O, dried over Na₂SO₄, and concentrated under reduced pressure. The crude mixture was further dissolved in CH₂Cl₂ (200 mL) and the solution was cooled to -78 °C. Catalytic amount of DMAP (1.22 g 7 mol%) was added to the reaction mixture, followed by adding (Boc)₂O (59.5 g, 0.273 mol) in CH₂Cl₂ (70 ml) and allowed the resulting solution to stir for 12 h at -78 to -30°C. The reaction was guenched with saturated NaHCO₃, extracted with Et₂O (3x), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography with elution of 6% Et₂O/Hexane to give two diastereomers of Boc-protected pyranone α -16a (15 g, 65.7 mmol, 48%) and **β-16a** (5 g, 21.9 mmol, 16%) in 3:1. *Rf* (20% Et₂O/Hexane) = 0.58; $[\alpha]_{D}^{25} = +98$ (c = 1.0, CH₂Cl₂); IR (thin film, cm-1) 2984, 2942, 1752, 1703, 1371, 1273, 1254, 1153, 938, 838; ¹H NMR (600 MHz, $CDCl_3$) δ 6.78 (dd, J = 10.2, 3.6 Hz, 1H), 6.22 (d, J = 3.6 Hz, 1H), 6.09 (d, J = 10.2 Hz, 1H), 4.53 (q, J = 10.2 6.6 Hz, 1H), 1.40 (s, 9H), 1.28 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 195.5, 151.7, 140.9, 128.2, 89.1, 83.3, 72.0, 27.5(3), 15.1; ClHRMS: Calculated for [C₁₁H₁₆O₅Na+]: 251.0890, Found: 251.0883.

³ Spectral data matches the previously reported compound **16a**, see: (a) Zhou, M.; O'Doherty, G. A. *J. Org. Chem.*, **2007**, *72*, 2485-2493. (b) Guo, H.; O'Doherty, G. A. *J. Org. Chem.*, **2008**, *73*, 5211-5220.

1-(furan-2-yl)-propan-1-one (14b):

To 62 mL of furan **13** (0.86 mol) was dropped *n*-BuLi (100 mL, 0.24 mol) at 0 °C. Then let it warm up to room temperature and the resulting solution was stirred at room temperature for 3 h. Then 75 mL of anhydrous THF was added to dissolve the solid mixture at RT, which was then transferred to propionic acid (5.9 mL, 0.079 mol) in 50 mL of THF at 0 °C. Then resulting solution was stirred 30 min at 0 °C followed by warming and stirring at RT for 3 h. Then into the reaction mixture 300 mL of Et₂O was added to dilute the solution, followed by addition of 300 mL of distilled water at 0 °C. Into the flask, 200 mL of 2M NaOH and 200 mL sat. NaHCO₃ were added to wash the organic layer. The aqueous layer was extracted with Et₂O (300 ml x2). The pooled organic layer was washed with 200 mL saturated brine solution, dried over Na₂SO₄ and then concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 2% EtOAc/hexane gave furan ketone **14b** (6.31 g, 64%) as light yellow oil; R_f = 0.83 (4:1 (v/v) Hexane/EtOAc); IR (thin film, cm⁻¹) 3131, 2980, 2939, 1672, 1569, 1469, 1394, 1158, 1010, 882, 758; ¹H NMR (270 MHz, CDCl₃) δ 7.56 (dd, *J* = 1.7, 0.8 Hz, 1H), 7.16 (dd, *J* = 3.5, 0.8 Hz, 1H), 6.51 (dd, *J* = 3.5, 1.8 Hz, 1H), 2.64 (q, *J* = 7.2 Hz, 2H), 0.98 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (67.5 MHz, CDCl₃) δ 190.1, 152.5, 146.0, 116.6, 112.0, 31.5, 7.9.

(S)-1-(furan-2-yl)-propan-1-ol (15b)⁴:

To a solution of aqueous HCO₂Na (17.7 g, 130 mL, 2.0 M) was added furan ketone **14b** (9.63 g, 0.078 mol) and CH₂Cl₂ (6 mL), followed by the addition of surfactant Cetyltrimethylammonium Bromide (2.83 g, 0.0078 mmol). The mixture was stirred for 5 min, then added Noyori asymmetric transfer hydrogenation catalyst (*R*)-Ru(η_6 -mesitylene)-(*S*,*S*)-TsDPEN (0.047 g, 0.1 mol%). The resulting solution was stirred at room temperature under argon for 24 h. Then the mixture was added with 300 mL H₂O to dilute and extracted with EtOAc (3 x 200 mL). The combined organic layer was washed with 40 mL saturated aqueous NaHCO₃, 40 mL saturated brine, dried over Na₂SO₄ and then concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 8% EtOAc /hexane gave furan alcohol **15b** (6.4 g, 65%) as colorless oil; $R_f = 0.42$ (4:1 (v/v) Hexane/EtOAc); $[\alpha]_D^{25} = -13$ (c = 0.8, CHCl₃); IR (thin film, cm⁻¹) 3371, 2966, 2935, 2877, 1507, 1461, 1151, 1009, 793, 733; ¹H NMR (600 MHz, CDCl₃) δ 7.35 (dd, J = 1.8, 0.6 Hz 1H), 6.31 (dd, J = 3.0, 1.8 Hz, 1H), 6.21 (d, J = 3.0 Hz, 1H), 4.56 (dd, J = 6.6, 6.6 Hz, 1H), 2.32 (s, 1 H), 1.85 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 156.9, 142.0, 110.2, 106.0, 69.3, 28.7, 10.0.

⁴ Ohkuma, T.; Koizumi, M.; Yoshida, M.; Noyori R. Org. Lett., 2000, 2, 1749-1751.

(2S)-2-ethyl-6-hydroxy-2H-pyran-3(6H)-one (I):

To a solution of 3.06 g furan alcohol **15b** (24.3 mmol) in 82 mL THF-H₂O (3:1) was added 4.08 g NaHCO₃ (48.6 mmol), 3.30 g NaOAc•3H₂O (24.3 mmol), and 4.32 g NBS (24.3 mmol) at 0 °C. The reaction mixture was kept stirring at this temperature for 1 h, then at 0 °C 80 mL saturated NaHCO₃ was added to quench the reaction. The reaction mixture was directly extracted with Et₂O (3 x 80 mL) and the organic layer was pooled, washed by 30 mL saturated brine, dried over Na₂SO₄ and then concentrated reduced pressure to give a residue, which was rapidly subjected to flash chromatography on silica gel. Elution with 15% EtOAc/hexane afforded pyranone alcohol **I** (3.04 g, 88 %) as colorless oil; R_f = 0.44 (2:1 (v/v) hexane/EtOAc); ¹H NMR (400 MHz, CDCl₃) major isomer δ 6.89 (dd, *J* = 10.2, 3.6 Hz, 1H), 6.08 (d, *J* = 10.2 Hz, 1H), 5.64 (m, 1H), 4.49 (dd, *J* = 7.6, 4.0 Hz, 1H), 3.87 (d, *J* = 5.2 Hz, 1H), 1.97-1.87 (m, 1H), 1.85-1.69 (m, 1H), 0.95 (dd, *J* = 7.2, 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) major isomer δ 197.1, 144.9, 127.7, 87.7, 75.4, 23.1, 9.5.

tert-butyl ((6S)-6-ethyl-5-oxo-5,6-dihydro-2H-pyran-2-yl) carbonate (16b):

To a solution of 3.04 g pyranone alcohol **I** (21.4 mmol) in 10 mL CH₂Cl₂ was added 261.40 mg DMAP (2.14 mmol) at -78 °C. A pre-cooled solution of 5.60 g (Boc)₂O (25.68 mmol) in 10 mL CH₂Cl₂ was added drop-wise into the reaction mixture via a cannula. The reaction mixture was stirred at -78 °C for 12 h. The reaction was quenched by 75 mL saturated NaHCO₃ and then extracted with Et₂O (150 mL x 3). The organic layers were pooled, then washed by 25 mL saturated brine, dried over Na₂SO₄ and concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 5% EtOAc/hexane gave 4.61 g (89%) of two diastereomers of Boc-protected pyranone **α-16b** and **β-16b** in 1.8:1; **α-16b**: R_f = 0.69 (4:1 (v/v) hexane/EtOAc); [α]_D²⁵ = +62.9 (c = 1.0, CHCl₃); IR (thin film, cm⁻¹) 2981, 2885, 1751, 1701, 1462, 1371, 1276, 1256, 1159, 1104, 1057, 1030, 940, 847; ¹H NMR (600 MHz, CDCl₃) δ 6.85 (dd, *J* = 10.2, 3.6 Hz, 1H), 6.33 (d, *J* = 3.6 Hz, 1H), 6.16 (d, *J* = 10.2 Hz, 1H), 4.43 (dd, *J* = 7.2, 4.2 Hz, 1H), 1.92 (m, 1H), 1.70 (m, 1H), 1.49 (s, 9H), 0.93 (dd, *J* = 7.2, 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 195.3, 151.8, 140.9, 128.9, 89.3, 83.4, 76.6, 27.6 (3), 22.8, 8.9; ESIHRMS Calcd for [C1₂H₁₈O₅ + Na]⁺: 65.10469, Found: 265.10500.

β-16b: $R_f = 0.61$ (4:1 (v/v) hexane/EtOAc); mp: 65-66 °C; [α]_D²⁵ = -73.5 (c = 1.0, CHCl₃); IR (thin film, cm⁻¹) 2983, 2877, 1740, 1684, 1461, 1397, 1292, 1254, 1160, 1053, 946, 846, 732; ¹H NMR (600 MHz, CDCl₃) δ 6.85 (dd, J = 10.2, 3.0 Hz, 1H), 6.37 (dd, J = 3.0, 1.2 Hz, 1H), 6.20 (dd, J = 10.2, 1.2 Hz, 1H), 4.14 (dd, J = 9.6, 4.8 Hz, 1H), 1.96-1.83 (m, 2H), 1.53 (s, 9H), 1.03 (dd, J = 7.8, 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 195.7, 152.1, 142.4, 129.2, 90.0, 84.6, 83.8.0, 31.0, 27.9 (2), 18.9, 18.4; ESIHRMS Calcd for [C12H18O5 + Na]⁺: 265.10469, Found: 265.10508.

