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1 BD simulation time step

In this work we have used a Brownian Dynamics (BD) simulation time step
of

dt = 4.5× 10−4τ, (1)

where τ = r2
d/6D0 is the characteristic time required for a diffusing particle

to move a distance equal to its own radius. In this section we show that our
choice of time step is sufficiently small for our purposes, as well as showing
that our main results are not dependent on our choice of time step.

When the diffusing particle encounters the hard repulsive potential of a
crowder, it experiences a large force approximately equal to Ularge/δ, where
Ularge = 40kBT is a large change in potential that occurs over a small dis-
tance δ = 0.1 nm. In order for our results to be independent of the simulation
time step, it is important that the distance travelled by the diffuser during
a single time step be smaller than the size of the smallest physical feature in
the system, namely the width δ = 0.1 nm of the hard repulsive potential. In
each step of a BD simulation, a diffusing particle undergoes a displacement
due to both a fluctuating thermal force and to the particle’s drift velocity
in a potential gradient. We now verify that given our choice of time step,
each of these displacements is smaller than δ. The fluctuating force gives
rise, in the absence of any obstacles, to the “bare” diffusion coefficient D0.
Therefore the associated typical displacement during a time step is

drfluct ≈
√

6D0dt =
√

4.5−4rd = 0.02 nm, (2)

which is significantly smaller than δ = 0.1 nm. The displacement associated
with the drift velocity due to the force Ularge/δ is

drdrift = vdriftdt =
1

γ

Ularge

δ
dt =

D0

kBT

Ularge

δ
dt = 0.03 nm, (3)

which is also significantly smaller than δ. Thus, in our simulations the time
step is small enough that the large repulsive forces do not produce spurious
results.

We have performed BD simulations with a smaller time step of dt =
9 × 10−5τ . These simulations were used to calculate the effective diffusion
coefficient at the same physical time as in the previous simulations; Fig. 1
shows that the results depend very little on the value of the time step, and
that our main result (the non-monotonicity of the diffusion coefficient as a
function of the attraction strength ε) is independent of the time step.
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Figure 1: Effective diffusion coefficients calculated from simulations with
different BD simulation time steps dt. The crowder volume fraction is φ =
0.24.

Additionally, in Supplementary Materials section 11 we present the re-
sults of solving the continuum (Fokker-Planck) diffusion equation associated
with a particle diffusing among fixed crowders. This method does not involve
any choice of time step, but still shows the same non-monotonic behavior of
Deff(ε).

2 MSD data

In Fig. 2 we show raw data of mean squared displacements (MSD) for three
different crowder levels: φ = 0.01, φ = 0.24, and φ = 0.40. Fig. 3 shows
the MSD at a particular time (t = 104 τ), highlighting the non-monotonic
dependence of diffusion rate on the diffuser-crowder attraction strength ε.
Figures 4 and 5 show MSD data for short times.

3 Alternative method for calculation of Deff

In addition to the method used in the article (1/6 of the average slope of the
MSD curve at long times) we have used an alternative method to calculate
diffusion coefficients (1, 2). The logarithm of MSD/6t is plotted against
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Figure 2: Selected MSD data for three different values of the crowder volume
fraction φ, and for a range of values of the attraction strength ε.
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Figure 3: The mean squared displacement of the diffusing particles, evalu-
ated at time t = 104 τ , as a function of the strength ε of the crowder-diffuser
attractive interaction. This is shown for six different values of the crowder
volume fraction. Top to bottom: φ = 0.01, φ = 0.08, φ = 0.16, φ = 0.24,
φ = 0.32, and φ = 0.40. Compare to Fig. 2 of the article.
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Figure 4: Short-time MSD data for crowder volume fraction φ = 0.24, and
for a range of values of the attraction strength ε.
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Figure 5: The mean squared displacement of the diffusing particles, evalu-
ated at time t = 45 τ , as a function of the strength ε of the crowder-diffuser
attractive interaction. This is shown for six different values of the crowder
volume fraction. Top to bottom: φ = 0.01, φ = 0.08, φ = 0.16, φ = 0.24,
φ = 0.32, and φ = 0.40

