Supplementary Information

Supplementary Figure Legends

Figure S1. Nucleotide sequence of the 1.7-kb genomic DNA around the *Hck* **transcription start site**. Positions are given relative to the transcription start site (TSS, +1) of the *Hck* gene. The boxed regions indicate ChIP-qPCR products. The potential Gli binding motif is indicated.

Figure S2. Comparison of human and mouse Gli1 protein sequences. The conserved Tyr residues are marked with upper case "Y" below the sequence. The lower case "y" indicates the tyrosine residues present only in mouse or human Gli1. The zinc-finger domain is indicated.

Figure S3. Phosphorylation of Gli1 mutants by Hck. (A) Map of Gli1 constructs relative to the fulllength Gli1 protein. Several conserved Tyr residues are marked. (B) NIH3T3 cells were co-transfected with constructs expressing Hck and different HA-tagged Gli1 proteins. Cell lysates were precipitated with 4G10 antibody and probed with anti-HA. Phosphorylation of all Gli1 constructs was detected.

Figure S4. Sufu interacts with non-phosphorylated Gli1 proteins. NIH3T3 cells were transfected with constructs expressing HA-Gli1 and Flag-Sufu proteins in the presence or absence of exogenous HA-Hck. Cell lysates were precipitated with anti-Flag antibodies and antibodies against HA or Flag were used for western blot. Phosphorylated Gli1 bands (which migrate more slowly) were detected in the input protein lysate (marked by a *) but not in the Flag-precipitated compartment in the presence of exogenous Hck.

Figure S5. Hck is highly expressed in Shh-type medulloblastoma (A) Microarray analyses (NCBI Geo Datasets GSE9299) indicate that both *Gli1* and *Hck* but not *Src* mRNA levels are higher in SmoM2 induced medulloblastoma than in normal cerebellum controls. (B) Microarray analyses (GSE34126) indicate that *Hck* mRNA levels in mouse *Ptch1*-null Shh-type medulloblastomas are higher than those in normal stem cells and those in Myc-driven Group 3 like medulloblastomas.

Supplementary Tables

Table S1 Sequences of PCR-Primers

Gli1F	GGTCTCGGGGGTCTCAAACTGC
Gli1R	CGGCTGACTGTGTAAGCAGAG
Gli15UTRF	GCTGGAGGTCTGCGTGGTAGAG
Gli15UTRR	GAGGAGGAGGAGGAAAGAGAGATCC
HckhmF	TCACTGGTGTGTAAGATTGCTG
HckhmR	GGGTTTGACATACCTGGGTAAG
HckmF	CAAGTCTTCGTCGCTTGCTC
HckmR	CGGAGGAACCTGGACTTCAC
Ptch1F	GAAGCCACAGAAAACCCTGTC
Ptch1R	GCCGCAAGCCTTCTCTAGG
SufuF	ATGGCCGGCACTTCACCTACAAG
SufuR	GGCCAGCTGTACTCTTTGGGAAG
GapdhF	GTGGTGAAGCAGGCATCTGA
GapdhR	GCCATGTAGGCCATGAGGTC