1-(furan-2-yl)-butan-1-one (14c):

To 330 mL of furan **13** (4.54 mol) was dropped *n*BuLi (480 mL, 1.06 mol) at -0 °C. Then let it warm up to room temperature and the resulting solution was stirred at room temperature for 12 h. Then 400 mL of anhydrous THF was added to dissolve the solid mixture at RT, which was then transferred to butyric acid (48.3mL, 0.528 mol) in 50 mL of THF at -78 °C. Then resulting solution was stirred 30 min at -78 °C followed by warming and stirring at 0 °C for another 12 h. Then into the reaction mixture 30 ml of acetone was added to quench the reaction, followed by addition of EtOAc (600 ml). At 0 °C 400ml of sat. NH₄Cl was added to wash the organic layer. The aqueous layer was extracted with EtOAc (600 ml x 2). The pooled organic layer was washed with 50 mL saturated brine, dried over Na₂SO₄ and then concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 5% Et₂O/hexane gave furan ketone **14c** (52.27 g, 72%) as light yellow oil; $R_f = 0.69$ (2:1 (v/v) Hexane/EtOAc); IR (thin film, cm⁻¹) 3132, 2964, 2876, 1674, 1568, 1467, 1394, 1159, 1020, 881, 760; ¹H NMR (600 MHz, CDCl₃) δ 7.51 (dd, J = 1.8, 0.6 Hz, 1H), 7.10 (dd, J = 3.6, 1.2 Hz, 1H), 6.45 (dd, J = 3.6, 1.8 Hz, 1H), 2.72 (dd, J = 7.8, 7.2 Hz, 2H), 1.68 (qdd, J = 7.8, 7.8, 7.2 Hz, 2H), 0.91(dd, J = 7.8, 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.6, 152.9, 146.2, 116.8, 112.1, 40.4, 17.8, 13.8.

(S)-1-(furan-2-yl)butan-1-ol (15c):

To a solution of aqueous HCO₂Na (672 mL, 2.0 M) was added furan ketone **14c** (52.27g, 1.344 mol) and CH₂Cl₂ (34 mL), followed by the addition of surfactant Cetyltrimethylammonium Bromide (13.6 g, 37.3 mmol). The mixture was stirred for 5 min, and added Noyori asymmetric transfer hydrogenation catalyst (*R*)-Ru(η_6 -mesitylene)-(*S*,*S*)-TsDPEN (0.218 g, 0.1 mol%). The resulting solution was stirred at room temperature under argon for 24 h. Then the mixture was extracted with Et₂O (3 x 300 mL). The combined organic layer was washed with 50 mL saturated aqueous NaHCO₃, 50 mL saturated brine, dried over Na₂SO₄ and then concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 10% Et₂O/hexane gave furan alcohol **15c** (42.16 g, 81%) as colorless oil; *R_f* = 0.59 (2:1 (v/v) Hexane/EtOAc); [α]_D²⁵ = -26 (c = 1.5, CH₂Cl₂); IR (thin film, cm⁻¹) 3343, 2959, 2935, 2873, 1505, 1466, 1149, 1007, 732; ¹H NMR (600 MHz, CDCl₃) δ 7.36 (dd, *J* = 1.8, 0.6 Hz 1H), 6.32 (dd, *J* = 3.0, 1.8 Hz, 1H), 6.22 (d, *J* = 3.0, 1H), 4.68 (dd, *J* = 7.2, 6.6 Hz, 1H), 1.95 (s, 1 H), 1.83 (m, 2H), 1.50-1.41 (m, 1H), 1.39-1.31 (m, 1H), 0.94 (dd, *J* = 7.8, 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 157.1, 142.0, 110.3, 105.9, 67.8, 37.8, 18.9, 14.0.

(S)-6-hydroxy-2-propyl-2H-pyran-3(6H)-one (II):

To a solution of 3.67 g furan alcohol **15c** (26.2 mmol) in 106 mL THF-H₂O (3:1) was added 4.4 g NaHCO₃ (52.4 mmol), 3.56 g NaOAc•3H₂O (26.2 mmol), and 4.66 g NBS (26.2 mmol) at 0 °C. The reaction mixture was kept stirring at this temperature for 1 h, then at 0 °C 60 mL saturated NaHCO₃ was added to quench the reaction. The reaction mixture was directly extracted with Et₂O (3 x 100 mL) and the organic layer was pooled, washed by 30 mL saturated brine, dried over Na₂SO₄ and then concentrated reduced pressure to give a residue, which was rapidly subjected to flash chromatography on silica gel. Elution with 20% EtOAc/hexane afforded pyranone alcohol **II** (3.43 g, 84 %) as colorless oil; R_f = 0.41 (2:1 (v/v) hexane/EtOAc); $[\alpha]_D^{25}$ = +12 (c = 1.6, CH₂Cl₂); IR (thin film, cm⁻¹) 3399, 2959, 2961, 2874, 1683, 1084, 1022, 968; ¹H NMR (600 MHz, CDCl₃) major isomer δ 6.88 (dd, *J* = 10.2, 3.0 Hz, 1H), 6.07 (d, *J* = 10.2, 1H), 5.62 (s, 1H), 4.54 (dd, *J* = 8.4, 4.2 Hz, 1H), 3.83 (s, 1H), 1.89-1.83 (m, 1H), 1.70-1.63 (m, 1H), 1.47-1.36 (m, 2H), 0.91 (dd, *J* = 7.8, 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) major isomer δ 197.2, 144.9, 127.7, 87.7, 74.1, 31.8, 18.4, 13.9.

To a solution of 4.0 g pyranone alcohol **II** (25.8 mmol) in 26 mL CH₂Cl₂ was added 315 mg DMAP (2.58 mmol) at -78 °C. A pre-cooled solution of 11.2 g (Boc)₂O (51.6 mmol) in 15 mL CH₂Cl₂ was added drop-wise into the reaction mixture via a cannula. The reaction mixture was stirred at -78 °C for 12 h. The reaction was quenched by 150 mL saturated NaHCO₃ and then extracted with Et₂O (300 mL x 3). The organic layers were pooled, then washed by 50 mL saturated brine, dried over Na₂SO₄ and concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 5% Et₂O/hexane gave 5.61 g (85%) of two diastereomers of Boc-protected pyranone **α-16c** and **β-16c** in 2.7:1; **α-16c**: R_f = 0.76 (3:1 (v/v) hexane/EtOAc); [α]_D²⁵ = +55.2° (c = 1.2, CHCl₃); IR (thin film, cm⁻¹) 2964, 2876, 1749, 1698, 1459, 1370, 1274, 1253, 1155, 1054, 936, 844; ¹H NMR (600 MHz, CDCl₃) δ 6.86 (dd, J = 10.2, 3.6 Hz, 1H), 6.33 (d, J = 3.6 Hz, 1H), 6.19 (d, J = 10.2 Hz, 1H), 4.51 (dd, J = 8.4, 4.2 Hz, 1H), 1.92 (dddd, J = 14.4, 9.0, 7.8, 3.6 Hz, 1H), 1.70 (dddd, J = 14.4, 7.8, 7.8, 7.8 Hz, 1H), 1.51 (s, 9H), 1.48-1.40 (m, 2H), 0.91 (dd, J = 7.8, 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 195.8, 152.0, 141.0, 129.1, 89.4, 83.7, 75.6, 31.5, 27.9(3), 18.1, 13.8; ESIHRMS Calcd for [C1₃H₂₀O₅ + Na]⁺: 279.1203, Found: 279.1204.

β-16c: $R_f = 0.70$ (3:1 (v/v) hexane/EtOAc); [α]_D²⁵ = -77.8 (c = 1.3, CHCl₃); IR (thin film, cm⁻¹) 2963, 2875, 1743, 1683, 1468, 1370, 1284, 1252, 1158, 1058, 946, 847; ¹H NMR (600 MHz, CDCl₃) δ 6.85 (dd, J = 10.2, 3.0 Hz, 1H), 6.36 (dd, J = 3.0, 1.2 Hz, 1H), 6.20 (dd, J = 10.2, 1.2 Hz, 1H), 4.23 (dd, J = 10.2, 4.2 Hz, 1H), 1.94-1.87 (m, 1H), 1.79-1.73 (m, 1H), 1.52 (s, 9H), 1.56-1.51 (m, 1H), 1.49-1.41 (m, 1H), 0.95 (dd, J = 7.8, 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.2, 152.1, 142.0, 128.5, 89.6, 83.7, 79.7, 35.6, 27.9(3), 18.9, 13.8; ESIHRMS Calcd for [C13H₂₀O₅ + Na]⁺: 279.1203, Found: 279.1204.

1-(furan-2-yl)-2-methylpropan-1-one (14d):

To 62 mL of furan **13** (0.86 mol) was dropped *n*-BuLi (100 mL, 0.24 mol) at 0 °C. Then let it warm up to room temperature and the resulting solution was stirred at room temperature for 3 h. Then 75 mL of anhydrous THF was added to dissolve the solid mixture at RT, which was then transferred to *iso*-butyric acid (8.8 mL, 0.079 mol) in 50 mL of THF at 0 °C. Then resulting solution was stirred 30 min at 0 °C followed by warming and stirring at RT for 3 h. Then into the reaction mixture 300 mL of Et₂O was added to dilute the solution, followed by addition of 300 mL of distilled water at 0 °C. Into the flask, 200 mL of 2M NaOH and 200 mL sat. NaHCO₃ was added to wash the organic layer. The aqueous layer was extracted with Et₂O (300 ml x2). The pooled organic layer was washed with 200 mL saturated brine, dried over Na₂SO₄ and then concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 3% EtOAc/hexane gave furan ketone **14d** (7.4 g, 68%) as light yellow oil; *R_f* = 0.80 (4:1 (v/v) Hexane/EtOAc); IR (thin film, cm⁻¹) 3138, 2974, 2880, 1669, 1568, 1465, 1396, 1252, 1017, 884, 759; ¹H NMR (600 MHz, CDCl₃) δ 7.58 (dd, *J* = 1.8, 0.6 Hz, 1H), 7.18 (d, *J* = 3.6 Hz, 1H), 6.53 (dd, *J* = 3.6, 1.8 Hz, 1H), 3.33 (hep, *J* = 6.6 Hz, 1H), 1.21 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 193.7, 152.3, 146.3, 117.2, 112.2, 36.4, 18.9 (2).

(S)-1-(furan-2-yl)-2-methylpropan-1-ol (15d):

To a solution of aqueous HCO₂Na (6.8 g, 50 mL, 2.0 M) was added furan ketone **14d** (4.22 g, 0.031 mol) and CH₂Cl₂ (2 mL), followed by the addition of surfactant Cetyltrimethylammonium Bromide (1.12 g, 0.0031 mmol). The mixture was stirred for 5 min, then added Noyori asymmetric transfer hydrogenation catalyst (*R*)-Ru(η_6 -mesitylene)-(*S*,*S*)-TsDPEN (0.019 g, 0.1 mol%). The resulting solution was stirred at room temperature under argon for 24 h. The mixture was added with 100 mL H₂O to dilute and extracted with EtOAc (3 x 70 mL). The combined organic layer was washed with 15 mL saturated aqueous NaHCO₃, 15 mL saturated brine, dried over Na₂SO₄ and then concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 8% EtOAc /hexane gave furan alcohol **15d** (2.6 g, 61%) as colorless oil; *R*_f = 0.56 (4:1 (v/v) Hexane/EtOAc); [α]_D²⁵ = -22.1 (c = 1.0, CHCl₃); IR (thin film, cm⁻¹) 3387, 2961, 2873, 1505, 1469, 1150, 1007, 807, 730; ¹H NMR (600 MHz, CDCl₃) δ 7.33 (dd, *J* = 1.8, 0.6 Hz 1H), 6.30 (dd, *J* = 3.0, 1.8 Hz, 1H), 6.19 (d, *J* = 3.0, 1H), 4.33 (d, *J* = 7.2 Hz, 1H), 2.29 (s, 1H), 2.10 (hepd, *J* = 7.2, 6.6 Hz, 1H), 0.99 (d, *J* = 6.6 Hz, 3H), 0.83 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 156.4, 141.7, 110.1, 106.5, 73.6, 33.5, 18.8, 18.4.