5



the logarithm of time in Fig. 6 for several values of the the crowder volume
fraction, and for a range of crowder-diffuser attraction strengths. This allows
one to check visually that the simulations have reached the regime of long-
time diffusion, since ln(MSD/6t) reaches a plateau value. These plateau
values, shown in Fig. 6 as dashed lines, are estimates of ln(Deff). By taking
the exponential of these, we obtain new estimates for Deff. Fig. 7 shows
that these new estimates are essentially identical to the ones reported in the
article.

4 εmax for a square well potential

Equation (4) of the article gives the value of ε that maximizes the effective
diffusion coefficient. Here we analyze that equation for the simple case of
hard spheres with a square well potential:

U(r) =


∞ if r ≤ rt
−ε if rt ≤ r ≤ rt + λ
0 if r ≥ rt,

(4)

where again rt = rc+rd is the sum of the hard-core radii of the crowder and
the diffuser. Equation (4) of the article gives

0 =

∫ ∞
0

4πr2
(
e−βU(r) − 1

)
dr = −4

3
πr3

t + (eβε − 1)

∫ rt+λ

rt

4πr2dr, (5)

which in turn gives rise to

εmax = kBT ln

[
(rt + λ)3

(rt + λ)3 − r3
t

]
= kBT ln

[
( rtλ + 1)3

( rtλ + 1)3 − ( rtλ )3

]
(6)

This function is plotted in Fig. 8. The attraction strength εmax maximizing
the diffusion rate exhibits a complex dependence on the ratio between the
range rt of the hard-core repulsion and the range λ of the attractive well.
The dependence of εmax on this ratio is logarithmic when the ratio is large,
suggesting that the non-monotonic dependence of the diffusion coefficient on
ε may hold even for very large crowding obstacles. Series expansion shows
that εmax is proportional to (rt/λ)3 when this ratio is small. Thus, the non-
monotonic effect will be very difficult to observe for obstacles that are small
compared to the attraction range. We note that using the values λ = 0.5 nm
and rt = 3 + 1 = 4 nm we find that εmax ≈ 1.2, close to the value of 1.4
obtained with the exponentially decaying potential used in the simulation.
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Figure 6: Logarithmic plots of MSD/6t versus t for three different values
of the crowder volume fraction φ, and for a range of values of the attrac-
tion strength ε. The dashed lines show the plateau values of ln(MSD/6t)
to be used in the alternative method for calculating the effective diffusion
coefficient.
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Figure 8: The value of εmax, given by Eq. 6, which maximizes the diffusion
rate, in the case of crowders with square-well attractive potentials. This is
plotted as a function of the ratio of the hard-core radius rt to the range λ
of the attractive potential.
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Figure 9: Effective diffusion coefficients calculated for a system in which the
crowder-diffusion potential is given by a shifted Lennard-Jones potential.
Crowder radius is 3 nm and diffuser radius 1 nm. The range of the LJ
potential is σ = 0.5 nm. The simulation box size is 70× 70× 70 nm.

5 Lennard-Jones interactions

In order to verify that our main result (the non-monotonic dependence of
Deff on ε) does not depend on our particular choice of crowder-diffuser po-
tential, we have performed simulations in which this interaction takes the
form of a shifted Lennard-Jones (LJ) potential:

U(r) = ULJ(r − rt), where (7)

ULJ(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
(8)

Here rt = rc+rd is the sum of the hard-core radii of the crowder and diffuser.
As in the article, we used crowders of radius 3 nm and diffusers of radius 1
nm, as well as a range σ = 0.5 nm of the LJ potential. Fig. 9 shows effective
diffusion coefficients calculated from these simulations, showing the the non-
monotonic dependence of Deff on ε occurs also in this system. We note that
the notion of the “volume occupied” by crowders is not precisely defined for
this potential; for that reason Fig. 9 shows the number of crowders rather
than their volume fraction.
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Crystal Gel Random

Figure 10: Illustration of different types of crowder configurations used. For
clarity, a crowder volume fraction of φ = 0.08 is shown. Illustrations were
made using VMD (3).