Figure S1

-1575	GCTGCCTTTA	TTGGCTTCTT	TCCCATCTCA	ATCTCCTTCA	CTCAGTAGAT	AACAAGCATT	GTTTACTGCT	ACACAGACTA
	CGACGGAAAT	AACCGAAGAA	AGGGTAGAGT	TAGAGGAAGT	GAGTCATCTA	TTGTTCGTAA	CAAATGACGA	TGTGTCTGAT
-1495	ATTTCACTTC	TGTGTCCAAG	TCAATTAAAC	CTGTTCAAGA	CTCGGTCTAT	TTTTAGAAAT	AGGGCATGAA	TATATTAAAA
	TAAAGTGAAG	ACACAGGTTC	AGTTAATTTG	GACAAGTTCT	GAGCCAGATA	AAAATCTTTA	TCCCGTACTT	ATATAATTTT
-1415	TACATAGCAA	ACACATTAGT	GTTGGGTGAC	TGGGATTTCT	ACGTGGGCTG	GGGACCAGGC	TGTGTAGGAG	GCAGCTCTGG
	ATGTATCGTT	TGTGTAATCA	CAACCCACTG	ACCCTAAAGA	TGCACCCGAC	CCCTGGTCCG	ACACATCCTC	CGTCGAGACC
							FCOPT	
-1335	TTGTCAGAAC	TGCTACTGGG	CCTAGCGGGT	GGAACTCTAG	AGCTGCTAAC	ACCGCTCGCG	CTCA GAATTC	АТАСТТАААА
1000	AACAGTCTTG	ACGATGACCC	GGATCGCCCA	CCTTGAGATC	TCGACGATTG	TGGCGAGCGC	GAGTCTTAAG	TATGAATTTT
-1255	CATAGTACTG	CTAAACGCAT	GCCTACATGC	ACGCGTAAGC	GAATGAATGA	GAGATACTGG	TGGTCTGGCC	TGGCTAGAGG
	GTATCATGAC	GATTTGCGTA	CGGATGTACG	TGCGCATTCG	CTTACTTACT	CTCTATGACC	ACCAGACCGG	ACCGATCTCC
			PstI					
-1175	AGGGAGGACT	CCTGTACGTT	T CTGCAG GTG	TGTGTTGCAG	TTTAGAGAGT	GTTGGTCCCT	GTCGTTTTGA	ATGATGTCTC
	TCCCTCCTGA	GGACATGCAA	AGACGTCCAC	ACACAACGTC	AAATCTCTCA	CAACCAGGGA	CAGCAAAACT	TACTACAGAG
							G	li binding site
-1095	AGGCTGAGTG	GAATATGCCA	TGCAAACAGG	ACCTCAGTGG	TCTGCCAGTA	AGACTTCCTC	TCTTCAACTT	GGGAGGTCCT
	TCCGACTCAC	CTTATACGGT	ACGTTTGTCC	TGGAGTCACC	AGACGGTCAT	TCTGAAGGAG	AGAAGTTGAA	CCCTCCAGGA
-1015	CTGAGCAGTC	CCATATTCAG	CCCAGAATAA	GGCAAAGAAC	TCCCGCGGGGC	GCCAGACTTT	GCATGGAGTT	TGAATAAGCG
	GACTCGTCAG	GGTATAAGTC	GGGTCTTATT	CCGTTTCTTG	AGGGCGCCCG	CGGTCTGAAA	CGTACCTCAA	ACTTATTCGC
-935	GTGGGTGGGC	GGGTGGAGGG	AAAACCGCTG	CATGTGGGAG	GGACCGAAGT	GGAAGGGCGG	TGGAGACCCA	CCAGAATCCT
0	CACCCACCCG	CCCACCTCCC	TTTTGGCGAC	GTACACCCTC	CCTGGCTTCA	CCTTCCCGCC	ACCTCTGGGT	GGTCTTAGGA
-855	AGAGGGAGAG	GTTAGACTTA	TCAGGGCGTG	GTTAGACTTA	AAGGGAGC'I'A	CATTCCTTCT	GCGGCTGGTT	TAGGATCTT
	TCTCCCTCTC	CAATCTGAAT	AGTCCCGCAC	CAATCTGAAT	TTCCCTCGAT	GTAAGGAAGA	CGCCGACCAA	ATCCTAGAAA
-//5	GAAAGGAAGG	ATAGGATCGG	TTGATTGCTC	CAGTGCAGGA	TTTAGGACCT	ATGGGATTAA	GGTCTCGTAG	GGGGCTGGTG