(2S)-6-hydroxy-2-isopropyl-2H-pyran-3(6H)-one (III):

To a solution of 1.93 g furan alcohol **15d** (13.8 mmol) in 44 mL THF-H₂O (3:1) was added 2.32 g NaHCO₃ (27.6 mmol), 1.87 g NaOAc•3H₂O (13.8 mmol), and 2.45 g NBS (13.8 mmol) at 0 °C. The reaction mixture was kept stirring at this temperature for 1 h. Then at 0 °C 40 mL saturated NaHCO₃ solution was added to quench the reaction. The reaction mixture was directly extracted with Et₂O (3 x 40 mL) and the organic layer was pooled, washed by 15 mL saturated brine, dried over Na₂SO₄ and then concentrated reduced pressure to give a residue, which was rapidly subjected to flash chromatography on silica gel. Elution with 15% EtOAc/hexane afforded pyranone alcohol **III** (1.87 g, 87 %) as colorless oil; R_f = 0.53 (2:1 (v/v) hexane/EtOAc); ¹H NMR (270 MHz, CDCl₃) major isomer δ 6.90 (dd, J = 10.2, 3.6 Hz, 1H), 6.09 (d, J = 10.2 Hz, 1H), 5.66 (d, J = 3.0 Hz, 1H), 4.40 (d, J = 3.0 Hz, 1H), 3.90 (dd, J = 3.6, 1.2 Hz, 1H), 2.43 (m, 1H), 1.01 (d, J = 7.0 Hz, 3H), 0.86 (d, J = 7.0 Hz, 3H); ¹³C NMR (67.5 MHz, CDCl₃) major isomer δ 197.1, 144.7, 128.2, 87.7, 78.5, 28.7, 19.2, 16.4.

tert-butyl-((2*S*,6*S*)-6-isopropyl-5-oxo-5,6-dihydro-2H-pyran-2-yl) carbonate (16d):

To a solution of 1.87 g pyranone alcohol **III** (12.0 mmol) in 5 mL CH₂Cl₂ was added 146.2 mg DMAP (1.20 mmol) at -78 °C. A pre-cooled solution of 5.24 g (Boc)₂O (24.0 mmol) in 7 mL CH₂Cl₂ was added drop-wise into the reaction mixture via a cannula. The reaction mixture was stirred at -78 °C for 12 h. The reaction was quenched by 30 mL saturated NaHCO₃ and then extracted with Et₂O (50 mL x 3). The organic layers were pooled, then washed by 15 mL saturated brine, dried over Na₂SO₄ and concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 5.5 % EtOAc/hexane gave 2.67 g (87%) of two diastereomers of Boc-protected pyranone **\alpha-16d** and **\beta-16d** in 2.5:1; α -16d: $R_f = 0.78$ (4:1 (v/v) hexane/EtOAc); $[\alpha]_D^{25} = +50.8$ (c = 1.0, CHCl₃); IR (thin film, cm⁻¹) 2974, 2878, 1751, 1698, 1463, 1370, 1274, 1255, 1157, 1099, 1056, 943, 846, 736; ¹H NMR (600 MHz, CDCl₃) δ 6.86 (dd, J = 10.2, 3.6 Hz, 1H), 6.35 (d, J = 3.6 Hz, 1H), 6.17 (d, J = 10.2 Hz, 1H), 4.34 (d, J = 3.0 Hz, 1H), 1.92 (dqq, J = 6.6, 6.6, 3.0 Hz, 1H), 1.50 (s, 9H), 1.01 (d, J = 6.6 Hz, 3H), 0.86 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 195.6, 152.0, 141.0, 129.6, 89.6, 83.6, 79.9, 28.8, 27.9 (3), 18.8, 16.1; ESIHRMS Calcd for [C1₃H₂0O₅ + Na]⁺: 279.12029, Found: 279.12069.

β-16d: $R_f = 0.59$ (4:1 (v/v) hexane/EtOAc); mp: 70.0 °C; $[\alpha]_D^{25} = -65.6$ (c = 0.7, CHCl₃); IR (thin film, cm⁻¹) 2971, 2876, 1743, 1683, 1470, 1369, 1287, 1252, 1159, 1055, 944, 847; ¹H NMR (600 MHz, CDCl₃) δ 6.82 (dd, J = 10.2, 3.0 Hz, 1H), 6.35 (dd, J = 2.4, 1.2 Hz, 1H), 6.19 (dd, J = 10.2, 1.8 Hz, 1H), 3.88 (d, J = 7.2 Hz, 1H), 2.32 (dqq, J = 7.2, 6.6, 6.6 Hz, 1H), 1.53 (s, 9H), 1.01 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 195.5, 152.1, 142.4, 129.2, 90.1, 84.6, 83.8, 31.0, 27.9 (3), 18.9, 18.4; ESIHRMS Calcd for [C13H₂₀O₅ + Na]⁺: 279.12029, Found: 279.12060.

1-(furan-2-yl)-3-methylbutan-1-one (14e):

To 62 mL of furan **13** (0.86 mol) was dropped *n*-BuLi (100 mL, 0.24 mol) at 0 °C. Then let it warm up to room temperature and the resulting solution was stirred at room temperature for 3 h. Then 75 mL of anhydrous THF was added to dissolve the solid mixture at RT, which was then transferred to *iso*-valeric acid (8.8 mL, 0.079 mol) in 50 mL of THF at 0 °C. Then resulting solution was stirred 30 min at 0 °C followed by warming and stirring at RT for 3 h. Then into the reaction mixture 300 mL of Et₂O was added to dilute the solution, followed by addition of 300 mL of distilled water at 0 °C. Into the flask, 200 mL of 2M NaOH and 200 mL saturated NaHCO₃ were added to wash the organic layer. The aqueous layer was extracted with Et₂O (300 ml x2). The pooled organic layer was washed with 200 mL saturated brine, dried over Na₂SO₄ and then concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 3% EtOAc/hexane gave furan ketone **14e** (8.4 g, 70%) as light yellow oil; R_f = 0.71 (5:1 (v/v) Hexane/EtOAc); IR (thin film, cm⁻¹) 3133, 2959, 2872, 1670, 1569, 1467, 1395, 1165, 1026 , 883, 757; ¹H NMR (600 MHz, CDCl₃) δ 7.54 (dd, *J* = 1.8, 0.6 Hz, 1H), 7.14 (dd, *J* = 3.6, 1.2 Hz, 1H), 6.49 (dd, *J* = 3.6, 1.8 Hz, 1H), 2.66 - 2.64 (m, 2H), 2.25 (hepd, *J* = 7.2, 1.8 Hz, 1H), 0.953 (d, *J* = 6.6 Hz, 3H), 0.949 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.0, 153.4, 146.4, 117.0, 112.3, 47.5, 25.5, 22.8 (2).

(S)-1-(furan-2-yl)-3-methylbutan-1-ol (15e):

To a solution of aqueous HCO₂Na (9.7 g, 70 mL, 2.0 M) was added furan ketone **14e** (6.5 g, 0.042 mol) and CH₂Cl₂ (3 mL), followed by the addition of surfactant Cetyltrimethylammonium Bromide (1.56 g, 0.0042mmol). The mixture was stirred for 5 min, and added Noyori asymmetric transfer hydrogenation catalyst (*R*)-Ru(η^6 -mesitylene)-(*S*,*S*)-TsDPEN (0.026 g, 0.1 mol%). The resulting solution was stirred at room temperature under argon for 24 h. Then the mixture was added with 100 mL H₂O to dilute and extracted with EtOAc (3 x 70 mL). The combined organic layer was washed with 15 mL saturated aqueous NaHCO₃, 15 mL saturated brine, dried over Na₂SO₄ and then concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 8% EtOAc /hexane gave furan alcohol **15e** (5.3 g, 61%) as colorless oil; *R*_f = 0.54 (4:1 (v/v) Hexane/EtOAc); [α]_D²⁵ = -22.1 (c = 1.0, CH₂Cl₂); IR (thin film, cm⁻¹) 3349, 2956, 2870, 1506, 1468, 1150, 1010, 806, 731; ¹H NMR (600 MHz, CDCl₃) δ 7.36 (dd, *J* = 1.8, 0.6 Hz 1H), 6.32 (dd, *J* = 3.6, 1.8 Hz, 1H), 6.2 (d, *J* = 3.0, 1H), 4.74 (dd, *J* = 7.8, 5.4 Hz, 1H), 1.97 (s, 1H), 1.80-1.65 (m, 3H), 0.95 (d, *J* = 6.0 Hz, 3H), 0.93 (d, *J* = 6.6 Hz, 3H), ¹³C NMR (150 MHz, CDCl₃) δ 157.3, 142.0, 110.3, 105.9, 66.2, 44.7, 24.8, 23.2, 22.3.

(2S)-6-hydroxy-2-isobutyl-2H-pyran-3(6H)-one (IV):

To a solution of 5.00g furan alcohol **15e** (32.4 mmol) in 108 mL THF-H₂O (3:1) was added 5.44 g NaHCO₃ (64.8 mmol), 4.41 g NaOAc•3H₂O (32.4 mmol), and 5.76 g NBS (32.4 mmol) at 0 °C. The reaction mixture was kept stirring at this temperature for 1 h. Then at 0 °C 100 mL saturated NaHCO₃ was added to quench the reaction. The reaction mixture was directly extracted with Et₂O (3 x 100 mL) and the organic layer was pooled, washed by 50 mL saturated brine, dried over Na₂SO₄ and then concentrated reduced pressure to give a residue, which was rapidly subjected to flash chromatography on silica gel. Elution with 15% EtOAc/hexane afforded pyranone alcohol **IV** (4.35 g, 79 %) as colorless oil; R_f = 0.60 (2:1 (v/v) hexane/EtOAc); ¹H NMR (400 MHz, CDCl₃) major isomer δ 6.87 (dd, *J* = 10.0, 3.6 Hz, 1H), 6.11 (d, *J* = 10.4 Hz, 1H), 5.61 (s, 1H), 4.58 (dd, *J* = 9.6, 3.2 Hz, 1H), 3.92 (s, 1H), 1.92-1.83 (m, 1H), 1.78-1.71 (m, 1H), 1.59-1.52 (m, 1H), 0.91 (d, *J* = 6.4, Hz, 3H), 0.89 (d, *J* = 6.8, Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) major isomer δ 197.7, 144.8, 127.6, 87.7, 72.9, 38.2, 24.3, 23.5, 21.5.