6 Effect of crowder configuration

It is interesting to consider how our results may depend on the type of crow-
der configurations chosen. Three possibilities are shown in Fig. 10; for clarity
these are shown at a relatively low crowder volume fraction of φ = 0.08. The
first is a regular cubic array or crystal of crowders. The second is what we
call a “gel” configuration of crowders, and is produced as follows: A random
location is chosen for the first crowder. The next crowders follow each other
in a row or rod, advancing in a randomly chosen direction from the first
crowder. This continues until an overlap occurs with a previously placed
crowder (taking into account periodic boundary conditions). When an over-
lap occurs, a new location is chosen again and the process repeats until
the desired number of crowders has been placed. A third type of crowder
configuration, which we have used throughout the article, is a random con-
figuration, that is, a configuration of crowders taken from an equilibrated
simulation of only mobile crowders. We performed simulations using these
three types of configuration, with a crowder volume fraction of φ = 0.24.
The results are shown in Fig. 11. Interestingly, the effective diffusion co-
efficient does not depend very strongly on the type of configuration used,
especially for small values of ε. The non-monotonic dependence of Deff on ε
is also seen to be present in all three cases.
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Figure 11: Effective diffusion coefficients calculated from simulations using
crowder configurations of the three types depicted in Fig. 10. A crowder
volume fraction φ = 0.24 was used in all three cases.

7 Effect of crowder mobility

In the article we consider particles diffusing among fixed crowders. Here we
examine the effect of crowder mobility on the effective diffusion coefficient
of the diffusing 1 nm radius particles. Consistently with the Stokes-Einstein
formula, we give the mobile crowders a mobility that is one third that of
the diffusers. Fig. 12 shows our calculated effective diffusion coefficients
for both fixed and mobile crowders, using a crowder volume fraction of
φ = 0.24. As could be expected, the particles diffuse faster among mobile
crowders than among fixed ones. In the presence of mobile crowders, the
non-monotonic dependence of Deff on ε is weak compared to the case of
fixed crowders. Fig. 13 shows the same thing for a higher crowder volume
fraction of φ = 0.32, and also includes simulation data for the case of an
equal mixture of fixed and mobile crowders, showing a smooth interpolation
between the cases of fixed or mobile crowders only. At this higher volume
fraction, the non-monotonic effect, although weak, is still clearly discernible.
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Figure 12: Comparison of effective diffusion coefficients of diffusers in the
case of fixed versus mobile crowders. A crowder volume fraction φ = 0.24
was used in both cases.

8 Variation of crowder size

In order to study the effect of varying the size of the crowders, we have per-
formed simulations with crowders of different hard-core radii, namely rc = 6
nm and rc = 1.5 nm in addition to the 3 nm radius crowders considered in
the article. Fig. 14 shows the results of three sets of simulations, all using
the same volume fraction φ = 0.24 of crowders and the same characteristic
range λ = 0.5 nm of the attractive potential. The non-monotonic depen-
dence of Deff on ε is visible in all three cases, although it is seen to be a
relatively stronger effect for small crowders. We note also that the attraction
strength, εmax, which maximizes the diffusion rate, increases as a function
of the crowder size, consistently with the considerations in section 4 of the
Supplementary Materials.