	CTTTCCTTCC	TATCCTAGCC	AACTAACGAG	GTCACGTCCT	AAATCCTGGA	TACCCTAATT	CCAGAGCATC	CCCCGACCAC
								XhoI
-695	GCTGTAGTAC	AAACTACGGA	GAGAGAGGCC	CTGGATTCCA	TTCTCTAGAA	CACACAAGCG	CGCGCGCGCG	CGCT CTCGAG
	CGACATCATG	TTTGATGCCT	CTCTCTCCGG	GACCTAAGGT	AAGAGATCTT	GTGTGTTCGC	GCGCGCGCGC	GCGAGAGCTC
-615	ATTAAAACCC	TTTCAGAAAA	TTTGATTACA	AATCTAGAGA	ATTTGTAGGG	GTTAGGACTG	GGAACAGAAT	AGAAAGTGAG
	TAATTTTGGG	AAAGTCTTTT	AAACTAATGT	TTAGATCTCT	TAAACATCCC	CAATCCTGAC	CCTTGTCTTA	TCTTTCACTC
-535	ATTGAAAATC	TTTCCCCAGG	AGGAGGCAGA	TGGTTTTGCA	GGTAAAGACG	CCTGGTGCCA	AGCGTGGCTG	CTTGAGTTCA
	TAACTTTTAG	AAAGGGGTCC	TCCTCCGTCT	ACCAAAACGT	CCATTTCTGC	GGACCACGGT	TCGCACCGAC	GAACTCAAGT
-455	GTCCCCGGAA	CTCGGAAGGT	GGAAGGTAAG	ATCCTAGTCC	TCCAAATTGT	TCTCTAACCT	CTACACCGCT	CTGAGGCTCC
0.5.5	CAGGGGCCTT	GAGCCTTCCA	CCTTCCATTC	TAGGATCAGG	AGGTTTAACA	AGAGATTGGA	GATGTGGCGA	GACTCCGAGG
-375	AGGGTACTTA	CACACATACA	CGGAAACAA'I'	CAACCAGTCA	AACAA'I'AAAC	G'I'AAAA'I'A'I''I'	ACAATTCTT	AGGGAATCCA
0.05	TCCCATGAAT	GTGTGTATGT	GCCTTTGTTA	GTTGGTCAGT	TTGTTATTTG	CATTITIATAA	'I'G'I''I'AAGAAA	TCCCTTAGGT
-295	AGGGTATTTG	GTCTCTTAGG	TAGGGGTCCA	AAATCTCTGG	GGATAGGGTT	TAGAATCCTT	TGGACAGGCT	CATTACATCA
	TUUUATAAAU	CAGAGAATCC	ATCCCCAGGT	TTTAGAGACC	CUTATUUCAA	ATCTTAGGAA	ACCTGTCCGA	GTAATGTAGT
		Spe	eI					
-215	TGGGGGGGCTT	AAACGC ACTA	GT GGGGGAGG	GGGACTGGGA	ATCTTGGGAG	GGCGGGTCAA	ACCTTGGTGT	CTGAGTAAGT
	ACCCCCCGAA	TTTGCGTGAT	CACCCCCTCC	CCCTGACCCT	TAGAACCCTC	CCGCCCAGTT	TGGAACCACA	GACTCATTCA
-135	CCTTCAAGGA	CTGGTTAGCG	CCCTTGAGGA	CAGGGTTAGC	AAAGAAATGC	TGAAATTCTT	TGGAGGTGAA	TTTAGAGCAG
	GGAAGTTCCT	GACCAATCGC	GGGAACTCCT	GTCCCAATCG	TTTCTTTACG	ACTTTAAGAA	ACCTCCACTT	AAATCTCGTC
-55	GAGACAAGAG	AGCCAGAGTG	GGAGTTAGGC	TCTTAGAGGG	CGGAGTCGGG	GTATT T GGGG	GCGGGGTTTG	CATCACCCAG
	CTCTGTTCTC	TCGGTCTCAC	CCTCAATCCG	AGAATCTCCC	GCCTCAGCCC	CATAAACCCC	CGCCCCAAAC	GTAGTGGGTC
+26	GGTGCGGCTA	AGGCGCCCAG	ATGGCCAGTG	AGCGCCACTG	GGTTGCGGCT	CCCAGCTTGC	ACTCCCCGCG	GCGGCTCTCA
	CCACGCCGAT	TCCGCGGGTC	TACCGGTCAC	TCGCGGTGAC	CCAACGCCGA	GGGTCGAACG	TGAGGGGCGC	CGCCGAGAGT
+106	GACGGGTGGG	AGGGGACCAA	AGTCGCCCGT	GAAG				
	<u>CTGCCCACC</u> C	TCCCCTGGTT	TCAGCGGGCA	CTTC				