To a solution of 4.35 g pyranone alcohol **IV** (25.6 mmol) in 15 mL CH₂Cl₂ was added 313.8 mg DMAP (2.56 mmol) at -78 °C. A pre-cooled solution of 6.70 g (Boc)₂O (30.7 mmol) in 15 mL CH₂Cl₂ was added drop-wise into the reaction mixture via a cannula. The reaction mixture was stirred at -78 °C for 12 h. The reaction was quenched by 100 mL saturated NaHCO₃ and then extracted with Et₂O (150 mL x 3). The organic layers were pooled, then washed by 40 mL saturated brine, dried over Na₂SO₄ and concentrated under reduced pressure to give a residue. Flash chromatograph on silica gel eluting with 6.5 % EtOAc/hexane gave 5.33 g (77%) of two diastereomers of Boc-protected pyranone **α-16e** and **β-16e** in 2.5:1; **α-16e**: R_f = 0.68 (4:1 (v/v) hexane/EtOAc); [α]_D²⁵ = +32.5 (c = 0.9, CHCl₃); IR (thin film, cm⁻¹) 2959, 2877, 1751, 1701, 1470, 1370, 1275, 1252, 1156, 1104, 1055, 1029, 939, 844; ¹H NMR (600 MHz, CDCl₃) δ 6.79 (dd, J = 10.2, 3.6 Hz, 1H), 6.25 (d, J = 3.6 Hz, 1H), 6.12 (d, J = 10.2 Hz, 1H), 4.47 (dd, J = 9.6, 3.0 Hz, 1H), 1.78 (m, 3H), 1.44 (s, 9H), 0.86 (d, J = 6.6 Hz, 3H), 0.82 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 195.8, 151.9, 140.7, 128.9, 89.2, 83.4, 74.0, 37.6, 27.7 (3), 24.1, 23.3, 21.3; ESIHRMS Calcd for [C14H22O5 + Na]⁺: 293.13594, Found: 293.13630.

β-16e: $R_f = 0.61$ (4:1 (v/v) hexane/EtOAc); mp: 53-58 °C; [α]_D²⁵ = -65.3 (c = 1.1, CHCl₃); IR (thin film, cm⁻¹) 2959, 2873, 1750, 1695, 1471, 1396, 1282, 1251, 1159, 1059, 938, 851, 791, 738; ¹H NMR (600 MHz, CDCl₃) δ 6.83 (dd, J = 10.2, 3.0 Hz, 1H), 6.35 (d, J = 3.0 Hz, 1H), 6.19 (d, J = 10.8 Hz, 1H), 4.29 (dd, J = 11.4, 3.6 Hz, 1H), 1.90 (m, 2H), 1.82 (hepd, J = 6.6, 4.2 Hz, 1H), 1.50 (s, 9H), 0.94 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.5, 152.1, 141.7, 128.3, 89.4, 83.6, 78.2, 42.4, 27.8 (3), 24.3, 23.5, 21.3; ESIHRMS Calcd for [C14H22O5 + Na]⁺: 293.13594, Found: 293.13625.

(2S,6R)-2-Methyl-6-(Digitoxigenoxy)-2H-pyran-3(6H)-one (17a):

A CH₂Cl₂/THF solution (7 mL, 4:1 V/V) of Boc pyranone **16a** (884 mg, 3.87 mmol) and digitoxigenin (725 mg, 1.94 mmol) was cooled to 0 °C. A CH₂Cl₂ (2 mL) solution of Pd₂(dba)₃•CHCl₃ (50.1 mg, 2.5 mol%) and PPh₃ (50.7 mg, 10 mol%) was added to the reaction mixture via dry cannula at 0 °C. The resulting solution was stirred at 0 °C for 6 hours and was directly loaded and purified via silica gel flash chromatography with elution of 35% EtOAc/hexanes to obtain **17a** (766 mg, 1.58 mmol, 82%) as a yellow solid; *Rf* (60% EtOAc/hexanes) = 0.58; mp: 121-123 °C; $[\alpha]^{25}_{D}$ = + 61.4 (c = 1.0, MeOH); IR (thin film, cm-1) 3481, 2939, 2253, 1738, 1698, 1620, 1448, 1374, 1319, 1237, 1157, 1102, 1079, 1024, 958, 905, 859, 645; ¹H NMR (600MHz, CDCl₃) δ 6.78 (dd, *J* = 10.4, 1.8 Hz, 1H), 5.99 (dd, *J* = 10.2, 1.2 Hz, 1H), 5.80 (m, 1H), 5.21 (dd, *J* = 2.4, 1.8 Hz, 1H), 4.95 (dd, *J* = 18.0, 1.8 Hz, 1H), 4.50 (dd, *J* = 18.0, 1.8 Hz, 1H), 4.49 (q, *J* = 6.6 Hz, 1H), 4.04 (m, 1H), 2.73 (m, 1H), 2.76 (dd, *J* = 9.6, 6.0 Hz, 1H), 2.20-2.08 (m, 3H), 1.44 (d, *J* = 7.2 Hz, 3H), 1.92-1.16 (m, 18H), 0.93 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 197.2, 174.9, 174.5, 144.4, 126.7, 117.3, 91.7, 85.1, 74.0, 73.4, 70.2, 50.8, 49.5, 41.5, 40.0, 36.3, 35.5, 35.0, 32.8, 30.3, 30.1, 26.8, 26.4, 26.3, 23.5, 21.1, 21.0, 20.8, 15.6; ESIHRMS Calcd for [C₂₉H₄₀O₆Na⁺]: 507.27226, Found: 507.27172.

(2S,3R,6R)-3,6-Dihydro-2-methyl-6-(Digitoxigenoxy)-2H-pyran-4,5-en-3-ol (18a):

A CH₂Cl₂ (2.8 mL) solution of enone **17a** (678 mg, 1.40 mmol) in CeCl₃·MeOH solution (0.4 M, 2.8 mL) was cooled to -78 °C. NaBH₄ (58.2 mg, 1.54 mmol) was added and the resulting solution was stirred at -78 °C for 1 hour. The reaction mixture was diluted with Et₂O (20 mL) and was quenched with 20 mL of saturated aqueous NaHCO₃, extracted with Et₂O (3 x 20 mL), dried with Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by silica gel flash chromatography eluting with 55% EtOAc/hexanes to give allylic alcohol **22** (600 mg, 1.23 mmol, 88%) as a white solid; *Rf* (60% EtOAc/hexanes) = 0.22; mp: 155-156 °C; IR (thin film, cm-1) 3448, 2933, 2871, 1780, 1741, 1618, 1446, 1378, 1320, 1180, 1135, 1049, 1024, 1004, 958, 751; ¹H NMR (600 MHz, CDCl₃): δ 5.90 (ddd, *J* = 10.2, 4.8, 1.2 Hz, 1H), 5.85 (m, 1H), 5.72 (d, *J* = 10.2 Hz, 1H), 5.07 (m, 1H), 4.98 (dd, *J* = 18.0, 1.2 Hz, 1H), 4.11 (dd, *J* = 4.2, 1.8 Hz, 1H), 3.97 (s, 1H), 3.82 (dq, *J* = 6.6, 2.4Hz, 1H), 3.74 (br, 1H), 2.77 (dd, *J* = 9.6, 6.0 Hz, 1H), 2.25-2.05 (m, 2H), 1.29 (d, *J* = 6.0 Hz, 3H), 1.80-1.05 (m, 20H), 0.92 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 174.6, 132.8, 127.5, 117.6, 93.2, 85.5, 73.6, 73.4, 69.7, 67.9, 64.9, 50.9, 49.5, 41.8, 40.0, 36.4, 35.7, 35.1, 33.1, 30.7, 30.3, 26.7 (2C), 26.5, 23.6, 21.3, 21.1, 17.9, 15.7; HRESIMS Calcd for [C₂₉H₄₂O₆Na⁺]: 509.2879, Found 509.28737.

(2S,3R,4R,5R,6R)-3,4,5,6-tetrahydro-2-methyl-6-(Digitoxigenoxy)-2H-pyran-3,4,5-triol (4):

To a t-BuOH/acetone (7.5 mL, 1:1 (v/v), 0.5M) solution of allylic alcohol 18a (1.80 g, 3.70 mmol) at 0°C was added a solution of N-methylmorpholine-N-oxide/water (50% w/v, 3.70 mL). Crystalline OsO4 (9.4 mg, 1 mol %) was added and the reaction mixture was stirred for 4 hours. The reaction mixture was quenched with 20 mL of saturated Na₂S₂O₃ solution, extracted with EtOAc (3 x 30 ml), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified via silica gel flash chromatography eluting with 90% EtOAc/Hexane. Pure fraction were combined, concentrated, and crystallized from CH₂Cl₂/hexanes to afford **4** as white solid (2.07 g, 3.55 mmol, 93%); $R_f = 0.20$ (EtOAc); mp: 160-162 °C; $[\alpha]^{25} = -24$ (c = 0.7, MeOH); IR (thin film, cm⁻¹) 3371, 2940, 2856, 1739, 1736, 1658; 1449, 1454, 1378, 1160, 1076, 1024, 951, 822; ¹H NMR (400MHz, CD₃OD) δ 5.90 (m, 1H), 5.04 (dd, J = 19.2, 2.0 Hz, 1H), 4.92 (dd, J = 19.2, 2.0 Hz, 1H), 4.77 (d, J = 2.0 Hz, 1H), 3.95 (m, 1H), 3.76 (dd, J = 2.8, 1.6 Hz, 1H), 3.69 (dd, J = 9.6, 2.8 Hz, 1H), 3.66 (dq, J = 9.6, 6.0 Hz, 1H), 3.37 (dd, J = 9.6, 9.6 Hz, 1H), 2.83 (m, 1H), 2.19 (m, 2H), 2.00-1.27 (m, 23H), 1.23 (d, J = 6.0 Hz, 3H), 0.96(s, 3H), 0.89 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 178.46, 177.25, 117.79, 99.85, 86.44, 75.36, 74.07, 73.58, 72.94, 72.51, 70.02, 52.11, 51.07, 42.69, 40.94, 38.18, 36.81, 36.39, 33.38, 31.62, 30.83, 28.06, 27.89, 27.51, 24.35, 22.58, 22.38, 17.98, 16.40; ESIHRMS Calcd. for [C₂₉H₄₄O₈Na⁺]: 543.6446, found: 543.6446.