9 Diffusing polymers

The non-monotonic dependence of Deff on ε may depend greatly on the
internal degrees of freedom of the diffusing molecule. To investigate this,
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Figure 13: Comparison of effective diffusion coefficients of diffusers for three
cases: fixed crowders (solid line), mobile crowders (dashed), and an equal
mixture of fixed and mobile crowders (dotted). A crowder volume fraction
φ = 0.32 was used in both cases.
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Figure 14: Effective diffusion coefficients in the presence of crowders of
different radii. Top: rc = 6.0 nm. Middle: rc = 3.0 nm. Bottom: rc =
1.5 nm. A crowder volume fraction φ = 0.24 was used in all three cases.

we performed simulations of short polymers diffusing among the same fixed
crowders as in the article. Each polymer consists of 5 monomers identical to
the diffusing particles considered in the article, including interactions with
crowders. Neighboring monomers interact via a potential that constrains the
distance between their centers to be very nearly 2.0 nm; no stiffness (angle)
potentials were used. The inset of Fig. 15 shows one of these polymers as
well as the surrounding crowders. The plot in Fig. 15 shows a striking non-
monotonic dependence of the polymer’s diffusion coefficient on the strength
ε of the monomer-crowder attraction. As might be expected, the position
of the maximum occurs at a smaller value of ε than in the case of diffusing
monomers. Even more importantly, the overall increase in diffusion rate as
the attractive interaction is turned on is large, of order 50 percent.

10 Alternative method for calculation of µcell

In the article, the roughness of the excess chemical potential landscape was
quantified by calculating the effective potential (Eq. 2 of the article) for each
cell. The roughness was then given by the population standard deviation
across all cells. This method used only the potential generated by the fixed
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diffusing among fixed crowders. The diffusion coefficients are normalized
by the “bare” diffusion coefficient of the polymer in the absence of any
obstacles, D0,poly = D0/n. Inset: snapshot made using VMD (3).

configuration of crowders. Since it amounts to a direct evaluation of the
partition function in Eq. (2) of the article, this method should be exact,
assuming accurate numeric integration.

Direct evaluation of the partition function is possible here because we
only need to integrate over the position of the single diffusing particle. This
is not possible in systems with many interacting degrees of freedom (for
example, the same system but with mobile crowders). In those cases, the
only way to calculate the excess chemical potential landscape is directly
from the simulation trajectories, often using histograms of various order
parameters. It is interesting to perform the same type of calculation for
our system and to compare the results to those given directly by partition
function.

We take as our order parameter the position of the diffusing particle,
binned according the the division of the system into 14× 14× 14 nm cells.
From a simulation trajectory, we can calculate the probability pcell

i that a
diffusing particle occupies cell i. The free energy change for moving the
diffusing particle from cell i to cell j is −kBT · ln(pcell

i /pcell
j ). This is also the

chemical potential difference between these cells. It follows that the rough-
ness of the chemical potential landscape, in units of kBT , can be calculated

15
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φ = 0.24. Black curve: µcell calculated as explained in the article, using only
the crowder configuration. Red diamonds: standard deviation of ln(pcell)
calculated using only simulation trajectories as explained in SM section 10.
In both cases the 70×70×70 nm system volume was divided into 14×14×14
nm cells.

as

σ
[
ln(pcell)

]
=

√
1

Ncells

∑
i

(ln(pcell
i )− ln(pcell)2 (9)

We note that this method, which uses only the simulation trajectory, is
complementary to the one used in the article, which uses only the spatially
varying potential generated by the crowders.

Fig. 16 shows a comparison of the two methods for calculating the rough-
ness of the chemical potential landscape. In both cases, the same discretiza-
tion of the system into 14× 14× 14 nm cells is used.
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11 Determination of Deff from the Fokker-Planck
equation

Here we show that the main conclusion of the paper, the non-monotonicity
of Deff as a function of ε, can be derived from the equations that describe
the probability flux of the diffuser (i.e. the Fokker-Planck equations). This
field-based approach is completely different from the Brownian Dynamics
simulation approach described in the main text.