Figure S2

Gli1_m Gli1_h	1 1	MFNPMTPPQVNSYSEPCCLRPLHSQGVPSMGTEGLSGLPFCHQANFMSGSQGYGAARETS MFNSMTPPPISSYGEPCCLRPLPSQGAPSVGTEGLSGPPFCHQANLMSGPHSYGPARETN V	60 60
Gli1_m	61	SCTEGSLFPPPPPPRSSVKLTKKRALSISPLSDASLDLQTVIRTSPSSLVAFINSRCTSP	120
Gli1_h	61	SCTEGPLFSSPRSAVKLTKKRALSISPLSDASLDLQTVIRTSPSSLVAFINSRCTSP	117
Gli1_m Gli1_h	121 118	GGSYGHLSIGTMSPSLGFPPQMSHQKGTSPPYGVQPCVPHDSTRGSMMLHPQARGPRATC GGSYGHLSIGTMSPSLGFPAQMNHQKGPSPSFGVQPCGPHDSARGGMIPHPQSRGPFPTC V	180 177
Gli1_m	181	QLKSELDMMVGKCPEDPLEGDMSSPNSTGIQDHLLGMLDGREDLEREEKPEPESVYETDC	240
Gli1_h	178	QLKSELDMLVGKCREEPLEGDMSSPNSTGIQDPLLGMLDGREDLEREEKREPESVYETDC	237
Gli1_m Gli1_h	241 238	RWDGCSQEFDSQEQLVHHINSEHIHGERKEFVCHWGGCSRELRPFKAQYMLVVHMRRHTG RWDGCSQEFDSQEQLVHHINSEHIHGERKEFVCHWGGCSRELRPFKAQYMLVVHMRRHTG Zn-Fingers Y	300 297
Gli1_m Gli1_h	301 298	EKPHKCTFEGCRKSYSRLENLKTHLRSHTGEKPYMCEQEGCSKAFSNASDRAKHQNRTHS EKPHKCTFEGCRKSYSRLENLKTHLRSHTGEKPYMCEHEGCSKAFSNASDRAKHQNRTHS Y Y	360 357
Gli1_m Gli1_h	361 358	NEKPYVCKLPGCTKRYTDPSSLRKHVKTVHGPDAHVTKRHRGDGPLPRACPLSTVEPKRE NEKPYVCKLPGCTKRYTDPSSLRKHVKTVHGPDAHVTKRHRGDGPLPRAPSISTVEPKRE Y Y	420 417
Gli1_m	421	REGGSGREESRLTVPESAM-PQQSPGAQSSCSSDHSPAGSAANTDSGVEMAGNAGGSTED	479
Gli1_h	418	REGGPIREESRLTVPEGAMKPQPSPGAQSSCSSDHSPAGSAANTDSGVEMTGNAGGSTED	477
Gli1_m	480	LSSLDEGPCVSATGLSTLRRLENLRLDQLHQLRPIGSRGLKLPSLTHAGAPVSRRLGPPV	539
Gli1_h	478	LSSLDEGPCIAGTGLSTLRRLENLRLDQLHQLRPIGTRGLKLPSLSHTGTTVSRRVGPPV	537
Gli1_m	540	$\begin{array}{c} SLDRRSSSSSMSSAYTVSRRSSLASPFPPGTPPENGASSLPGLTPAQHYMLRARYASAR\\ SLERRSSSSSSISSAYTVSRRSSLASPFPPGSPPENGASSLPGLMPAQHYLLRARYASAR\\ Y Y Y \end{array}$	599
Gli1_h	538		597
Gli1_m	600	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	659
Gli1_h	598		657
Gli1_m	660	$\begin{array}{llllllllllllllllllllllllllllllllllll$	718
Gli1_h	658		717
Gli1_m	719	$\begin{array}{ccc} {\sf LNPYMDFSSTDTLGYGGPEGTAAEPYEARGPGSLPLGPGPPTNYGPGHCAQQVSYPDPTP} \\ {\sf LNPYMDFPPTDTLGYGGPEGAAAEPYGARGPGSLPLGPGPPTNYGPNPCPQQASYPDPTQ} \\ {\sf Y} & {\sf Y} & {\sf Y} & {\sf Y} & {\sf Y} \end{array}$	778
Gli1_h	718		777
Gli1_m	779	$\begin{array}{c} {\sf ENWGEFPSHAGVYPSNKAPGAAYSQCPRLEHYGQVQVKPEQGCPVGSDSTGLAPCLNAHP} \\ {\sf ETWGEFPSHSGLYPGPKALGGTYSQCPRLEHYGQVQVKPEQGCPVGSDSTGLAPCLNAHP} \\ {\sf Y} {\sf Y} {\sf Y} {\sf Y} \end{array}$	838
Gli1_h	778		837
Gli1_m	839	$\begin{array}{ccc} {\rm SEGSPGPQPLFSHHPQLPQPQYPQSGPYPQPPHGYLSTEPRLGLNFNPSSSHSTGQLKAQ} \\ {\rm SEGPPHPQPLFSHYPQPSPPQYLQSGPYTQPPPDYLPSEPRPCLDFD-SPTHSTGQLKAQ} \\ {\rm y} {\rm Y} {\rm Y} {\rm Y} {\rm Y} {\rm Y} \end{array}$	898
Gli1_h	838		896
Gli1_m	899	$\begin{array}{l} LVCNYVQSQQELLWEGRNRGGLPNQELPYQSPKFLGGSQVSQSPAKTPAAAAAAYGSGFA\\ LVCNYVQSQQELLWEGGGREDAPAQEPSYQSPKFLGDSQVSPSRAKAPVNTYGPGFG\\ Y $	958
Gli1_h	897		953
Gli1_m	959	$\begin{array}{l} PASANHKSGSYPAPSPCHETFTVGVNRPSHRPAAPPRLLPPLSPCYGPLKVGDTNPSCGH \\ PNLPNHKSGSYPTPSPCHENFVVGANRASHRAAAPPRLLPPLPTCYGPLKVGGTNPSCGH \\ Y \\ \end{array}$	1018
Gli1_h	954		1013
Gli1_m	1019	$\begin{array}{l} PEVGRL GAGPAL Y PPPEG QVCNALDSLDLDNT QLDFVAILDEAQGLSPPLSHE QGDSSKN \\ PEVGRL GGGPAL Y PPPEG QVCNPLDSLDLDNT QLDFVAILDEPQ GLSPPPSHD QRGSSGH \\ Y \end{array}$	1078
Gli1_h	1014		1073
Gli1_m Gli1_h	1079 1074	TPSPSGPPNMAVGNMSVLLGSLPGETQFLNSSA1111TPPPSGPPNMAVGNMSVLLRSLPGETQFLNSSA1106	

В

anti-HA

Figure S5 Hck level in human medulloblastoma and mouse medulloblastoma model