(2S,3R,6R)-3,6-dihydro-2-methyl-6-(Digitoxigenoxy)-2H-pyran-3-ol (9):

To a NMM (0.38 ml, 0.3M) solution of allylic alcohol **18a** (55 mg, 0.113 mmol) at 0°C was added *o*nitrobenzenesulfonyl hydrazine (NBSH) (123 mg, 0.566 mmol) and Et₃N (23 mg, 0.226 mmol). The resulting mixture was stirred and gradually raised to room temperature for 8 hrs. The reaction mixture was diluted with EtOAc and quenched with saturated aqueous NaHCO₃. The mixture was extracted with EtOAc (3 x 20 ml), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified via silica gel flash chromatography eluting with 50% EtOAc/hexanes to give alcohol **9** as white solid (50 g, 0.102 mmol, 90%); R_f (60% EtOAc/hexanes) = 0.20; mp: 172-173 °C; [α]²⁵₉ = -33.0 (*c* = 0.4, MeOH); IR (thin film, cm⁻¹) 3441, 2933, 2246, 1737, 1619, 1448; 1379, 1339, 1258, 1225, 1115, 1029, 990, 955; 906, 858, 824; ¹H NMR (600MHz, CDCl₃) δ 5.86 (m, 1H), 4.98 (dd, *J* = 18.2, 1.2 Hz, 1H), 4.81 (m, 1H), 4.80 (dd, *J* = 18.2, 1.2 Hz, 1H), 4.11 (dd, *J* = 4.2, 1.8 Hz, 1H), 3.90 (s, 1H), 3.63 (br, 1H), 3.25 (m, 1H), 2.77 (dd, *J* = 9.6, 6.0 Hz, 1H), 2.25-2.05 (m, 3H), 1.48 (s, 1H), 1.20 (m, 6H), 1.80-1.05 (m, 19H), 0.92 (s,.3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.6, 174.5, 117.6, 94.0, 85.5, 73.5, 72.3, 70.9, 69.6, 50.9, 49.6, 41.8, 40.0, 36.4, 35.7, 35.2, 33.1, 30.5, 30.2, 29.8, 27.7, 26.9, 26.7 (2C), 23.7, 21.4, 21.2, 17.9, 15.7; ESIHRMS Calcd. for [C₂₉H44O6Na⁺]: 511.6458, found: 511.6458.

(2S,6R)-2-Ethyl-6-(Digitoxigenoxy)-2H-pyran-3(6H)-one (17b):

A CH₂Cl₂/THF solution (6 mL, 4:1 V/V) of Boc pyranone **16b** (647 mg, 2.67 mmol) and digitoxigenin (500 mg, 1.34 mmol) was cooled to 0°C. A CH₂Cl₂ (0.7 mL) solution of Pd₂(dba)₃•CHCl₃ (70.9 mg, 5.0 mol%) and PPh₃ (71.8 mg, 20 mol%) was added to the reaction mixture via dry cannula at 0°C. The resulting solution was stirred at 0°C for 4 hours and was directly loaded and purified via silica gel flash chromatography with elution of 35% EtOAc/hexanes to obtain **17b** (600 mg, 1.20 mmol, 90%) as a yellow solid; *Rf* (60% EtOAc/hexanes) = 0.56; mp: 107-108 °C; $[\alpha]^{25}_{D} = + 41.7$ (c = 1.05, CH₂Cl₂); IR (thin film, cm-1) 3503, 2937, 2879, 1780, 1742, 1694, 1620, 1448, 1380, 1221, 1158, 1087, 1024, 902, 731; ¹H NMR (600 MHz, CDCl₃) δ 6.80 (dd, *J* = 10.8, 3.6 Hz, 1H), 6.04 (dd, *J* = 10.8, 0.6 Hz, 1H), 5.85 (m, 1H), 5.27 (d, *J* = 3.6 Hz, 1H), 4.96 (dd, *J* = 18.0, 1.2 Hz, 1H), 4.78 (dd, *J* = 18.0, 1.2 Hz, 1H), 4.35 (dd, *J* = 7.8, 3.6 Hz, 1H), 4.06 (m, 1H), 2.76 (m, 1H), 2.18 – 2.08 (m, 2H), 2.00 – 1.93 (m, 1H), 1.89 – 1.76 (m, 3H), 1.72 – 1.34 (m, 14H), 1.28 – 1.17 (m, 4H), 0.95 (t, *J* = 7.4 Hz, 3H), 0.92 (s, 3H), 0.86 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 197.16, 174.62, 174.60, 144.50, 127.68, 117.95, 92.12, 85.79, 75.46, 74.33, 73.63, 51.12, 49.81, 42.09, 40.25, 36.69, 35.93, 35.44, 33.38, 30.64, 30.61, 27.12, 26.79, 26.65, 23.90, 23.10, 21.58, 21.39, 15.98, 9.73.; ESIHRMS Calcd for [C₃₀H₄₂O₆Na⁺]: 521.28736, Found: 521.28774.

(2S,3R,6R)-3,6-Dihydro-2-Ethyl-6-(Digitoxigenoxy)-2H-pyran-4,5-en-3-ol (18b):

A CH₂Cl₂ (2.33 mL) solution of enone **17b** (580 mg, 1.16 mmol) in CeCl₃·MeOH solution (0.4 M, 2.33 mL) was cooled to -78 °C. NaBH₄ (48.4 mg, 1.28 mmol) was added and the resulting solution was stirred at -78 °C for 2 hour. The reaction mixture was diluted with Et₂O (20 mL) and was quenched with 20 mL of saturated aqueous NaHCO₃, extracted with Et₂O (3 x 20 mL), dried with Na₂SO₄, and concentrated under reduced pressure. The crude product was crystallized in CH₂Cl₂/Hexane to give allylic alcohols **18b** (450 mg, 0.90 mmol, 77%) as a white solid; *Rf* (60% EtOAc/hexanes) = 0.41; mp: 168-172 °C; $[\alpha]^{25}_{D} = -18.0$ (c = 1.00, CH₂Cl₂); IR (thin film, cm-1) 3440, 2940, 2870, 1785, 1740, 1450, 1380, 1175, 1135, 751; ¹H NMR (600 MHz, CDCl₃) δ 5.89 (d, *J* = 10.2 Hz, 1H), 5.85 (br, 1H), 5.71 (ddd, *J* = 10.2, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, *J* = 18.0, 1.2 Hz, 1H), 4.78 (dd, *J* = 18.0, 1.8 Hz, 1H), 4.01 (dd, *J* = 2.4, 2.4 Hz, 1H), 3.87 (dd, *J* = 8.0 Hz, 1H), 3.51 (ddd, *J* = 9.0, 9.0, 2.6 Hz, 1H), 2.76 (m, 1H), 2.17 – 2.08 (m, 2H), 1.93 – 1.80 (m, 3H), 1.76 – 1.34 (m, 16H), 1.27 – 1.17 (m, 4H), 0.99 (t, *J* = 7.4 Hz, 3H), 0.91 (s, 3H), 0.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.67, 174.66, 133.13, 127.87, 117.92, 92.76, 85.84, 73.63, 73.23, 72.96, 68.29, 51.15, 49.82, 42.10, 40.30, 36.66, 35.94, 35.45, 33.40, 30.67, 30.35, 27.11, 26.88, 26.83, 25.31, 23.87, 21.61, 21.39, 15.99, 10.17.HRESIMS Calcd for [C₃₀H₄₄O₆Na⁺]: 523.30301, Found 523.30337.
(2S,3R,4R,5R,6R)-3,4,5,6-tetrahydro-2-ethyl-6-(Digitoxigenoxy)-2H-pyran-3,4,5-triol (5):

To a t-BuOH/acetone (2.4 mL, 1:1 (v/v), 0.1M) solution of allylic alcohol 18b (120 mg, 0.240 mmol) at 0° was added a solution of N-methylmorpholine-N-oxide/water (50% w/v, 0.24 mL). Crystalline OsO₄ (3.0 mg, 5 mol %) was added and the reaction mixture was stirred for 4 hours. The reaction mixture was quenched with 20 mL of saturated Na₂S₂O₃ solution, extracted with EtOAc (3 x 30 ml), dried over Na2SO4, and concentrated under reduced pressure. The crude product was purified via silica gel flash chromatography eluting with 80% EtOAc/Hexane (20% EtOAc/Hexane packing). Pure fraction were combined, concentrated, and crystallized from CH₂Cl₂/hexanes to afford 5 as white solid (95 mg, 0.18 mmol, 74%); $R_f = 0.25$ (EtOAc); mp: 215-217 °C; $[\alpha]_{2^{5}}^{2^{5}} = -27.3$ (c = 1.00, MeOH); IR (thin film, cm⁻¹) 3425, 2936, 2881, 1783, 1738, 1623; 1448, 1381, 1125, 1090, 1055, 1022, 969, 888, 730; ¹H NMR (600 MHz, CDCl₃) δ 5.85 (m, 1H), 4.96 (dd, J = 18.0, 1.2 Hz, 1H), 4.87 (d, J = 1.2 Hz, 1H), 4.78 (dd, J = 1.2 18.0, 1.2 Hz, 1H), 3.95 (dd, J = 2.4, 2.4 Hz, 1H), 3.88 (br, 1H), 3.79 (m, 1H), 3.52 – 3.46 (m, 2H), 2.75 (m, 1H), 2.53 (d, J = 6.0 Hz, 1H), 2.31 (br, 1H), 2.26 (d, J = 5.4 Hz, 1H), 2.17 – 2.07 (m, 2H), 1.91 – 1.80 (m, 3H), 1.74 - 1.33 (m, 15H), 1.27 - 1.18 (m, 4H), 0.96 (dd, J = 11.6, 4.1 Hz, 3H), 0.91 (s, 3H),0.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.72, 174.70, 117.93, 97.55, 85.82, 73.67, 72.89, 72.39, 72.34, 71.76, 71.73, 51.13, 49.82, 42.08, 40.26, 36.69, 35.93, 35.44, 33.39, 30.61, 29.56, 27.11, 26.77, 26.62, 24.60, 23.95, 21.61, 21.40, 15.99, 10.04. ESIHRMS Calcd. for [C₃₀H₄₆O₈Na⁺]: 557.30849, found: 557.30881.