We consider the diffusion of a single diffuser in the presence of fixed
crowders. In equilibrium, the probability flux at any point in the system is
zero. If a biasing force ~F is imposed on the system, a net probability flux
develops, given by:

~J(~r) = −D0
~∇ρ(~r)−D0ρ(~r)~∇βU(~r) +D0ρ(~r)~F , (10)

where ρ(~r) is the probability density of the diffuser, D0 is its microscopic
diffusion coefficient in the absence of forces or obstacles, and U(~r) is the total
potential created by the crowders at ~r, including both hard-core repulsions
and short-range attractions. More specifically, U(~r) is given by the sum of
all crowder-diffuser pairwise interactions, given by Eq. 1 of the main text.

The probability density ρ(~r) is normalized:∫
ρ(~r)d~r = 1, (11)

where the integral runs over the volume of the whole system. In the steady
state, the probability flux fulfills the continuity condition:

~∇ · ~J(~r) = 0 (12)

Let us consider a macroscopic picture of the system (see Figure 17a), where
we discretize the space in cells of volume V. The size of the cells is chosen
such that they all have the same average probability density and potential.
In this macroscopic picture, the probability flux in the direction of ~F is:

J = DeffρF, (13)

where F is the modulus of ~F and ρ is the average probability density in the
cell,

ρ =

∫
V ρ(~r)d~r

V
(14)

17



Without loss of generality, we will assume that ~F is normal to one of the sides
of the cell (red line in Figure 17a). The total current obtained by integrat-
ing Eq. 10 (microscopic picture) on one of the sides normal to ~F produces
the same total current as that obtained by integrating Eq.13 (macroscopic
picture). Therefore: ∫

~J(~r) · ~n dA = DeffρFA, (15)

where A is the area of the side of the cell and ~n is a unit vector normal to
the side of the cell. Thus,

Deff =

∫
~J(~r) · ~n dA
ρFA

(16)

Note that the ρ(~r) in Eq. 10 is a steady-state probability density and is
therefore different from the equilibrium probability density sampled in the
BD simulations, ρeq(~r). However, in the limit F → 0, ρ(~r) → ρeq(~r), so we
calculate

Deff = lim
F→0

∫
~J(~r) · ~n dA
ρFA

(17)

In order to determine Deff, we need to solve Eqs. 10 and 12 in the whole
system under the constraint of normalization (Eq. 11). Performing such a
calculation in three dimensions for a system with more than a few randomly
distributed crowders is computationally prohibitive. However, we can con-
sider the case where the crowder distribution is symmetric and use symmetry
considerations in the calculations. We will consider, therefore, a cubic ar-
ray of crowders (i.e. the crystal structure in Figure 10). We observed that
BD simulations for that system display a non-monotonic behavior of Deff(ε)
similar to that observed for randomly distributed crowders. We solved the
system of differential equations 10, 11 and 12 in this system using Finite
Elements with the software Comsol Multiphysics 4.3b. Figure 18 shows
that the Deff/D0 versus ε plot presents a maximum for a positive value of ε
(ε = 1.3 kBT ), in agreement with the behavior observed in BD simulations.
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Figure 17: a. Scheme showing the diffusion equation-based approach to
determine Deff. We consider the diffusion of the diffuser probability both
at the microscopic level where the system is inhomogeneous (left) and at
the macroscopic level where we partition the system into cells (small square
in the right panel), such that the system is effectively homogeneous at the
coarse-grained scale. We impose a drift force and determine the probability
flux across a surface normal to this force (red line) b. Cell used in the Finite
Element calculations. We consider a cell with periodic boundary conditions
in the three spatial directions. The drift force is applied in the z direction.
The central crowder interacts with the diffuser according Eq. 1 in the main
text with λ = 0.5 nm. The crowder has radius rc = 3 nm and the box has
a side of 12 nm, which results in a crowder volume fraction φ = 0.065.
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Figure 18: Deff/D0 determined from probability diffusion calculations as a
function of the strength ε of the crowder-diffuser attractions.
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