(2S,3R,6R)-3,6-dihydro-2-methyl-6-(Digitoxigenoxy)-2H-pyran-3-ol (10):

To a NMM (0.45 ml, 0.3M) solution of allylic alcohol **18b** (68 mg, 0.136 mmol) at 0°C was added *o*nitrobenzenesulfonyl hydrazine (NBSH) (236 mg, 1.09 mmol) and Et₃N (27.7 mg, 0.272 mmol). The resulting mixture was stirred and gradually raised to room temperature for 6 h. The reaction mixture was diluted with EtOAc and quenched with saturated aqueous NaHCO₃. The mixture was extracted with EtOAc (3 x 20 ml), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified via silica gel flash chromatography eluting with 50% EtOAc/hexanes to give alcohol **10** as white solid (62.5 g, 0.124 mmol, 92%); *Rf* (60% EtOAc/hexanes) = 0.23; mp: 135-137°C; $[\alpha]^{25}_{D}$ = -46.2 (*c* = 0.36, MeOH); IR (thin film, cm⁻¹) 3449, 2936, 2879, 1782, 1739, 1620, 1448, 1381, 1119, 1028, 992, 966; 914, 857, 732; ¹H NMR (600 MHz, CDCl₃) δ 5.85 (m, 1H), 4.96 (dd, *J* = 18.0, 1.2 Hz, 1H), 4.82 (d, *J* = 2.4 Hz, 1H), 4.78 (dd, *J* = 18.0, 1.2 Hz, 1H), 3.91 (br, 1H), 3.42 (ddd, *J* = 9.1, 2.4, 2.4 Hz, 1H), 3.32 (m, 1H), 2.76 (m, 1H), 2.17 – 2.07 (m, 2H), 1.89 – 1.34 (m, 23H), 1.27 – 1.14 (m, 4H), 0.94 (t, *J* = 7.4 Hz, 3H), 0.92 (s, 3H), 0.86 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.66 (2C), 117.92, 93.92, 85.86, 74.74, 73.63, 70.65, 70.61, 51.16, 49.81, 42.12, 40.31, 36.67, 35.93, 35.46, 33.42, 30.74, 30.30, 29.84, 28.12, 27.11, 26.88, 26.82, 24.89, 23.96, 21.65, 21.42, 15.99, 10.00. ESIHRMS Calcd. for [C₃₀H₄₆O₆Na⁺]: 525.31866, found: 525.31857.

(2S,6R)-2-Propyl-6-(Digitoxigenoxy)-2H-pyran-3(6H)-one (17c):

A CH₂Cl₂/THF solution (0.5 mL, 4:1 V/V) of Boc pyranone **16c** (137 mg, 0.534 mmol) and digitoxigenin (100 mg, 0.267 mmol) was cooled to 0°C. A CH₂Cl₂ (0.4 mL) solution of Pd₂(dba)₃•CHCl₃ (13.8 mg, 5.0 mol%) and PPh₃ (14.0 mg, 20 mol%) was added to the reaction mixture via dry cannula at 0°C. The resulting solution was stirred at 0°C for 2 hours and was directly loaded and purified via silica gel flash chromatography with elution of 35% EtOAc/hexanes to obtain **17c** (120 mg, 0.234 mmol, 88%) as a yellow solid; *Rf* (50% EtOAc/hexanes) = 0.38; mp: 86-88°C; $[\alpha]^{25}_{D}$ = + 40.3 (c = 1.00, CH₂Cl₂); IR (thin film, cm-1) 3484, 2934, 2872, 1780, 1741, 1693, 1620, 1448, 1379, 1157, 1090, 1024, 912, 732; ¹H NMR (600 MHz, CDCl₃) δ 6.78 (dd, *J* = 10.2, 3.6 Hz, 1H), 6.03 (d, *J* = 10.8 Hz, 1H), 5.84 (dd, *J* = 1.2, 1.2 Hz, 1H), 5.25 (d, *J* = 3.6 Hz, 1H), 4.96 (dd, *J* = 18.0, 1.2 Hz, 1H), 4.78 (dd, *J* = 18.0, 1.2 Hz, 1H), 4.39 (dd, *J* = 9.0, 2.4 Hz, 1H), 4.05 (m, 1H), 2.75 (m, 1H), 2.17 – 2.06 (m, 2H), 1.94 – 1.17 (m, 24H), 0.90 (s, 3H), 0.90 (t, *J* = 7.8 Hz, 3H), 0.84 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 197.29, 174.79, 174.69, 144.46, 127.56, 117.82, 91.93, 85.69, 74.15 (2C), 73.64, 51.10, 49.81, 41.99, 40.19, 36.65, 35.87, 35.41, 33.31, 31.86, 30.57, 30.49, 27.09, 26.75, 26.65, 23.85, 21.53, 21.36, 18.60, 15.95, 14.08.; ESIHRMS Calcd for [C₃₁H₄₄O₆Na⁺]: 535.30301, Found: 535.30361.

(2S,3R,6R)-3,6-Dihydro-2-Propyl-6-(Digitoxigenoxy)-2H-pyran-4,5-en-3-ol (18c):

A CH₂Cl₂ (0.40 mL) solution of enone **17c** (100 mg, 0.195 mmol) in CeCl₃·MeOH solution (0.4 M, 0.40 mL) was cooled to -78 °C. NaBH₄ (7.4 mg, 0.195 mmol) was added and the resulting solution was stirred at -78 °C for 6 hour. The reaction mixture was diluted with Et₂O (20 mL) and was quenched with 20 mL of saturated aqueous NaHCO₃, extracted with Et₂O (3 x 20 mL), dried with Na₂SO₄, and concentrated under reduced pressure. The crude product was crystallized in CH₂Cl₂/Hexane to give allylic alcohols **18c** (83 mg, 0.161 mmol, 83%) as a white solid; *Rf* (50% EtOAc/hexanes) = 0.32; mp: 202-204 °C; $[\alpha]^{25}_{D}$ = -9.8 (c = 0.50, CHCl₃); IR (thin film, cm-1) 3445, 2929, 2873, 1783, 1736, 1619, 1447, 1379, 1132, 1107, 1053, 1020, 1006, 908, 731; ¹H NMR (600 MHz, CDCl₃) & 5.89 (ddd, *J* = 10.2, 1.2, 1.2 Hz, 1H), 5.85 (dd, *J* = 1.2, 1.2 Hz, 1H), 5.71 (ddd, *J* = 10.2, 3.0, 3.0 Hz, 1H), 5.00 (br, 1H), 4.98 (br, 1H), 4.78 (dd, *J* = 18.0, 1.8 Hz, 1H), 4.00 (dd, *J* = 2.4, 2.4 Hz, 1H), 3.85 (d, *J* = 7.8 Hz, 1H), 3.58 (ddd, *J* = 9.6, 9.6, 2.4 Hz, 1H), 2.75 (m, 1H), 2.16 – 2.08 (m, 2H), 1.88 – 1.17 (m, 25H), 0.92 (t, *J* = 7.2 Hz, 3H), 0.91 (s, 3H), 0.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) & 174.71, 174.68, 133.16, 117.89, 85.83, 73.65, 72.71, 71.69, 68.54, 51.15, 49.82, 42.08, 40.29, 36.63, 35.93, 35.45, 34.65, 33.39, 30.66, 30.54, 30.16, 29.91, 27.10, 26.93, 26.84, 23.86, 21.60, 21.39, 18.95, 15.99, 14.36.; HRESIMS Calcd for [C₃₁H₄₆O₆H⁺]: 515.33672, Found 515.33713.

(2S,3R,4R,5R,6R)-3,4,5,6-tetrahydro-2-propyl-6-(Digitoxigenoxy)-2H-pyran-3,4,5-triol (6):

To a *t*-BuOH/acetone (1.60 mL, 1:1 (v/v), 0.1M) solution of allylic alcohol **18c** (83 mg, 0.161 mmol) at 0°C was added a solution of *N*-methylmorpholine-*N*-oxide/water (50% w/v, 0.16 mL). Crystalline OsO₄ (2.0 mg, 5 mol %) was added and the reaction mixture was stirred for 6 hours. The resulting solution was directly loaded and purified via silica gel flash chromatography with elution of 75% EtOAc/Hexane (20% EtOAc/Hexane packing). Pure fraction were combined, concentrated, and crystallized from CHCl₃/Hexanes to afford **6** as white solid (65 mg, 0.11 mmol, 74%); *Rf* = 0.20 (EtOAc); mp: 144-145 °C; $[\alpha]^{25}{}_{\rm D}$ = -24.8 (*c* = 1.00, MeOH); IR (thin film, cm⁻¹) 3445, 2935, 2872, 1782, 1739, 1620; 1450, 1381, 1123, 1091, 1067, 1025, 968, 730; ¹H NMR (600 MHz, CDCl₃) & 5.85 (dd, *J* = 1.8, 1.8 Hz, 1H), 4.96 (dd, *J* = 18.0, 1.2 Hz, 1H), 4.86 (d, *J* = 1.8 Hz, 1H), 4.78 (dd, *J* = 18.0, 1.2 Hz, 1H), 3.94 (dd, *J* = 2.4, 2.4 Hz, 1H), 3.88 (br, 1H), 3.79 (d, *J* = 7.8 Hz, 1H), 3.57 (ddd, *J* = 9.6, 9.6, 2.4 Hz, 1H), 3.46 (dd, *J* = 9.0, 9.0 Hz, 1H), 2.75 (m, 1H), 2.50 (br, 1H), 2.27 (br, 1H), 2.23 (d, *J* = 4.8 Hz, 1H), 2.16 – 2.07 (m, 2H), 1.88 – 1.18 (m, 24H), 0.91 (s, 3H), 0.91 (t, *J* = 7.2 Hz, 3H), 0.85 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) & 174.71, 174.68, 117.94, 97.40, 85.82, 73.66, 72.62, 72.35, 71.69, 71.57, 71.46, 51.13, 49.81, 42.07, 40.26, 36.68, 35.92, 35.44, 33.86, 33.39, 30.59, 29.45, 27.11, 26.77, 26.67, 23.95, 21.61, 21.40, 18.96, 15.99, 14.30. ESIHRMS Calcd. for [C₃₁H₄₈08Na⁺]: 571.32614, found: 571.32473.

(2S,6R)-2-iso-propyl-6-(Digitoxigenoxy)-2H-pyran-3(6H)-one (17d):

A CH₂Cl₂/THF solution (2.4 mL, 4:1 V/V) of Boc pyranone **16d** (340 mg, 1.340 mmol) and digitoxigenin (250 mg, 0.668 mmol) was cooled to 0°C. A CH₂Cl₂ (1.0 mL) solution of Pd₂(dba)₃•CHCl₃ (34.5 mg, 5.0 mol%) and PPh₃ (35.0 mg, 20 mol%) was added to the reaction mixture via dry cannula at 0°C. The resulting solution was stirred at 0°C for 4 hours and was directly loaded and purified via silica gel flash chromatography with elution of 35% EtOAc/hexanes to obtain **17d** (322 mg, 0.628 mmol, 94%) as a yellow solid; *Rf* (50% EtOAc/hexanes) = 0.40; mp: 97-98°C; $[\alpha]^{25}_{D}$ = + 34.5 (c = 1.00, CH₂Cl₂); IR (thin film, cm-1) 3484, 2933, 2875, 1780, 1738, 1688, 1620, 1447, 1367, 1085, 1022, 1004, 908, 728; ¹H NMR (600 MHz, CDCl₃) δ 6.77 (dd, *J* = 10.2, 3.6 Hz, 1H), 5.99 (d, *J* = 10.2 Hz, 1H), 5.80 (br, 1H), 5.25 (d, *J* = 3.6 Hz, 1H), 4.95 (dd, *J* = 18.0, 1.2 Hz, 1H), 4.75 (dd, *J* = 18.0, 1.2 Hz, 1H), 4.23 (d, *J* = 2.4 Hz, 1H), 4.00 (br, 1H), 2.72 (m, 1H), 2.39 (dhept, *J* = 6.6, 3.0 Hz, 1H), 2.13 – 2.03 (m, 2H), 1.84 – 1.31 (m, 16H), 1.23 – 1.15 (m, 4H), 0.96 (d, *J* = 7.2 Hz, 3H), 0.87 (s, 3H), 0.81 (s, 3H), 0.79 (d, *J* = 7.2 Hz, 3H), ¹³C NMR (150 MHz, CDCl₃) δ 197.27, 175.07, 174.74, 144.52, 127.87, 117.59, 91.93, 85.48, 78.35, 74.15, 73.64, 51.05, 49.78, 41.81, 40.06, 36.60, 35.75, 35.31, 33.15, 30.53, 30.46, 28.51, 27.01, 26.68, 26.45, 23.78, 21.43, 21.27, 19.19, 16.13, 15.88. ESIHRMS Calcd for [C₃₁H₄₄O₆Na⁺]: 535.30301, Found: 535.30364.

(2S,3R,6R)-3,6-Dihydro-2-iso-propyl-6-(Digitoxigenoxy)-2H-pyran-4,5-en-3-ol (18d):

A CH₂Cl₂ (1.25 mL) solution of enone **17d** (322 mg, 0.628 mmol) in CeCl₃·MeOH solution (0.4 M, 1.25 mL) was cooled to -78 °C. NaBH₄ (28.5 mg, 0.753 mmol) was added and the resulting solution was stirred at -78 °C for 7 hour. The reaction mixture was diluted with Et₂O (20 mL) and was quenched with 20 mL of saturated aqueous NaHCO₃, extracted with Et₂O (3 x 20 mL), dried with Na₂SO₄, and concentrated under reduced pressure. The crude product was crystallized in CH₂Cl₂/Hexane to give allylic alcohols 18d (274 mg, 0.532 mmol, 85%) as a white solid; Rf(50% EtOAc/hexanes) = 0.30; mp: 124-125 °C; $\left[\alpha\right]_{D}^{25} = -12.0$ (c = 1.00, CH₂Cl₂); IR (thin film, cm-1) 3448, 2934, 2879, 1782, 1738, 1618, 1472, 1447, 1380, 1136, 1083, 1026, 1000, 732; ¹H NMR (600 MHz, CDCl₃) δ 5.89 (ddd, J = 9.6, 1.8,1.8 Hz, 1H), 5.85 (dd, J = 1.8, 1.8 Hz, 1H), 5.70 (ddd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 1.8, 1.8 Hz, 1H), 5.70 (ddd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 1.8, 1.8 Hz, 1H), 5.70 (ddd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 1.8, 1.8 Hz, 1H), 5.70 (ddd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 1.8, 1.8 Hz, 1H), 5.70 (ddd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 1.8, 1.8 Hz, 1H), 5.70 (ddd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 1.8, 1.8 Hz, 1H), 5.70 (ddd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4 Hz, 1H), 5.01 (br, J = 18.0, 1.2 Hz, 1H), 4.78 (dd, J = 18.0, 1.2 Hz, 1H), 4.05 (ddd, J = 9.0, 9.0, 1.2 Hz, 1H), 4.02 (dd, J = 18.0, 1.2 Hz, 1H), 4.02 (dd, J = 18.0, 1.2 Hz, 1H), 4.02 (dd, J = 18.0, 1.2 Hz, 1H), 4.03 (dd, J = 18.0, 1.2 Hz, 1H), 4.04 (dd, J = 18.0, 1.2 Hz, 1H), 4.05 (dd, J = 18.0, 1.2 H 3.0, 3.0 Hz, 1H), 3.47 (dd, J = 9.0, 3.0 Hz, 1H), 2.75 (m, 1H), 2.17 – 2.08 (m, 2H), 2.05 (dhept, J = 6.6, 3.0 Hz, 1H, 1.88 - 1.81 (m, 2H), 1.74 - 1.31 (m, 15H), 1.27 - 1.17 (m, 4H), 1.02 (d, J = 6.6 Hz, 3H),0.92 (d, J = 6.6 Hz, 3H), 0.91 (s, 3H), 0.85 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 174.68, 174.66, 133.48, 127.75, 117.91, 92.33, 85.83, 75.60, 73.64, 72.20, 65.69, 51.15, 49.82, 42.08, 40.29, 36.61, 35.92, 35.45, 33.39, 30.68, 29.97, 28.55, 27.10, 26.90, 26.83, 23.86, 21.62, 21.38, 20.05, 16.13, 15.99. HRESIMS Calcd for $[C_{31}H_{46}O_6Na^+]$: 537.31866, Found 537.31922.

(2S,3R,4R,5R,6R)-3,4,5,6-tetrahydro-2-*iso*-propyl-6-(Digitoxigenoxy)-2H-pyran-3,4,5-triol (7):

To a *t*-BuOH/acetone (2.40 mL, 1:1 (v/v), 0.2M) solution of allylic alcohol **18d** (250 mg, 0.486 mmol) at 0°C was added a solution of N-methylmorpholine-N-oxide/water (50% w/v, 0.48 mL). Crystalline OsO4 (6.2 mg, 5 mol %) was added and the reaction mixture was stirred for 6 hours. The resulting solution was directly loaded and purified via silica gel flash chromatography with elution of 65% EtOAc/Hexane (50% EtOAc/Hexane packing). Pure fraction were combined, concentrated, and crystallized from CHCl₃/Hexanes to afford 7 as white solid (215 mg, 0.392 mmol, 81%); Rf = 0.25(EtOAc); mp: 234-236 °C; $[\alpha]^{25}_{D}$ = -28.0 (c = 1.00, MeOH); IR (thin film, cm⁻¹) 3436, 2934, 2878, 1783, 1738, 1623; 1450, 1381, 1129, 1090, 1055, 1025, 986, 912, 731; ¹H NMR (600 MHz, CDCl₃) δ 5.85 (dd, J = 1.8, 1.8 Hz, 1H), 4.96 (dd, J = 18.6, 1.8 Hz, 1H), 4.87 (d, J = 1.2 Hz, 1H), 4.78 (dd, J = 18.6, 1.8 Hz, 1H), 3.94 (dd, J = 2.4, 2.4 Hz, 1H), 3.86 (ddd, J = 3.0, 3.0, 1.2 Hz, 1H), 3.79 (ddd, J = 7.2, 7.2, 3.0 Hz, 1H)1H), 3.63 (ddd, J = 9.6, 9.6, 3.0 Hz, 1H), 3.49 (dd, J = 9.6, 1.8 Hz, 1H), 2.75 (m, 1H), 2.43 (d, J = 7.2Hz, 1H), 2.17 (d, J = 3.0 Hz, 1H), 2.15 – 2.07 (m, 4H), 1.88 – 1.80 (m, 2H), 1.73 – 1.33 (m, 14H), 1.26 - 1.17 (m, 4H), 0.99 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H), 0.91 (s, 3H), 0.85 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 174.69, 174.66, 117.94, 97.45, 85.82, 74.83, 73.65, 72.82, 71.73, 71.28, 69.79, 51.14, 49.82, 42.08, 40.27, 36.68, 35.92, 35.45, 33.40, 30.59, 29.38, 27.44, 27.11, 26.77, 26.65, 23.94, 21.62, 21.40, 20.09, 15.99, 15.12. ESIHRMS Calcd. for [C₃₁H₄₈O₈Na⁺]: 571.32414, found: 571.32439.

(2S,3R,6R)-3,6-dihydro-2-iso-propyl-6-(Digitoxigenoxy)-2H-pyran-3-ol (11):

To a NMM (0.34 ml, 0.3M) solution of allylic alcohol 18d (52 mg, 0.10 mmol) at 0°C was added onitrobenzenesulfonyl hydrazine (NBSH) (174.0 mg, 0.80 mmol) and Et₃N (20.4 mg, 0.20 mmol). The resulting mixture was stirred and gradually raised to room temperature for 24 hrs. The reaction mixture was diluted with EtOAc and guenched with saturated aqueous NaHCO₃. The mixture was extracted with EtOAc (3 x 20 ml), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified via silica gel flash chromatography eluting with 45% EtOAc/hexanes to give alcohol 11 as white solid (44.4 mg, 0.086 mmol, 85%); *Rf* (50% EtOAc/hexanes) = 0.25; mp: 156-158 °C; $[\alpha]_{D}^{25}$ = -40.5 (c = 1.73, MeOH); IR (thin film, cm⁻¹) 3449, 2936, 2876, 1781, 1739, 1619, 1447, 1379, 1107, 1064, 1027, 992, 733; ¹H NMR (600 MHz, CDCl₃) δ 5.84 (dd, J = 1.2, 1.2 Hz, 1H), 4.96 (dd, J = 18.0, 1.8 Hz, 1H), 4.82 (d, J = 2.4 Hz, 1H), 4.78 (dd, J = 18.0, 1.8 Hz, 1H), 3.90 (br, 1H), 3.49 (ddd, J = 9.6, 9.6, 4.8 Hz, 1H), 3.41 (dd, J = 9.6, 3.0 Hz, 1H), 2.75 (m, 1H), 2.17 – 2.03 (m, 4H), 1.87 – 1.34 (m, 20H), 1.26 - 1.16 (m, 4H), 0.95 (d, J = 7.2 Hz, 3H), 0.91 (s, 3H), 0.88 (d, J = 7.2 Hz, 3H), 0.85 (s, 3H). ; ¹³C NMR (150 MHz, CDCl₃) δ 174.80, 174.74, 117.85, 93.72, 85.84, 76.90, 73.66, 70.02, 67.94, 51.15, 49.82, 42.07, 40.28, 36.63, 35.90, 35.43, 33.37, 30.70, 30.14, 29.60, 28.38, 27.53, 27.09, 26.86, 26.82, 23.91, 21.64, 21.39, 20.04, 15.98, 15.31. ESIHRMS Calcd. for [C₃₁H₄₈O₆Na⁺]: 539.33431, found: 539.33420.

(2S,6R)-2-iso-butyl-6-(Digitoxigenoxy)-2H-pyran-3(6H)-one (17e):

A CH₂Cl₂/THF solution (4.0 mL, 4:1 V/V) of Boc pyranone **16e** (725 mg, 2.68 mmol) and digitoxigenin (500 mg, 1.34 mmol) was cooled to 0°C. A CH₂Cl₂ (0.5 mL) solution of Pd₂(dba)₃•CHCl₃ (69.3 mg, 5.0 mol%) and PPh₃ (70.2 mg, 20 mol%) was added to the reaction mixture via dry cannula at 0°C. The resulting solution was stirred at 0°C for 4 hours and was directly loaded and purified via silica gel flash chromatography with elution of 35% EtOAc/hexanes to obtain **17e** (690 mg, 1.31 mmol, 98%) as a yellow solid; *Rf* (60% EtOAc/hexanes) = 0.58; mp: 110-113 °C; $[\alpha]^{25}_{D} = + 34.3$ (c = 1.00, CH₂Cl₂); IR (thin film, cm-1) 3493, 2936, 2869, 1783, 1740, 1693, 1623, 1447, 1468, 1368, 1380, 1091, 1023, 907, 731; ¹H NMR (600 MHz, CDCl₃) δ 6.79 (dd, *J* = 10.2, 3.6 Hz, 1H), 6.05 (d, *J* = 10.2 Hz, 1H), 5.85 (br, 1H), 5.25 (d, *J* = 3.0 Hz, 1H), 4.96 (dd, *J* = 18.0, 1.8 Hz, 1H), 4.78 (dd, *J* = 18.0, 1.8 Hz, 1H), 4.45 (dd, *J* = 10.2, 3.0 Hz, 1H), 4.08 (dd, *J* = 2.4, 2.4 Hz, 1H), 2.76 (m, 1H), 2.17 – 2.08 (m, 2H), 1.90 – 1.75 (m, 5H), 1.71 – 1.34 (m, 14H), 1.29 – 1.18 (m, 4H), 0.92 (d, *J* = 6.0 Hz, 3H), 0.92 (s, 3H), 0.89 (d, *J* = 6.0 Hz, 3H), 0.86 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 197.59, 174.63, 174.60, 144.31, 127.59, 117.95, 91.49, 85.79, 73.63, 73.59, 72.87, 51.12, 49.81, 42.07, 40.25, 38.64, 36.65, 35.93, 35.46, 33.38, 30.58, 30.19, 27.11, 26.78, 26.76, 24.47, 23.87, 23.72, 21.71, 21.59, 21.40, 15.98. ESIHRMS Calcd for [C₃₂H₄₀O₆Na⁺]: 549.31866, Found: 549.31889.

(2S,3R,6R)-3,6-Dihydro-2-iso-butyl-6-(Digitoxigenoxy)-2H-pyran-4,5-en-3-ol (18e):

A CH₂Cl₂ (1.82 mL) solution of enone **17e** (480 mg, 0.911 mmol) in CeCl₃·MeOH solution (0.4 M, 1.82 mL) was cooled to -78 °C. NaBH₄ (38 mg, 1.00 mmol) was added and the resulting solution was stirred at -78 °C for 30 min. The reaction mixture was diluted with Et₂O (20 mL) and was quenched with 20 mL of saturated aqueous NaHCO₃, extracted with Et₂O (3 x 20 mL), dried with Na₂SO₄, and concentrated under reduced pressure. The crude product was crystallized in CH₂Cl₂/Hexane to give allylic alcohols 18e (478 mg, 0.905 mmol, 99%) as a white solid; Rf (60% EtOAc/hexanes) = 0.55; mp: 131-135 °C; $[\alpha]^{25}_{D} = -15.7$ (c = 1.00, CH₂Cl₂); IR (thin film, cm-1) 3445, 2933, 2872, 1780, 1740, 1620, 1.2 Hz, 1H), 5.85 (dd, J = 1.2, 1.2 Hz, 1H), 5.70 (ddd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 1H), 4.96 (dd, J = 10.2, 2.4, 2.4 Hz, 1H), 5.01 (br, 2000) (dd, 2000) (J = 18.0, 1.2 Hz, 1H), 4.78 (dd, J = 18.0, 1.2 Hz, 1H), 4.02 (dd, J = 3.0, 3.0 Hz, 1H), 3.81 (ddd, J = 8.4, 1.2 Hz, 1H), 4.78 (dd, J = 18.0, 1.2 Hz, 1H), 4.02 (dd, J = 3.0, 3.0 Hz, 1H), 3.81 (ddd, J = 8.4, 1.2 Hz, 1H), 4.02 (dd, J = 3.0, 3.0 Hz, 1H), 4.02 (dd, J = 8.4, 1.2 Hz, 1H), 4.02 (dd, J = 18.0, 1.2 Hz, 8.4, 1.8 Hz, 1H), 3.64 (ddd, J = 10.0, 10.0, 1.8 Hz, 1H), 2.76 (m, 1H), 2.17 – 2.08 (m, 2H), 1.89 – 1.81 (m, 3H), 1.75 - 1.34 (m, 17H), 1.28 - 1.18 (m, 4H), 0.94 (d, J = 6.6 Hz, 3H), 0.91 (s, 3H), 0.90 (d, J = 6.6 Hz, 3H), 0.91 (s, 3H), 0.90 (d, J = 6.6 Hz, 3H), 0.91 (s, 3H), 0.90 (d, J = 6.6 Hz, 3H), 0.91 (s, 3H), 0.90 (d, J = 6.6 Hz, 0.91 (s, 3H), 0.90 (d, J = 6.6 Hz, 0.91 (s, 6.6 Hz, 3H), 0.85 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 174.66 (2C), 133.21, 127.78, 117.92, 91.97, 85.83, 73.63, 72.20, 70.12, 68.86, 51.15, 49.82, 42.09, 41.86, 40.29, 36.59, 35.94, 35.46, 33.40, 30.64, 29.74, 27.10, 26.98, 26.84, 24.40, 24.17, 23.85, 21.92, 21.62, 21.39, 15.99. HRESIMS Calcd for $[C_{32}H_{48}O_6Na^+]$: 551.33431, Found: 551.33461.

(2S,3R,4R,5R,6R)-3,4,5,6-tetrahydro-2-iso-butyl-6-(Digitoxigenoxy)-2H-pyran-3,4,5-triol (8):

To a *t*-BuOH/acetone (3.80 mL, 1:1 (v/v), 0.1M) solution of allylic alcohol **18e** (200 mg, 0.379 mmol) at 0℃ was added a solution of N-methylmorpholine-N-oxide/water (50% w/v, 0.38 mL). Crystalline OsO₄ (4.8 mg, 5 mol %) was added and the reaction mixture was stirred for 5 hours. The resulting solution was directly loaded and purified via silica gel flash chromatography with elution of 75% EtOAc/Hexane (50% EtOAc/Hexane packing). Pure fraction were combined, concentrated, and crystallized from CHCl₃/Hexanes to afford **8** as white solid (175 mg, 0.311 mmol, 82%); Rf = 0.20(EtOAc); mp: 151-155 °C; $[\alpha]^{25}_{D} = -35.3$ (c = 1.00, MeOH); IR (thin film, cm⁻¹) 3448, 2934, 2872, 1782, 1740, 1625; 1450, 1381, 1126, 1091, 1067, 1045, 1030, 980, 732; ¹H NMR (600 MHz, CDCl₃) δ 5.85 (br, 1H), 4.96 (dd, J = 18.0, 1.2 Hz, 1H), 4.86 (br, 1H), 4.78 (dd, J = 18.0, 1.2 Hz, 1H), 3.97 (dd, J = 1.8, 1.8 Hz, 1H), 3.88 (br, 1H), 3.81 (m, 1H), 3.64 (ddd, J = 9.0, 9.0, 1.8 Hz, 1H), 3.43 (ddd, J = 9.0, 9.0, 1.8Hz, 1H), 2.75 (m, 1H), 2.58 (d, J = 5.4 Hz, 1H), 2.32 – 2.30 (m, 2H), 2.16 – 2.07 (m, 2H), 1.88 – 1.80 (m, 3H), 1.72 - 1.66 (m, 3H), 1.61 - 1.34 (m, 13H), 1.25 - 1.18 (m, 4H), 0.92 (d, J = 6.6 Hz, 3H), 0.91(s, 3H), 0.87 (d, J = 6.6 Hz, 3H), 0.85 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 174.72, 174.70, 117.93, 96.90, 85.81, 73.67, 72.99, 72.25, 71.63, 70.95, 69.86, 51.13, 49.81, 42.06, 41.10, 40.25, 36.67, 36.65, 35.92, 35.45, 33.38, 30.54, 29.11, 27.11, 26.76, 24.51, 24.16, 23.92, 21.85, 21.62, 21.40, 15.99. ESIHRMS Calcd. for [C₃₂H₅₀O₈Na⁺]: 585.33979, found: 585.34016.

(2S,3R,6R)-3,6-dihydro-2-iso-butyl-6-(Digitoxigenoxy)-2H-pyran-3-ol (12):

To a NMM (0.52 ml, 0.3M) solution of allylic alcohol **18e** (82 mg, 0.155 mmol) at 0°C was added *o*nitrobenzenesulfonyl hydrazine (NBSH) (270 mg, 1.25 mmol) and Et₃N (31.6 mg, 0.31 mmol). The resulting mixture was stirred and gradually raised to room temperature for 24 hrs. The reaction mixture was diluted with EtOAc and quenched with saturated aqueous NaHCO₃. The mixture was extracted with EtOAc (3 x 20 ml), dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified via silica gel flash chromatography eluting with 40% EtOAc/hexanes to give alcohol **12** as white solid (72.5 mg, 0.137 mmol, 88%); *Rf* (60% EtOAc/hexanes) = 0.50; mp: 188-189 °C; $[\alpha]^{25}_{D}$ = -32.3 (*c* = 1.00, MeOH); IR (thin film, cm⁻¹) 3462, 2935, 2874, 1785, 1739, 1619, 1448, 1379, 1118, 1023, 995, 732; ¹H NMR (600 MHz, CDCl₃) δ 5.85 (br, 1H), 4.96 (dd, *J* = 18.0, 1.2 Hz, 1H), 4.81 (d, *J* = 1.8 Hz, 1H), 4.78 (dd, *J* = 18.0, 1.2 Hz, 1H), 3.93 (br, 1H), 3.55 (ddd, *J* = 10.2, 10.2, 1.8 Hz, 1H), 3.26 (ddd, *J* = 9.0, 9.0, 5.5 Hz, 1H), 2.76 (m, 1H), 2.16 – 2.09 (m, 2H), 1.87 – 1.29 (m, 24H), 1.26 – 1.18 (m, 4H), 0.92 (d, *J* = 6.6 Hz, 3H), 0.92 (s, 3H), 0.87 (d, *J* = 6.6 Hz, 3H), 0.85 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.66, 174.64, 117.90, 93.18, 85.83, 73.62, 71.58, 71.34, 69.76, 51.15, 49.80, 42.09, 41.66, 40.28, 36.60, 35.91, 35.45, 33.40, 30.66, 30.16, 29.32, 27.96, 27.09, 26.94, 26.85, 24.40, 24.28, 23.91, 21.95, 21.65, 21.40, 15.97.; ESIHRMS Calcd. for [C₃₂H₅₀O₆Na⁺]: 553.34996, found: 553.34985.

12 11 10 9 8 7 6 5 4 3 2 1 0 -1

-2

¹H NMR (600 MHz, CDCl₃) **15b**

S53

-10 -20

0

-1

S69

-10 -20

S81

-10 -20

